为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

08第八讲_多层与高层钢筋混凝土房屋抗震设计新规范

2010-10-29 42页 doc 690KB 22阅读

用户头像

is_940874

暂无简介

举报
08第八讲_多层与高层钢筋混凝土房屋抗震设计新规范第八讲 多层与高层钢筋混凝土房屋抗震设计新规范 第八讲 多层与高层钢筋混凝土房屋抗震设计新规范 胡庆昌 一 、 抗震设计的一般要求 (一)抗震设计的若干重要概念 1.为了保证结构的抗震安全,根据具体情况,结构单元之间可采取牢固连接或合理分离的方法。高层建筑的结构单元需采取加强连接的方法。 2.尽可能设置多道抗震防线,并应考虑某一防线被突破后,引起内力重公布的影响。 3.结构应具有必要的承载力、刚度、稳定性、延性及耗能等方面的特能,主要耗能构件应有较高的延性和适当刚度,承受竖向荷载的主要构件不宜作为主要耗能构件。 4.合理的布...
08第八讲_多层与高层钢筋混凝土房屋抗震设计新规范
第八讲 多层与高层钢筋混凝土房屋抗震设计新规范 第八讲 多层与高层钢筋混凝土房屋抗震设计新规范 胡庆昌 一 、 抗震设计的一般要求 (一)抗震设计的若干重要概念 1.为了保证结构的抗震安全,根据具体情况,结构单元之间可采取牢固连接或合理分离的方法。高层建筑的结构单元需采取加强连接的方法。 2.尽可能设置多道抗震防线,并应考虑某一防线被突破后,引起内力重公布的影响。 3.结构应具有必要的承载力、刚度、稳定性、延性及耗能等方面的特能,主要耗能构件应有较高的延性和适当刚度,承受竖向荷载的主要构件不宜作为主要耗能构件。 4.合理的布置抗侧力构件,减少地震作用下的扭转效应。结构刚度、承载力沿房屋高度宜均匀、连续分布,避免造成结构的软弱或薄弱部位。 5.同一楼层内宜使主要耗能构件屈服以后,其他抗侧力构件仍处于弹性阶段,使“有约束屈服”保持较长阶段,保证结构的延性和抗倒塌能力。 6.合理的控制结构的非弹性部位(塑性 区),掌握结构的屈服过程以及最后形成的屈服机制。 7.框架抗震设计应遵守:“强柱、弱梁、更强核芯区”。 8.采取有效措施防止钢筋滑移、混凝土过早的剪切破坏和压碎等脆性破坏。 9.考虑上部结构嵌固于基础结构或地下室结构之上时,基础结构或地下室结构应具有足够的整体刚度和承载能力,当上部形成屈服机制后,基础结构或地下室结构应保持弹性工作。 10.高层建筑的地基主要受力范围内存在不均匀软弱粘性土层时,不宜采用天然地基。采用天然地基的高层建筑应考虑地震作用下,地基变形对上部结构的影响。 (二)钢筋混凝土房屋适用的最大高度 甲类建筑应进行专门研究,乙、丙类建筑可按8.1: 表8.1 现浇钢筋混凝土房屋适用的最大高度(m) 结构类型 设 防 烈 度 6 7 8 9 框架 60 55 45 25 框架-抗震墙 130 120 100 50 抗震墙 140 120 100 60 部分框支抗震墙 120 100 80 不应采用 框架-核心筒 150 130 100 70 筒中筒 180 150 120 80 板柱-抗震墙 40 35 30 不应采用 注:1. 房屋高度指室外地面到主要屋面板板顶的高度(不包括局部突出屋顶部分); 2. 框架-核心筒结构指周边稀柱框架与核心筒组成的结构; 3. 部分框支抗震墙结构指首层或底部两层框支抗震墙结构; 4. 筒体结构带有一部分主要承受竖向荷载的无梁楼盖时,不作为板柱抗震墙结 构; 5. 不规则或Ⅳ类场地的结构,其最大适用高度一般降低20%左右; 6. 超过表内高度的房屋,应进行专门研究和论证,采取有效的加强措施。 (三)高层建筑的高宽比不宜超过下表的限值 结构类型 设 防 烈 度 6度、7度 8度 9度 框架、板柱-抗震墙 4 3 2 框架-抗震墙 5 4 3 抗震墙 6 5 4 筒 体 6 5 4 注:1. 结构高宽比指房屋高度与结构平面最小投影宽度之比; 2. 当主体结构下部有大底盘时,高宽比可自大底盘以上 起; 3. 超过表 限值时,结构设计应有可靠依据,并采取有效措施; (四)筑类别调整后用于结构抗震验算的烈度 建筑类别 设 防 烈 度 6 7 8 9 甲类 7 8 9 9* 乙、丙、丁类 6* 7 8 9 注:1. 9*提高幅度,应专门研究; 2.​ 6*除特殊要求外,不需抗震验算。 (五)现浇钢筋混凝土房屋的抗震等级 1.按建筑类别及场地调整后用于确定抗震等级烈度 建筑类别 场地 设 防 烈 度 6 7 8 9 甲、乙类 Ⅰ 6 7 8 9 Ⅱ、Ⅲ、Ⅳ 7 8 9 9* 丙类 Ⅰ 6 6 7 8 Ⅱ、Ⅲ、Ⅳ 6 7 8 9 丁类 Ⅰ 6 6 6 7 Ⅱ、Ⅲ、Ⅳ 6 6 7 8 注:1. 按调整后的抗震烈度,由表 确定抗震等级; 2. 9*表示比9度一级更有效的抗震措施,主要考虑合理的建筑平面及体型、 有利的结构体系和更严格的抗震措施。具体要求应进行专门研究。 2.抗震等级 钢筋混凝土结构的抗震措施,包括内力调整和抗震构造措施,不仅要按建筑类别区别对待,而且要按抗震等级划分,因为同样烈度下不同结构体系、不同高度有不同的抗震要求,例如:现要抗侧力构件的抗震要求可低于主要抗侧力构件;较高的房屋地震应大,位移延性的要求也较高,表 中的“框架”和“框架结构”有不同的含义。“框架结构”措施框架结构而“框架”则泛指框架结构和框架抗震墙等结构体系中的框架。当框架-抗震墙结构有足够的抗震墙时,其框架部分属于次要的抗侧力构件,在基本振型地震作用下,框架承受的地震倾覆力矩小于结构总地震倾覆力矩的50%时,其框架部分的抗震等级可按框架-抗震墙结构的规定来划分。框架承受的地震倾覆力短可按下式计算: 式中:MC——框架抗震墙结构在基本振型地震作用下框架部分承受的地震倾覆力 短,上式中不考虑框架梁对抗震墙的约束作用; n ——结构层数; m——框架各层的柱根数; Vi——第i层某一根框架柱的计算地震剪力; hi——第i层的层高。 现浇钢筋混凝土房屋的抗震等级 结 构 类 型 按建筑类别及场地调整的烈度 6 7 8 9 框架 高度(m) ≤30 >30 ≤30 >30 ≤30 >30 ≤25 框架 四 三 三 二 二 一 一 剧场、体育馆等大跨度公共建筑 三 二 一 一 框架- 抗震墙 结构 高度(m) ≤60 >60 ≤60 >60 ≤60 >60 ≤50 框架 四 三 三 二 二 一 一 抗震墙 三 二 一 一 一 抗震墙 结构 高度(m) ≤80 >80 ≤80 >80 ≤80 >80 ≤60 抗震墙 四 三 三 二 二 一 一 部分框支 抗震墙结构 抗震墙 三 二 二 一 框支层框架 二 二 一 一 筒体 框架-核心筒 框架 三 二 一 一 核心筒 二 二 一 一 筒中筒 外筒 三 二 一 一 内筒 三 二 一 一 板柱- 抗震墙 板柱的柱 三 二 一 抗震墙 二 二 二 注:1. 接近或等于高度分界时,允许结合房屋规则程度及地基条件确定抗震等级; 2. 部分框支抗震墙结构的底部加强部位以上抗震墙的抗震等级可均按抗震墙 结构考虑。 裙房与主楼相连,裙房屋面部位的主楼上下各一层受刚度与承载力突变影响较大,抗震措施需要适当加强。裙房主楼之间设防震缝,在大震作用下可能发生碰撞,也需要采取加强措施。 带地下室的多层和高层建筑,当地下室结构的刚度和受剪承载力比上部楼层相对较大时(参见6.1.14条),地下室顶板可视作嵌固部位,在地震作用下的屈服部位将发生在地上楼层,同时将影响到地下一层。地面以下地震响应虽然逐渐减小,但地下一层的抗震等级不能降低,根据具体情况,地下二层的抗震等级可以降低,可按三级或更低等级。9度时应专门研究。 (六)防震缝与抗撞墙 1.防震缝 当建筑平面过长、结构单元的结构体系不同、高度或刚度相差过大以及各结构单元的地基条件有较大差异时,应考虑设防震缝,其最小宽度应符合以下要求: 1) 框架结构房屋的防震缝宽度,当高度不超过15m时可采用70mm;超过15m时,6度、7度、8度和9度相应每增加高度5m、4m、3m和2m、宜加宽20mm。 2) 框墙结构房屋的防震缝宽度可采用框架结构规定数值的70%,抗震墙结构房屋的防震缝宽度可采用框架结构规定数值的50%,且均不宜小于70mm。 3) 防震缝两侧结构类型不同时,宜按震要较宽防震缝的结构类型和较低房屋高度确定缝宽。计算防震缝宽度t时,按框架结构并取房屋高度H。 4) 震害表明,满足规定的防震宽度在强烈地震作用下由于地面运动变化,结构扭转,地震变形等复杂因素,相邻结构仍可能局部碰撞而损坏。防震缝宽度过大,会给建筑处理造成困难,因此,高层建筑宜选用合理的建筑结构方案,不设防震缝,同时采用合理的计算方法和有效的措施,以解决不设缝带来的不利影响,如差异沉降、偏心扭转、温度变形等。 高层建筑当有多层地下室形成大底盘,上部结构为带裙房的单塔或多塔结构时,可将裙房用防震缝自地下室以上分隔,地下室顶板应有良好的整体性和刚度,能将上部结构地震作用分布到地下室结构。 5) 下图说明在大震作用下,防震缝处发生碰撞时的不利部位。不利部位产生的后果包括地震剪力增大,产生扭转、位移增大、部分主要承重构件撞坏等。 6) 震害和试验研究都表明框架结构对抗撞不利,特别是防震缝两侧,房屋高度相差较大或两侧层高不一致的墙。加拿大BRITISH COLUMBIA大学的模型试验表明,3层与8层相隔框架结构在EL-EATRO地震波、PHA为0.5g作用下,板与板、板与柱两种碰撞的结果。无碰撞情况下,8层框架顶部加速度为2.5g,表示PHA放大5倍。发生碰撞后,位于3层框架顶部,当两侧楼层高度一致,楼板相撞时,加速度分别为15g和23g。两侧楼层高度不一致时,楼板和柱相撞,两侧加速度分别达到25g和36g,详见图。 针对上述情况,参考希腊抗震规范,对按8、9度设防的钢筋混凝土框架结构房屋防震缝两侧结构高度、刚度或层高相差较大时,在防震缝两侧房屋的尽端沿全高设置垂直于防震缝的抗撞墙,每一侧抗撞墙的数量不应少于两道,宜分别对称布置,墙肢长度可不大于一个柱距,框架和抗撞墙内力应按考虑和不考虑抗撞墙两种情况进行分析,并按不利情况取值。防震缝两侧抗撞墙的端柱和框架边柱,箍筋应沿房屋全高加密。 框架结构在PHA为0.5g的El-ceatro波作用下的碰撞试验 框架结构采用抗撞墙示意图 (七)、楼盖及屋盖 1.刚性楼屋盖 当楼、屋盖平面内刚度与抗震墙刚度之比相对较大,可以忽略楼、屋盖平面内变形对整体结构内力分布影响时,可称为刚性楼屋盖。 框架-抗震墙结构和板柱-抗震墙结构,都应通过刚性楼、屋盖的连接,将地震作用传递到抗震墙,保证结构在地震作用下的整体工作。为了保证楼、屋盖的刚性,抗震墙之间无大洞口的楼、屋盖长宽比不宜超过下表 的要求。 抗震墙之间楼屋盖的长宽比 l /b 楼、屋盖类型 烈 度 6 7 8 9 现浇、叠合梁板 4 4 3 2 装配式楼盖 3 3 2.5 不宜采用 框支层和板、柱抗震墙的现浇梁板 2.5 2.5 2 不应采用 对于抗震墙错位及平面外挑情况可按下图考虑: 当楼、屋盖有大洞口时,例如楼梯间,在洞口两侧应设抗震墙。楼盖与抗震墙连接部位有孔洞时,在洞口两侧应增设垂直于抗震墙的补强钢筋,保证楼盖与抗震墙的剪力传递。采用叠合板作为刚性楼层时,后浇叠合层应有连接钢筋。设防烈度不大于8度时,可采用有整浇层的予制楼板,板上配筋整个浇层,厚度不应小于50mm。当整个浇层平面内剪力较大,需要配筋解决或楼、层盖有较大洞需设边缘构件时,现浇层厚度不宜小于75mm,当整个浇层内需埋设电线管道时,管道外径不宜大于整浇层厚度的1/3,设防烈度为8度时,整浇层与予制楼板应通过板缝拉筋增强整体连接,拉筋间距不宜大于1000mm,拉筋直径不宜小于6。配筋整浇层与抗震墙连接部位的配筋应保证楼、屋盖与抗震墙之间的剪力传递。楼、屋盖周边的边缘构件应与周边框架叠合梁相结合。 框支层的楼盖应将不落地墙及框支层自身的地震剪力传递到落地抗震墙,对框支层楼盖的平面内刚度及受剪、受弯承载力有更高要求,另见框支抗震墙结构部分。 2.楼、屋盖的非刚性影响 框架-抗震墙结构的空间分析表明,当抗震墙之间的长宽比超过表限值时,楼、层盖非刚性对框架楼层剪力的影响,一般只在最下2~3层较为明显。例如12层左右的框-墙结构,当楼屋盖的平面内等效刚度*与其端部抗震墙等效刚度之比为2时,底层中部框架剪力较按刚性楼盖计算的剪力,约增大25%。刚度比为1时,底层中部框架剪力约增大40%。层数愈多影响愈小。 * 等效刚度为考虑剪切变形修正的抗弯刚度。 (八)高层建筑的结构侧向稳定及P-效应 高宽比较大或带有较弱层及扭转效应明显的高层建筑应进行侧向稳定验算,高层建筑的楼层侧向稳定可由稳定系数来判别。 第i楼层的稳定系数i可按下式计算: 式中:Gi ——位于楼层i及其以上的总重力荷载代表值,8、9度时应考虑竖向地震作用, 8度时为总重力荷载的10%,9度时为总重力荷载的20%; Vi——位于楼层i及楼层i-1之间的地震剪力值; i——对应于Vi的层间位移差; hi——楼层i之下的层高。 当:i≤0.1,可不考虑P-效应; 0.25≥I>0.1,结构内力及位移均应考虑P-效应; i>0.25,表明在地震作用下将产生楼层失稳。 一般高层建筑的侧向稳定可以通过限制弹性层间位移来解决,但当地震作用较小,结构刚度较柔时,应加注意。 楼层稳定系亦可表达为: ——楼层地震剪力系数 7度时不小于0.012,8度不小于0.024,9度时不小于0.04。 i/hi——弹性层间位移角限值,框架为1/550,框-墙、框架核心筒为1/800,抗震墙结构及筒中筒结构为1/1000。 值 烈度 结构 7度 8度 9度 框架 0.152 0.076 0.045 框-墙 框架-核心筒 0.105 0.052 0.031 抗震墙、筒中筒 0.084 0.042 0.025 从上表,可以看出框架结构及框架-抗震墙结构按7度最小地震力设计时,如不考虑P-效应,应适当加强楼层刚度。 (九)基础及地下室结构抗震设计 1.基础结构抗震设计基本要求 基础结构应有足够承载力承受上部结构的重力荷载和地震作用,基础与地基应保证上部结构的良好嵌固、抗倾覆能力和整体工作性能。在地震作用下,当上部结构进入弹塑性阶段,基础结构应保持弹性工作,此时,基础结构可按非抗震的构造要求。 多层和高层建筑带有地下室时,在具有足够刚度、承载力和整体性的条件下,地下室结构可考虑为基础结构的一部分。当地下室不少于两层时,地下室顶部可作为上部结构的嵌固部位。上部结构与地下室结构可分别进行抗震验算。采用天然地基的高层建筑的基础,根据具体情况应有适当地埋置深度,在地基及侧面土的约束下增强基础结构抗侧力稳定性。高层建筑的基础埋深应按地基土质、地震烈度及基础结构刚度等条件来确定。较高的烈度要求较深的基础,土质坚硬则埋深可较浅。根据具体情况,基础埋深可采用地面以上房屋总高度的1/18~1/15。 为了保证在地震作用下,基础的抗倾覆能力,高宽比>4的高层建筑的天然地基在折减后的多迂地震作用和竖向荷载共同作用下,基础底面不宜出现零应力区,其他建筑基础底面的零应力区面积不宜超过基础底面面积的15%。当高层建筑与裙房相连,因此在相连部位,高层建筑基础底面在地震作用下亦不宜出现零应力区,同时应加强高低层之间相连基础结构的承载力,并采取措施减少高、低层之间的差异沉降影响。 无整体基础的框架-抗震墙结构和部分框支抗震墙结构是对抗震墙基础转动非常敏感的结构,为此必须加强抗震墙基础结构的整体刚度,必要时应适当考虑抗震墙基础转动的不利影响。 2.各类基础的抗震设计 1) 单独柱基 单独柱基一般用于地基条件较好的多层框架,采用单独柱基时,应采取措施保证基础结构在地震作用下的整体工作。属于以下情况之一时,宜站两个主轴方向,设置基础系梁。 ① 一级框架和Ⅳ类场地的二级框架; ② 各柱基承受的重力荷载代表值差别较大; ③ 基础埋置较深,或各基础埋置深度差别较大; ④ 地基主要受力层范围内存在软弱粘性土层可液化土层; ⑤ 桩基承台之间。 一般情况,系梁宜设在基础顶部,当系梁的受弯承载力大于柱的受弯承载力时,地基和基础可不考虑地震作用。应避免,系梁与基础之间形成短柱。当系梁距基础顶部较远,系梁与柱节点应按强柱弱梁设计。 一、二级框架结构的基础系梁除承受柱弯矩外,边跨系梁尚应同时考虑不小于系梁客观存在上,柱下端组合的剪力设计值产生的拉力或压力。 2) 弹性地基梁 无地下室的框架结构采用地基梁时,一、二级框架结构地基梁应考虑根部屈服、超强的弯矩作用。 3) 桩基 桩的纵筋与承台或基础应满足锚固要求:桩顶箍筋应满足柱端加密区要求。上、下端嵌固的支承短桩,在地震作用下类似短柱作用,宜采取相应构造措施。采用空心桩时,宜将柱的上、下端用混凝土填实。 计算地下室以下桩基承担的地震剪力,可按规范4.4.2条,当地基出现零应力区时,不宜考虑受拉桩承受水平地震作用。 3.地下室作为上部结构嵌固部位的要求 地下室顶板作为上部结构的嵌固部位时,地下室层效不宜少于两层,并应能将上部结构的地震剪力传送到全部地下室结构。地下室顶板不宜较大洞口。地下室结构应能承受上部结构屈服超强及地下室本身的地震作用,为此近似考虑地下室结构的侧向刚度与上部结构侧向刚度之比不宜小于2,地下室柱截面每一侧的纵向钢筋面积,除满足计算要求外,不应小于地上一层对应柱每侧纵筋面积的1.1倍。地下室抗震墙的配筋一般不宜少于地上一层抗震墙的配筋。当进行方案设计时,侧向刚度比可用下列剪切刚度比估计。 [ A0,A1]=Aw+0.12Ac 式中:G0,G1——地下室及地上一层的混凝土剪变模量; A0,A1——地下室及地上一层折算受剪面积; Aw——在计算方向上,抗震墙全部有效面积; Ac——全部柱截面面积; h0,h1——地下室及地上一层的层高; 地上一层的框架结构柱底截面和抗震墙底部的弯矩均为调整后的弯矩设计值。考虑柱在地上一层的下端出铰,该处梁柱节点的梁端受弯承载力之和不宜小于柱端受弯承载力之和。 4.地下室结构的抗震设计 地下室结构的抗震设计,除考虑上部结构地震作用以外,还应考虑地下室结构本身的地震作用,这部分地震作用与地下室埋置深度不同土质和基础转动有关。日本规范规定建筑结构埋置深度在20mm下可不考虑地震作用。我国2001规范明确了在一定条件下考虑地震与结构相互作用,可考虑各楼层地震剪力的折减,对地下室结构的地震作用如何取值来作明确规定。因此对一般埋置深度的地下室地震作用,可不考虑折减。当地下室层数较多以及地基产生零应力情况时,地下室部分的地震作用可考虑适当折减,折减幅度一般不宜超过20%,地下室的挡土外墙应按规范4.2.4条考虑地震主动土压力的作用。 (十)高强度混凝土结构抗震设计 高强度混凝土用于房屋建筑的主要好处是:由于强度高,可以减小柱子截面尺寸,扩大柱网间距,增加使用面积,降低结构自重;由于早强,可以加快施工进度,由于徐变小、弹性模量高,可以减小柱的压缩模量和增大结构的刚度。 高强混凝土的主要不足是:受压破坏时呈高度脆性,延性差,且其脆性随强度提高而愈加严重。因此,对不同设防烈度的混凝土结构,宜对高强混凝土的强度等级予以相应的限制。如果柱的轴压比很,或柱的实际承载力比作用效应值高得多,设计取用的混凝土强度等级也可适当提高。 为了保证地震作用下高强混凝土构件的延性,必须对框架梁端加密区的配箍、柱的轴压比限值、柱的纵筋和箍筋的最小配筋量等作更严格的要求。 轴压比对高强混凝土柱的极限变形能力的影响最为显著。混凝土强度高,柱的延性和抗震性能差,即使配箍特征值比较高,高轴压比的高强混凝土柱也不能达到普通混凝土柱的延性。从总体上看,试验轴压比不大于0.2时,配置一般箍筋的高强混凝土柱的变形能力能满足要求;当轴压比接近或达到0.55-0.6时,只有配箍特征值非常高时,延性系数能接近或达到3.0。高强混凝土柱的轴压比不宜大于0.4-0.45,否则很难满足地震作用下对极限变形能力的要求。将轴压比试验值换算成设计值,大体为0.65-0.70。普通混凝土一级框架结构柱的轴压比限值为0.7,因此,2001规范对一级框架柱C50-C60取0.7,C65-C70取0.65,C75-C80取0.6,同样规律确定二、三级框架柱的轴压比限值的要求。 高强混凝土柱宜采用约束比较好的复合箍、复合螺旋箍或连续复合矩形螺旋箍,同时,提高配箍特征值。2001规范规定,轴压比不大于0.6和大于0.6时,配箍特征值宜分别比普通混凝土柱大0.02和0.03,由于高强混凝土的轴心抗压强度高,为了获得较大的配箍特征值而箍筋不过于密集,可使用强度较高的钢种。 高强混凝土框架受拉钢筋配筋率不宜大于3%(HRB335级钢筋)和2.6%(HRB400级钢筋)。梁端加密区箍筋的最小直径应比普通混凝土梁的箍筋最小直径增大2mm,当混凝土强度等级大于C60时,抗震墙约束边缘构件的配箍特征值宜比轴压比相同的普通混凝土抗震墙增加0.02。 结构构件截面剪力设计值的限值中含有混凝土轴心抗压强度设计值(fc)的项应乘以混凝土强度影响系数(c)。其值,混凝土强度等级为C50时,取1.0,C80时取0.8,介于C50和C80之间时取其内插值。 结构构件受压区高度计算和承载力验算时,公式中含有混凝土轴心抗压强度设计值(fc)的项也应乘以相应的混凝土强度影响系数(c)。 二 钢筋混凝土框架 钢筋混凝土框架包括纯框架结构和框架-抗震墙结构、框架-核心筒结构的框架。此外还有部分框支抗震墙结构的框支层框架。 (一)框架结构和框架的抗震设计一般要求 一般框架结构和框架均采用现浇钢筋混凝土,设防烈度为6-8度时,可采用装配式楼盖,板与梁应有可靠连接,板面应有现浇配筋面层框架结构的梁、柱沿房屋高度宜保持完整,不宜抽柱或抽梁,使传力途径突然变化,同一层内柱截面变化,不宜位于同一楼层。在同一结构单元,宜避免由于错层形成短柱。局部突出屋顶的塔楼不宜布置在房屋端部,电梯筒非对称布置时,应考虑其不利作用,必要时可采取措施,减小电梯筒的刚度,采用砌体作为填充墙时,应考虑在地震作用下,对框架的不利作用。 1.楼层平面内不对称布置填充墙引起扭转作用; 2.沿高度填充墙布置不连续形成软弱层; 3.填充墙时梁、柱引起的附加剪力和轴力; 4.柱、梁受填充墙约束形成短柱或短梁。 (二)构造要求 1.框架梁 1) 普通框架梁 ① 截面宽度不宜小于200mm; ② 截面高宽比不宜大于4; ③ 净跨与截面高度之比不宜小于4。 2) 扁梁 扁梁指梁截面高度不大于梁截面宽度的梁。扁梁宽度大于柱宽时,楼板应采用现浇,为了减小偏心扭转对梁、柱节点的不利效应,梁中线宜与柱中线重合,扁梁宜双向布置,沿框架周边的梁采用扁梁的截面尺寸应符合以下要求: bb≤2bc; bb≤bc+hb; hb≥16d 式中:bc——柱截面宽度,园形截面取柱直径的0.8倍; bb,hb——分别为梁截面宽度和高度; d——柱纵筋最大直径。 扁梁的截面高度应满足挠度和裂缝宽度的有关规定。 3) 框架梁的抗震构造 框架梁是框架和框架结构在地震作用下的主要耗能构件,因此梁、特别是梁的塑性铰区应保证有足够的延性。影响梁延性的诸因素有梁的剪跨比截面剪压比、截面配筋率、压区高度比和配筋率等。按不同抗震等级对上述诸方面有不同的要求,在地震作用下,梁端塑性铰区保护层容易脱落,如梁截面宽度过小,则截面损失比例较大。为了对节点核芯区提供约束以提高其受剪承载力,梁宽不宜小于柱宽的1/2,如不能满足,则应考虑核芯区的有效受剪截面。狭面高的梁截面不利于混凝土的约束,梁的塑性铰发展范围与梁的高跨比有关,当梁截面的高度与梁净跨之比小于4时,在反复受剪作用下交插斜裂缝将沿梁的全跨发展,从而使梁的延性及受剪承载力急剧降低。为了改善其性能,可适当加宽梁的截面以降低梁截面的剪压比,并采取有效配筋方式,如设置交叉插筋或沿梁全长加密箍筋及增设水平腰筋等。梁柱节点,特别是中柱节点在地震反复作用下,梁的纵筋屈服逐渐深入节点核芯,产生反复滑移现象,节点刚度退化,使框梁变形增大,梁的支座纵筋 拉筋不能充分发挥作用,降低了梁的后期受弯承载力。为了保证一、二级框架中柱节点处,梁纵筋锚固性能,贯通中柱的纵向钢筋直径不宜大于沿纵筋方向柱截面边长的1/20,对园形截面柱,不宜大于纵向钢筋所在位置柱截面弦长的1/20。以上锚固要求,三级框架亦宜适当考虑。解决梁纵筋在节点核芯区滑移更为有效的措施是通过特殊的配筋方式,使梁的塑性铰转移到距柱面不小于梁截面高度,也不小于500mm的位置,梁筋不在柱面处屈服,改善了锚固性能,避免在核心区滑动。 转移梁铰可采取附加短筋,短筋可为直筋,也可在塑性铰处弯折,形成交叉斜筋,后者可增强梁铰的受剪承载力及耗能能力。 为了保证梁铰的转移,梁端受弯承载力应比梁铰处的受弯承载力提高25%。有交叉斜筋的塑性铰,计算受弯承载力时,应考虑斜筋的作用。 梁铰转移后,梁铰之间的跨度变小,梁的剪力增大。 条件许可时,也可利用加腋梁来实现梁铰转移。 梁铰转移后,考虑强柱弱梁时,梁的弯矩应取转移铰处的受弯承载力。 2.框架柱 1) 柱的截面尺寸 ① 截面宽度及高度均不宜小于300mm,园柱直径及多边形的截面内切园不宜小于350mm; ② 剪跨比宜大于2; ③ 截面的长边与短边的边长比不宜大于3; 2) 框架柱中线与框架梁中线之间的偏心距不宜大于柱截面宽度的1/4。偏心距过大,在地震作用下将导致梁柱节点核芯区受剪面积不足,并对柱带来不利的扭转效应。抗震墙与框架柱的偏心距超过柱宽的1/4,也会给柱造成应力集中不利影响。 当梁、柱偏心距超过1/4柱宽时,应进行具体分析并采取有效措施,如采用水平加腋梁及加强柱的箍筋等。 3) 柱的纵向配筋(矩形和园形截面柱) ① 纵筋宜对称配置; ② 截面大于400mm的柱,纵向钢筋间距不宜大于200mm; ③ 柱的总配筋率不应大于5%; ④ 剪跨比不大于2的柱,每侧纵向钢筋配筋率不宜大于1.2%; ⑤ 边柱、角柱考虑地震作用组合产生小偏心受拉时,为了避免柱的受挫纵筋屈服后再受压,由于包奥格效应导致纵筋压屈,柱内纵筋总截面面积计算值应增加25%; ⑥ 采用HRB400级热轧钢筋时,柱的纵筋最小总配筋率可减小0.1,同时每一侧配筋率不宜少于0.2%; ⑦ 建造于Ⅳ类场地上较高的高层建筑(接近适用最大高度),最小总配筋率宜增加0.1。 4) 柱的箍筋加密范围 ① 柱端取截面高度(园柱直径),柱净高的1/6,和500mm三者的最大值; ② 底层柱嵌固部位的箍筋加密范围不小于柱净高的1/3;当有刚性地面时,除柱端外尚应取刚性地面上、下各500mm; ③ 剪跨比不大于2的柱和固非结构墙的约束形成的净高与柱截面高度之比不大于4的柱,取全高。箍筋间距不应大于100mm。梁柱之间偏心较大,宜取全高; ④ 至少每隔一根纵向钢筋宜在两个方向有箍筋或拉筋约束,采用拉筋复合箍时,拉筋应紧靠纵筋并勾住箍筋; ⑤ 柱纵筋搭接部位应避开箍筋加密范围,搭接部位的箍筋间距不应大于100mm; ⑥ 柱剪跨经不大于2的框架节点核芯区配箍特征值不宜小于核芯区上、下柱端的较大配箍特征值; ⑦ 拉筋交接处应有135弯勾,弯勾端头直段长度为10d(d为箍筋直径)且不少于75mm; ⑧ 柱箍筋非加密区的体现配箍率不宜小于加密区的50%。 5) 柱的轴压比 轴压比描柱的组合轴压力设计值与柱的全截面面积和混凝土抗压强度设计值乘积之比值。轴压比是影响柱的破坏形态和变形能力的重要因素。轴压比不同,柱将呈现两种破坏形态,即受拉钢筋首先屈服的大偏心受压破坏和混凝土受压区压碎而受拉钢筋未屈服的小偏心受压破坏。框架柱的抗震设计一般应在大偏心受压破坏范围,以保证柱有一定延性。2001年规范仍以89规范的限值为依据,根据不同情况进行适当调整,同时控制轴无比最大值。对于剪跨比大于2,混凝土强度等级不高于C60一、二、三抗震等级框架结构柱的轴压比限值分别取0.7、0.8、0.9,建造于Ⅳ类场地上高度较高的高层建筑,柱轴无比限值且适当降低。剪跨比不大于2的柱轴比限值庆降低0.05,剪跨比小于1.5的柱轴压比限值分别放宽0.05。利用箍筋对柱加强约束,在三向受压状态下,可以提高柱的混凝土抗压强度,从而降低对柱加强约束,在三向受压状态下,可以提高柱的混凝土抗压强度,从而降低柱轴压比限值。1928年美国伊里诺大学F.E.Richart通过试验研究提出混凝土在三向受压状态下的抗压强度表达式,从而得出混凝土柱在箍筋约束条件下的混凝土抗压强度。我国清华大学研究成果和日本AIJ钢筋混凝土房屋设计指南(1994)都提出考虑箍筋约束提高混凝土强度作用时,复合箍筋肢距不宜大于200mm,箍筋间距不宜大于100mm,箍筋直径不宜小于10mm的构造要求。美国ACI资料考虑螺旋箍筋提高混凝土强度作用时,箍筋直径不宜小于10mm,净螺距不宜大于75mm。2001规范规定螺旋间距不大于100mm,箍筋直径不小于12mm。矩形截面柱采用连续矩莆复合螺旋箍是一种非 常有效的提高柱的延性措施,这已被西安建筑科技大学的试验研究所证实。根据日本M铁株式会社1998年发表的试验报告,相同的柱截面、相同配筋、配箍率、箍距及箍筋技距,采用连续复合螺旋箍,比一般复合箍筋可提高柱的极限变形角25%。采用连续复合矩形螺旋箍,螺旋净距不大于80mm,箍筋肢距不大于200mm,箍筋直径不小于10mm,可按园形复合螺旋箍对待。 试验研究和经验都证明在矩形或园形截面柱内设置矩形核芯柱不但可以提高柱的受压承载力,还可以提高柱的变形能力,特别对于承受高轴压的短柱,更有利于改善变形能力,延缓倒塌。芯柱边长不宜小于250mm,芯柱纵筋不宜少于柱截面面积的0.8%。符合以下情况之一时,柱轴压比限值可增加0.10,并按增大的轴压比求配箍特征值入V: ① 沿柱全高采用井字形复合箍,肢距≤200mm,箍距≤100mm,直径不小于12mm; ② 沿柱全高采用复合螺旋箍,肢距≤200mm,螺旋筋间距≤100mm,直径不小于12mm; ③ 沿柱全高采用矩形复合螺旋箍,螺旋筋净距不大于80mm,肢距≤200mm,直径不小于12mm。 在柱截面内附加芯柱,其中另加纵筋面积不少于柱截面面积的0.8%,柱轴压比可增加0.05,求配箍特征值入V时,仍按原轴压比,此项措施与上述三种措施之一共同采用时,轴压比限值可增加0.15。采取上述各类措施后,柱的轴压比限值不应大于1.05。 6) 柱的最小配筋特征值入V及体积配箍率V 式中:V——体积配箍率为箍筋体积与不包括净保护层混凝土体积的比值。计算复 合箍的体积配箍率,应扣除重叠部分的箍筋体积; fc——柱混凝土轴心抗压强度设计值,强度等级低于C35时,应按C35计算; fyv——箍筋或拉筋抗拉强度设计值,超过360N/mm2时,应取360N/mm2计算。 剪跨比不大于2的柱宜采用复合螺旋箍或井字复合箍,其体积配筋不应小于1.2%,9度时不应小于1.5%。 计算复合螺旋箍的体积配箍率时,其中非螺旋箍的箍筋体积应乘以折算系数0.8。 7) 常用的矩形和园形柱截面的箍筋类别: ① 普通箍 ② 复合箍 ③ 螺旋箍 ④ 连续复合螺旋箍 (用于矩形截面柱) (三)剪跨比与剪压比 剪跨比与剪压比是判别梁、柱和墙肢等抗侧力构件抗震性能的重要指标。剪跨比用于区分变形特征和变形能力,剪压比用于限制内力,保证延性。剪跨比与剪压比可分别按以下公式计算: 剪跨比: >2,弯剪型,弯曲型 ≤2,剪切型 剪跨比可以用以下图形表示: ,剪跨比 ,剪跨比 Mtc,i—柱或抗震墙的i层顶部弯矩计算值; Mbc,i—柱或抗震墙的i层底部弯矩计算值。 剪压比: 跨高比大于2.5的梁和连梁及剪跨比大于2的柱和墙肢应限制≤0.2。 跨高比不大于2.5的梁和连梁及剪跨比不大于2的柱的墙肢应限制≤1.5。 上式中:——剪跨比,反弯点位于楼层中部的框架柱可按柱净高与两倍柱截面高度之 比计算, ; M——柱端或墙截面组合的弯矩计算值,取楼层上下端弯矩较大值; V——柱或墙的截面组合的剪力计算值或设计值,计算时用计算值,计算时用 设计值; fc——混凝土轴抗压强度设计值; Hn——柱净高度; h——柱截面高度; b——梁、柱截面宽度或墙肢截面厚度,园形截面柱可按面积相等的方形截面计 算; (四)不同抗震等级框架结构和框架的抗震计算和构造 1.一级框架结构和一级框架 1) 强柱弱梁 所谓“强柱弱梁”指的是:节点处梁端实际受弯承载力 和柱端实际受弯承载力 之间满足下列不等式: 本规范的规定是在不同程度减缓柱端的屈服,一般采用增大柱端弯矩设计值的方法,将承载力的不等式转为内力设计值的关系式,采用不同增大系数,使不同抗震等级的框架柱端弯矩设计值有不同程度的差异,对一级框架结构和9度,除采用增大系数的方法外,还采用梁端实配钢筋面积和材料强度标准值计算的抗震受弯承载力所对应的弯矩值方法。2001规范比89规范适当提高了强柱弱梁的弯矩增大系数nc,9度时及一级框架结构考虑框架梁的实际受弯承载力,并乘m增大系数1.2,主要考虑部分楼板钢筋的作用。框架的梁柱节点处除框架顶层和柱轴压比小于0.15者外,柱端组合的弯矩设计值应符合下式要求: 9度和一级框架结构,尚应符合: 式中: ——节点上下柱端截面顺时针或反时针方向组合的变矩设计值之和, 上下柱端的弯矩设计值,可按弹性分析分配; ——节点左右梁端截面反时针或顺时针方向组合的弯矩设计值之和, 节点左右梁端均为负值时,绝对值较小的弯矩取零; ——节点左右截面反时针或顺时针方向按实配钢筋(考虑受压钢筋) 正截面抗震受弯承载力,所对应的弯矩值之和,可根据实际配 筋面积和材料强度标准值确定。 , 上式中: b——梁截面宽度; h0——梁截面有效高度; ——受压区纵向钢筋合力点至受压区边缘的距离; x ——受压区高度; fck——混凝土轴心抗压强度标准值; fyk——钢筋抗拉强度标准值; As——受拉钢筋截面面积; ——受压钢筋截面面积; RE——承载力抗震调整系数; b——相对界限受压区高度; Es——钢筋弹性模量。 当框架点不在楼层内时,说明浇若干层的框架梁相对较弱,为避免在竖向荷载和地震共同作用下变形集中,压屈失稳,柱端截面组合的弯矩设计值可乘以上述柱端弯矩增大系数。 对于轴压比小于0.15的柱,包括顶层柱在内,因其具有与梁相近的变形能力,可不考虑“强柱弱梁”要求。 由于地震是往复作用,两个方向的弯矩设计值均需满足要求。 2) 加强柱根部推迟出铰 框架结构的底层柱底过早出现塑性铰,将影响框架结构的变形能力。底层柱下端截面组合的弯矩设计值乘以增大系数1.5是为了避免框架结构柱脚过早屈服。底层柱的纵筋按上、下端的不利情况配置。对框-墙结构的框架,其主要抗侧力构件为抗震墙,对其框架部分的底层柱底,可不作要求。 以上所谓底层指无地下室的基础以上或作为嵌固部位的地下室顶板以上的首层。 3) 强剪弱弯 防止梁柱端部在弯曲屈服前出现剪切破坏是抗震概念设计的要求,它意味着构件的受剪承载力要大于构件弯曲时实际达到的剪力。将承载力关系转为内力关系,对不同抗震等级采用不同的剪力增大系数,使“强剪弱弯”的程度有所差别。 ① 框架梁的梁端截面组合的剪力设计值应按下式调整 9度时和一级框架尚应符合: 上式中 V——梁端截面组合的剪力设计值 ln——梁的净跨 VGb——梁在重力荷载代表值(9度时高层建筑还应包括竖向地震作用标准值) 作用下,按筒支梁分析的梁端截面剪力设计值; 、 ——分别为梁左右端反时针或顺时针方向组合的弯矩设计值,两端弯矩均 为负弯矩时绝对值较小的弯矩应取零。 、 ——分别为梁左右端反时针或顺时针方向按实配钢筋面积计算的正截面 抗震受弯承载力所对应的弯矩值,可根据实际配筋面积(考虑受压 筋)和材料 标准确定。 ② 框架柱的剪力设计值应按下式调整: 9度时和框架结构尚应符合: 上式中: V——柱端截面组合的剪力设计值; Hn——柱的净高; 、 ——分别为柱的上下端顺时针或反时针方向截面组合的弯矩设计 值,应符合强柱弱梁及底部加强的要求; 、 ——分别为偏心受压柱上下端顺时针或反时针方向按实配的正截 面抗震受弯承载力所对应的弯矩值,可根据实配钢筋面积 (考虑交压筋)和材料强度标准值确定。 Mcua可近似按下式计算: 上式中: Mcua——柱端抗震受压承载力; As——柱受拉侧钢筋实际配筋面积; fyk——钢筋强度标准值; N——轴向荷载设计值; bc、hc——柱截面宽度和高度; hco——柱截面有效高度; as——钢筋重心到最近柱边距离; RE——承载力抗震调整系数。 4) 框架柱内力调整结果 ① 反弯点不在柱的层高范围内时,柱端弯矩乘以1.4,然后求柱剪力乘以增大系数1.4; ② 框架角柱按调整后的弯矩、剪力设计值分别乘以增大系数1.1; ③ 地下室顶板作品嵌固部位时,地下室柱截面每侧的纵向钢筋面积除应满足计算要求外,不应少于地上一层对应柱每侧纵筋面积的1.1倍; ④ 地下室顶板处框架梁柱节点左右,梁端截面组合的弯矩设计值之和不应小于节点上下柱端,按实际配筋的正截面抗弯受弯承载力所对应的弯矩值之和,可根据实际配筋面积、材料强度标准值和轴压力进行确定。 5)框架梁构造 梁端纵向受拉纵筋AS配筋率不应大于2.5%,计算As时考虑受压筋 ,梁端混凝土受太区高度比x/h0不应大于0.25,梁端纵向受拉钢筋的配筋率可按式计算: , , 6)框架柱构造 除各抗震等级共同要求外,尚应满足以上要求: ① 框架柱纵向钢筋最小总配筋率(%) 类 别 总配筋率 中柱和边柱 1.0 角柱 1.2 ② 框架柱的箍筋构造 a. 角柱箍筋沿全高加密 b. 箍筋加密区箍筋间距取Min[6d,100mm],d为柱纵筋最小直径。 箍筋最小直径取10mm。 箍筋肢距不宜大于200mm,体积的箍率不应小于0.8%。 c. 节点核芯区箍筋间距及直径要求同柱端箍筋加密区,配箍特征值不宜小于 0.12,箍率不宜小于0.6%。 ③ 框架结构柱和框架柱的轴压比 框架结构柱轴压比限值为0.7,当采用普通箍井字复合箍、复合螺旋箍及连续复合矩形螺旋箍,其中任一种并满足规定构造要求时,轴压比限值可采用0.8。在柱截面中部附加芯柱并满足规定要求时,轴压比限值可采用0.75。 以上措施共用时,轴压比限值可采用0.85。框架柱的轴压比限值可比框架结构柱的轴压比限值分别增加0.05。 ④ 柱箍筋加密区的箍筋最小配箍特征值V。 已知柱轴压比及采用箍筋形式可由下表求得配箍特征值。 箍筋形式 柱 轴 压 比 ≤0.3 0.4 0.5 0.6 0.7 0.8 0.9 普通箍,复合箍 0.10 0.11 0.13 0.15 0.17 0.20 0.23 螺旋箍,复合螺旋箍,连续复合矩形螺旋箍 0.08 0.09 0.11 0.13 0.15 0.18 0.21 已知V可由公式VVfc/fyv求得体积的箍率V,V不应小0.8%。 7) 框架及框架结构梁柱节点 框架梁柱节点应沿框架两个正交方向或接近正交方向进行节点核芯区受剪承载力验,然后取不利情况进行截面设计。 ① 节点核芯组合的剪力设计值Vj 节点部位 9度及框架结构节点 框架节点 顶层中节点 顶层边节点 其它层中节点 其它层边节点 除特殊情况外,角节点一般可按边节点 表内式中: ——节点左右梁端反时针或顺时针方向按实配钢筋面积(考虑受压 筋)计算的抗震受弯承载力所对应的弯矩值之和,可根据实际 配筋面积和材料强标准值确定; ——节点左右梁端反时针或顺时针方向组合弯矩设计值之和,节点左 右梁端均为负弯矩时,绝对值较小的弯矩应取零; hb——梁的截面高度,节点两侧梁截面高度不等时可采用平均值; hb0——梁截面的有效高度,节点两侧梁截面高度不等时可采用平均值; ——梁受压钢筋合力点至受压边缘的距离; Hc——柱的计算高度,可取节点上、下柱反弯点之间的距离。 梁柱节点核芯区有效受剪面积 梁柱之间无偏心 bb≥bc/2:bj=bc,hj=hc bb
/
本文档为【08第八讲_多层与高层钢筋混凝土房屋抗震设计新规范】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索