为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

模糊控制器的MATLAB仿真

2019-02-03 10页 doc 37KB 107阅读

用户头像

is_792768

暂无简介

举报
模糊控制器的MATLAB仿真实验一  模糊控制器的MATLAB仿真 一、实验目的 本实验要求利用MATLAB/SIMULINK与FUZZYTOOLBOX对给定的二阶动态系统,确定模糊控制器的结构,输入和输出语言变量、语言值及隶属函数,模糊控制规则;比较其与常规控制器的控制效果;研究改变模糊控制器参数时,系统响应的变化情况;掌握用 MATLAB 实现模糊控制系统仿真的方法。 二、实验原理 模糊控制器它包含有模糊化接口、知识库(规则库、数据库)、模糊推理机、解模糊接口等部分。输人变量e(t)是过程实测变量y(t)与系统设定值s(t)之差值。输出变量y(t...
模糊控制器的MATLAB仿真
实验一  模糊控制器的MATLAB仿真 一、实验目的 本实验要求利用MATLAB/SIMULINK与FUZZYTOOLBOX对给定的二阶动态系统,确定模糊控制器的结构,输入和输出语言变量、语言值及隶属函数,模糊控制规则;比较其与常规控制器的控制效果;研究改变模糊控制器参数时,系统响应的变化情况;掌握用 MATLAB 实现模糊控制系统仿真的。 二、实验原理 模糊控制器它包含有模糊化接口、知识库(规则库、数据库)、模糊推理机、解模糊接口等部分。输人变量e(t)是过程实测变量y(t)与系统设定值s(t)之差值。输出变量y(t)是系统的实时控制修正变量。模糊控制的核心部分是包含语言规则的规则库和模糊推理机。而模糊推理就是一种模糊变换,它将输入变量模糊集变换为输出变量的模糊集,实现论域的转换。上为了便于微机实现,通常采用“或”运算处理这种较为简单的推理方法。Mamdani推理方法是一种广泛采用的方法。它包含三个过程:隶属度聚集、规则激活和输出总合。模糊控制器的组成框图如图2.1所示。 图2.1 模糊控制器的组成框图 三、模糊推理系统的建立 一个模糊推理系统的建立分为三个步骤:首先,对测量数据进行模糊化;其次,建立规则控制;最后,输出信息的模糊判决,即对模糊量进行反模糊化,得到精确输出量。 模糊推理系统的建立,往往是设计一个模糊控制系统的基础。建立一个模糊推理系统有两类方法:一种是利用GUI建立模糊推理系统;另一种是利用MATLAB命令建立。下面根据实验内容,利用GUI建立模糊推理系统。 例:对循环流化床锅炉床温,对象模型为 采用simulink图库,实现常规PID和模糊自整定PID。模糊自整定PID为2输入3输出的模糊控制器。 1、 进入FIS编辑器 在MATLAB的命令窗口中键入fuzzy即可打开FIS编辑器,其界面如下图所示。此时编辑器里面还没有FIS系统,其文件名为Untitled,且被默认为Mandani型系统。默认的有一个输入,一个输出,还有中间的规则处理器。在FIS编辑器界面上需要做一下几步工作。 首先,模糊自整定PID为2输入3输出的模糊控制器,因此需要增加一个输入两个输出,进行的操作为:选择Edit菜单下的Add Variable/Input菜单项。如下图。 其次,给输入输出变量命名。单击各个输入和输出框,在Current Variable选项区域的Name文本框中修改变量名。如下图 最后,保存系统。单击File菜单,选择Export下的To Disk项。这里将创建的系统命名为PID_auot.fis 2、 进入隶属度函数编辑器 在FIS编辑器中双击输入或输出变量的图框就能进入隶属度函数编辑器。在隶属度函数编辑器中,需要对各个变量的论域范围、隶属度函数进行编辑。 该模糊控制器是以|e|和|ec|为输入语言变量,Kp、Ki、Kd为输出语言变量,其各语言变量的论域如下: 误差绝对值:e={0,3,6,10}; 误差变化率绝对值:ec={0,2,4,6}; 输出Kp:Up={0,0.5,1.0,1.5}; 输出Ki:Ui={0,0.002,0.004,0.006}; 输出Kd:Ud={0,3,6,9}。 如图是编辑完成后的隶属度函数编辑器的GUI。图中显示的为对应边变量e的隶属度函数。 3、 进入规则编辑器 双击FIS编辑器图标部分中间的方框即可打开规则编辑器。 (3)语言变量值域的选取:输入语言变量|e|和|ec|的值域取值“大”(B)、“中”(M)、“小”(s)和“零”(Z) 4种;输出语言变量Kp、Ki、Kd的值域取值为“很大”(VB)、 “大”(B)、“中”(M)、“小”(s) 4种。 (4)规则的制定:根据PID参数整定原则及运行经验,可列出输出变量Kp、Ki、Kd的控制规则表。 添加完成后的规则编辑器如下图所示。 4、 保存FIS结构 对于建好的FIS结构,利用File菜单下的Export的子菜单To Disk,将FIS结构保存到磁盘上。到此,利用FUZZYTOOLS的GUI工具建立了模糊控制器(PID_auot.fis)。可用GUI工具查看该推理系统,在View菜单中选择Rules命令,可打开规则观测器,查看模糊推理规则。如下图 在View菜单中选择surface命令,可打开曲面观测器,查看模糊推理输出特性曲面。 之后,在Simulink环境下,构建模糊自整定PID和常规PID控制系统。在MATLAB的命令窗口直接键入“Sinmulink”并回车,即可运行Sinmulink。运行后显示如下图所示的Simulink模块库浏览器。 然后单击工具条左边建立新模型的快捷方式,如下图 在模型窗口中用户便可以通过选择模块库中的仿真模块,建立自己的仿真模型,并进行动态仿真。最后构建的模糊自整定PID和常规PID控制仿真系统模型如下图。 其中模糊逻辑控制器的推理系统用模糊逻辑推理GUI工具建立的FIS。先启动Fuzzy,导入PID_auot.fis,然后将其导出到workspace。然后运行,运行结果如下图 继续阅读
/
本文档为【模糊控制器的MATLAB仿真】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索