为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

专题二、勾股定理的证明16种(初二)

2011-01-13 9页 doc 166KB 37阅读

用户头像

is_622070

暂无简介

举报
专题二、勾股定理的证明16种(初二)勾股定理的证明 勾股定理的证明 【证法1】(课本的证明)                       做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 , 整理得 .   【证法2】(邹元治证明) 以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 . 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条...
专题二、勾股定理的证明16种(初二)
勾股定理的证明 勾股定理的证明 【证法1】(课本的证明)                       做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 , 整理得 .   【证法2】(邹元治证明) 以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 . 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF. ∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º. ∴ 四边形EFGH是一个边长为c的 正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º, ∴ ∠DHA = 90º+ 90º= 180º. ∴ ABCD是一个边长为a + b的正方形,它的面积等于 . ∴ . ∴ .     【证法3】(赵爽证明) 以a、b 为直角边(b>a), 以c为斜 边作四个全等的直角三角形,则每个直角 三角形的面积等于 . 把这四个直角三 角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴ ∠HDA = ∠EAB. ∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º, ∴ ABCD是一个边长为c的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a , ∠HEF = 90º. ∴ EFGH是一个边长为b―a的正方形,它的面积等于 . ∴ . ∴ . 【证法4】(1876年美国总统Garfield证明) 以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于 . 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上. ∵ RtΔEAD ≌ RtΔCBE, ∴ ∠ADE = ∠BEC. ∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º. ∴ ∠DEC = 180º―90º= 90º. ∴ ΔDEC是一个等腰直角三角形, 它的面积等于 . 又∵ ∠DAE = 90º, ∠EBC = 90º, ∴ AD∥BC. ∴ ABCD是一个直角梯形,它的面积等于 . ∴ . ∴ .   【证法5】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形. ∴ ∠ABC + ∠CBE = 90º. ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º. 又∵ ∠BDE = 90º,∠BCP = 90º, BC = BD = a. ∴ BDPC是一个边长为a的正方形. 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 , ∴ .   【证法6】(项明达证明) 做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点 F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90º,QP∥BC, ∴ ∠MPC = 90º, ∵ BM⊥PQ, ∴ ∠BMP = 90º, ∴ BCPM是一个矩形,即∠MBC = 90º. ∵ ∠QBM + ∠MBA = ∠QBA = 90º, ∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC, 又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF. 从而将问转化为【证法4】(梅文鼎证明).   【证法7】(欧几里得证明) 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结 BF、CD. 过C作CL⊥DE, 交AB于点M,交DE于点 L. ∵ AF = AC,AB = AD, ∠FAB = ∠GAD, ∴ ΔFAB ≌ ΔGAD, ∵ ΔFAB的面积等于 , ΔGAD的面积等于矩形ADLM 的面积的一半, ∴ 矩形ADLM的面积 = . 同理可证,矩形MLEB的面积 = . ∵ 正方形ADEB的面积 = 矩形ADLM的面积 + 矩形MLEB的面积 ∴ ,即 .   【证法8】(利用相似三角形性质证明) 如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D. 在ΔADC和ΔACB中, ∵ ∠ADC = ∠ACB = 90º, ∠CAD = ∠BAC, ∴ ΔADC ∽ ΔACB. AD∶AC = AC ∶AB, 即 . 同理可证,ΔCDB ∽ ΔACB,从而有 . ∴ ,即 .   【证法9】(杨作玫证明) 做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交GT于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D作DE与CB的延长线垂直,垂足为E,DE交AF于H. ∵ ∠BAD = 90º,∠PAC = 90º, ∴ ∠DAH = ∠BAC. 又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c, ∴ RtΔDHA ≌ RtΔBCA. ∴ DH = BC = a,AH = AC = b. 由作法可知, PBCA 是一个矩形, 所以 RtΔAPB ≌ RtΔBCA. 即PB = CA = b,AP= a,从而PH = b―a. ∵ RtΔDGT ≌ RtΔBCA , RtΔDHA ≌ RtΔBCA. ∴ RtΔDGT ≌ RtΔDHA . ∴ DH = DG = a,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º, ∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH是一个边长为a的正方形. ∴ GF = FH = a . TF⊥AF,TF = GT―GF = b―a . ∴ TFPB是一个直角梯形,上底TF=b―a,下底BP= b,高FP=a +(b―a). 用数字示面积的编号(如图),则以c为边长的正方形的面积为 ① ∵ = , , ∴ = . ② 把②代入①,得 = = . ∴ .   【证法10】(李锐证明) 设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上. 用数字表示面积的编号(如图). ∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE. 又∵ ∠BTH = ∠BEA = 90º, BT = BE = b, ∴ RtΔHBT ≌ RtΔABE. ∴ HT = AE = a. ∴ GH = GT―HT = b―a. 又∵ ∠GHF + ∠BHT = 90º, ∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º, ∴ ∠GHF = ∠DBC. ∵ DB = EB―ED = b―a, ∠HGF = ∠BDC = 90º, ∴ RtΔHGF ≌ RtΔBDC. 即 . 过Q作QM⊥AG,垂足是M. 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM,而AB = AQ = c,所以RtΔABE ≌ RtΔQAM . 又RtΔHBT ≌ RtΔABE. 所以RtΔHBT ≌ RtΔQAM . 即 . 由RtΔABE ≌ RtΔQAM,又得QM = AE = a,∠AQM = ∠BAE. ∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE, ∴ ∠FQM = ∠CAR. 又∵ ∠QMF = ∠ARC = 90º,QM = AR = a, ∴ RtΔQMF ≌ RtΔARC. 即 . ∵ , , , 又∵ , , , ∴ = = , 即 .     【证法11】(利用切割线定理证明) 在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 如图,以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,则BD = BE = BC = a. 因为∠BCA = 90º,点C在⊙B上,所以AC是⊙B 的切线. 由切割线定理,得 = = = , 即 , ∴ .   【证法12】(利用多列米定理证明) 在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c(如图). 过点A作AD∥CB,过点B作BD∥CA,则ACBD为矩形,矩形ACBD内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有 , ∵ AB = DC = c,AD = BC = a, AC = BD = b, ∴ ,即 , ∴ .   【证法13】(作直角三角形的内切圆证明) 在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 作RtΔABC的内切圆⊙O,切点分别为D、E、F(如图),设⊙O的半径为r. ∵ AE = AF,BF = BD,CD = CE, ∴ = = r + r = 2r, 即 , ∴ . ∴ , 即 , ∵ , ∴ , 又∵ = = = = , ∴ , ∴ , ∴ , ∴ . 【证法14】(利用反证法证明) 如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D. 假设 ,即假设 ,则由 = = 可知 ,或者 . 即 AD:AC≠AC:AB,或者 BD:BC≠BC:AB. 在ΔADC和ΔACB中, ∵ ∠A = ∠A, ∴ 若 AD:AC≠AC:AB,则 ∠ADC≠∠ACB. 在ΔCDB和ΔACB中, ∵ ∠B = ∠B, ∴ 若BD:BC≠BC:AB,则 ∠CDB≠∠ACB. 又∵ ∠ACB = 90º, ∴ ∠ADC≠90º,∠CDB≠90º. 这与作法CD⊥AB矛盾. 所以, 的假设不能成立. ∴ .   【证法15】(辛卜松证明)                       设直角三角形两直角边的长分别为a、b,斜边的长为c. 作边长是a+b的正方形ABCD. 把正方形ABCD划分成上方左图所示的几个部分,则正方形ABCD的面积为 ;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD的面积为 = . ∴ , ∴ .   【证法16】(陈杰证明) 设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做两个边长分别为a、b的正方形(b>a),把它们拼成如图所示形状,使E、H、M三点在一条直线上. 用数字表示面积的编号(如图). 在EH = b上截取ED = a,连结DA、DC, 则 AD = c. ∵ EM = EH + HM = b + a , ED = a, ∴ DM = EM―ED = ―a = b. 又∵ ∠CMD = 90º,CM = a, ∠AED = 90º, AE = b, ∴ RtΔAED ≌ RtΔDMC. ∴ ∠EAD = ∠MDC,DC = AD = c. ∵ ∠ADE + ∠ADC+ ∠MDC =180º, ∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º. ∴ 作AB∥DC,CB∥DA,则ABCD是一个边长为c的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE. 连结FB,在ΔABF和ΔADE中, ∵ AB =AD = c,AE = AF = b,∠BAF=∠DAE, ∴ ΔABF ≌ ΔADE. ∴ ∠AFB = ∠AED = 90º,BF = DE = a. ∴ 点B、F、G、H在一条直线上. 在RtΔABF和RtΔBCG中, ∵ AB = BC = c,BF = CG = a, ∴ RtΔABF ≌ RtΔBCG. ∵ , , , , ∴ = = = ∴ .      
/
本文档为【专题二、勾股定理的证明16种(初二)】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索