为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

微生物的生理

2011-09-22 50页 ppt 1MB 27阅读

用户头像

is_582330

暂无简介

举报
微生物的生理null微生物的生理 微生物的生理 第三章微生物的生理微生物的生理3.1 微生物的营养 3.2 微生物的生长 3.3 微生物生长的控制 3.4 微生物的代谢微生物的生理微生物的生理3.1 微生物的营养 微生物同其他生物一样都是具有生命的,需要从它的生活环境中吸收所需的各种的营养物质来合成细胞物质和提供机体进行各种生理代谢所需的能量,使机体能进行生长与繁殖。微生物从环境中吸收营养物质并加以利用的过程即称为微生物的营养(nutrition)。营养物质是微生物进行各种生理活动的物质基础。 微生物的生理微生物的生理3...
微生物的生理
null微生物的生理 微生物的生理 第三章微生物的生理微生物的生理3.1 微生物的营养 3.2 微生物的生长 3.3 微生物生长的控制 3.4 微生物的代谢微生物的生理微生物的生理3.1 微生物的营养 微生物同其他生物一样都是具有生命的,需要从它的生活环境中吸收所需的各种的营养物质来合成细胞物质和提供机体进行各种生理代谢所需的能量,使机体能进行生长与繁殖。微生物从环境中吸收营养物质并加以利用的过程即称为微生物的营养(nutrition)。营养物质是微生物进行各种生理活动的物质基础。 微生物的生理微生物的生理3.1.1 微生物的营养要素 根据对各类微生物细胞物质成分的分析,发现微生物细胞的化学组成和其他生物相比较,没有本质上的差别。微生物细胞平均含水分80%左右。其余20%左右为干物质,在干物质中有蛋白质、核酸、碳水化合物、脂类和矿物质等。这些干物质是由碳、氢、氧、氮、磷、硫、钾、钙、镁、铁等主要化学元素组成,其中碳、氢、氧、氮是组成有机物质的四大元素,大约占干物质的90%~97%。其余的3%~10%是矿物质元素(表3-1)。除上述磷、硫、钾、钙、镁、铁外,还有一些含量极微的钼、锌、锰、硼、钴、碘、镍、钒等微量元素。这些矿质元素对微生物的生长也起着重要的作用。但微生物细胞的化学组成随种类、培养条件及菌龄的不同在一定的范围内发生改变。 微生物的生理微生物的生理 组成微生物细胞的化学元素分别来自微生物生存所需要的营养物质,即微生物生长所需的营养物质应该包含组成细胞的各种化学元素。营养物质按照它们在机体中的生理作用不同,可分成碳源、氮源、能源、无机盐、生长因子、和水六大类。 表3-1 微生物细胞中主要化学元素的含量(干物质重%) 微生物的生理微生物的生理3.1.1.1 碳源 凡是可以被微生物用来构成细胞物质或代谢产物中碳素来源的物质通称碳源。碳源通过机体内一系列复杂的化学变化被用来构成细胞物质或提供机体完成整个生理活动所需要的能量。因此,碳源通常也是机体生长的能源。能作为微生物生长的碳源的种类极其广泛,既有简单的无机含碳化合物CO2和碳酸盐等,也有复杂的天然的有机含碳化合物,它们是糖和糖的衍生物、脂类、醇类、有机酸、烃类、芳香族化合物以及各种含碳的化合物。微生物的生理微生物的生理3.1.1.2 氮源 微生物细胞中大约含氮5%—15%,它是微生物细胞蛋白质和核酸的主要成分。微生物利用它在细胞内合成氨基酸,并进一步合成蛋白质、核酸等细胞成分。因此,氮素对微生物的生长发育有着重要的意义。无机氮源一般不用作能源,只有少数化能自养细菌能利用铵盐、硝酸盐作为机体生长的氮源与能源。 微生物的生理微生物的生理3.1.1.3 无机盐 无机盐(mineral salts)是微生物生长必不可少的一类营养物质,也是构成微生物细胞结构物质不可缺少的组成成分。许多无机矿物质元素在机体中的生理作用是参与酶的合成或酶的激活剂,并具有调节细胞的渗透压,控制细胞的氧化还原电位和作为有些自养型微生物生长的能源物质等。根据微生物对矿物质元素需要量的不同,将其分为大量元素和微量元素。 微生物的生理微生物的生理 大量矿物质元素是磷、硫、钾、钠、钙、镁、铁等。磷和硫需要量最大,磷在微生物生长与繁殖过程中起着重要的作用。它既是合成核酸、核蛋白、磷脂与其他含磷化合物的重要元素,也是许多酶与辅酶的重要元素。硫是胱氨酸、半胱氨酸、甲硫氨酸的组成元素之一,因而它也是构成蛋白质的主要元素之一。钠、钙、镁等是细胞中某些酶的激活剂。 微生物的生理微生物的生理 微量元素是锌、钼、锰、钴、硼、碘、镍、铜、钒等,这些元素一般是参与酶蛋白的组成,或者能使许多酶活化,它们的存在会大大提高机体的代谢能力,如果微生物在生长过程中,缺乏这些元素,会导致机体生理活性降低,或导致生长过程停止。微量元素通常混杂存在其他营养物质中,如果没有特殊原因,在配制培养基的过程中没有必要另外加入,因为过量的微量元素反而对微生物起到毒害作用。 微生物的生理微生物的生理3.1.1.4 生长因子 生长因子(growth factor)通常指那些微生物生长所必需而且需要量很小的,但微生物自身不能合成的,必须在培养基中加入的有机营养物。生长因子是指维生素、氨基酸、嘌呤、嘧淀等。而狭义的生长因子仅指维生素。缺少这些生长因子会影响各种酶的活性,新陈代谢就不能正常进行。 微生物的生理微生物的生理3.1.1.5 水 水是微生物细胞主要的组成成分,它大约占鲜重的70%~90%。不同种类微生物细胞含水量不同。同种微生物处于生长的不同时期或不同的环境其水分含量也有差异,幼龄菌含水量较多,衰老和休眠体含水量较少。微生物所含的水分以游离水和结合水两种状态存在,两者的生理作用不同。结合水不具有一般水的特性,不能流动,不易蒸发,不冻结,不能作为溶剂,也不能渗透。游离水则与之相反,具有一般水的特性,能流动,容易从细胞中排出,并能作为溶剂,帮助水溶性物质进出细胞。 微生物的生理微生物的生理3.1.2 微生物的营养类型 由于各种微生物的生活环境和对不同营养物质的利用能力不同,它们的营养需要和代谢方式也不尽相同。根据微生物所要求的碳源不同(无机碳化合物或有机碳合化物),可以将它们分为自养微生物和异养微生物两大类。自养微生物以CO2为唯一的碳源,能够在完全无机的环境中生长。而异养微生物的生长则至少需要有一种有机物存在,它们不能以CO2作为唯一的碳源。 微生物的生理微生物的生理 根据微生物所利用的能源的不同,又可将微生物分为两种能量代谢类型,一种是吸收光能来维持其生命活动的,称为光能微生物,另一类是利用吸收的营养物质降解产生化学能,称为化能微生物。将以上两种分类方法结合起来,我们可以把微生物的营养类型归纳为光能自养型、化能自养型、光能异养型和化能异养型四种类型。 微生物的生理微生物的生理3.2.1.1 光能自养型微生物 这类微生物利用光作为生长所需要的能源,以CO2作为碳源。光能自养微生物都含有光合色素,能够进行光合作用。但是必须注意,光合细菌的光合作用与高等绿色植物的光合作用有所区别。在高等绿色植物的光合作用中,水是同化CO2时的还原剂,同时释放出氧。而在光合细菌中,则是以H2S、Na2S2O3等无机化合物作为供氢体来还原CO2,从而合成细胞有机物的。例如绿硫细菌以H2S为供氧体,它们的光合作用可以概括为: 微生物的生理微生物的生理3.1.2.2 化能自养型微生物 这类微生物的能源来自无机物氧化所产生的化学能。碳源是CO2或碳酸盐。常见的化能自养微生物有硫化细菌、硝化细菌、氢细菌、铁细菌、一氧化碳细菌和甲烷氧化细菌等。它们分别以硫、还原态硫化物、氨,亚硝酸、氢、二价铁、一氧化碳和甲烷作为能源。 硝化细菌在自然界的氮素循环中起着重要作用,它们使自然界中的氨转化为亚硝酸、硝酸,提高了土壤的肥力。 硫化细菌可用来处理矿石,浸出一些金属矿物。这样的处理方法被叫做湿法冶金。在农业上,硫化细菌则被用来改造碱性土壤。 微生物的生理微生物的生理 化能自养微生物一般需消耗ATP,促使电子沿电子传递链逆向传递,以取得固定CO2时所必需的NADH+H+。因此这类菌的生长较为缓慢。 3.1.2.3 光能异养型微生物 这类微生物利用光作为能源。不能在完全无机化合物的坏境中生长,需利用有机化合物作为供氢体来还原CO2,合成细胞有机物质。例如,红螺细菌利用异丙醇作为供氢体,进行光合作用,并积累丙酮酸。 微生物的生理微生物的生理3.1.2.4 化能异养型微生物 这类微生物所需要的能源来自有机物氧化所产生的化学能,它们只能利用有机化合物。如;淀粉、糖类、纤维素、有机酸等。因此有机碳化物对这类微生物来说既是碳源也是能源。它们的氮素营养可以是有机物,如蛋白质,也可以是无机物,如硝酸铵等。化能异养微生物又可分为腐生的和寄生的两类。前者是利用无生命的有机物,而后者则是寄生在活的有机体内,从寄主体内获得营养物质,在腐生和寄生之间存在着不同程度的既可腐生又可寄生的中间类型,称为兼性腐生或兼性寄生。 微生物的生理微生物的生理3.1.3 微生物对营养的吸收方式 外界环境或培养基中的营养物质只有被微生物吸收到细胞内,才能被微生物逐步分解与利用。微生物对营养物质的吸收是借助于细胞膜的半渗透特性及其结构特点,以不同的方式来吸收营养物质和水分的。但不同的物质对细胞膜的渗透性不一样,根据对细胞膜结构以及物质传递的研究,目前一般认为营养物质主要以单纯扩散、促进扩散、主动运输和基团转位四种方式透过微生物细胞膜。 微生物的生理微生物的生理3.1.3.1 单纯扩散 在微生物营养物质的吸收方式中,单纯扩散是通过细胞膜进行内外物质交换最简单的一种方式。营养微生物通过分子不规则运动通过细胞膜中的小孔进入细胞,其特点是物质由高浓度的细胞外向低浓度的细胞内扩散(浓度梯度),这是一种单纯的物理扩散作用。一旦细胞膜内外的物质浓度达到平衡(即浓度梯度消失),简单扩散也就达到动态平衡。 微生物的生理微生物的生理 但实际上,进入微生物细胞的物质不断地被生长代谢所利用,浓度不断降低,细胞外的物质不断地进入细胞。这种扩散是非特异性的,没有运载蛋白质(渗透酶)的参与,也不与膜上的分子发生反应,本身的分子结构也不发生变化。但膜上的小孔的大小和形状对被扩散的营养物质分子大小有一定的选择性。由于单纯扩散不需要能量的作用,因此,物质不能进行逆浓度交换。 单纯扩散的物质的主要是一些小分子的物质,如水、一些气体(O2、CO2)、有些无机离子及水溶性的小分子物质(甘油、乙醇等)。 微生物的生理微生物的生理3.1.3.2 促进扩散 促进扩散也是一种物质运输方式,它与单纯扩散的方式相类似,营养物质在运输过程中不需要能量,物质本身在分子结构上也不会发生变化,不能进行逆浓度运输,运输的速率随着细胞内外该物质浓度差的缩小而降低,直至膜内外的浓度差消失,从而达到动态平衡。所不同的是这种物质运输方式需要借助于细胞膜上的一种称为渗透酶的特异性蛋白(运载营养物质)参与物质的运输,这样加速了营养物质的透过程度,以满足微生物细胞代谢的需要。而且每种渗透酶只运输相应的物质,即对被运输的物质有高度的专一性。微生物的生理微生物的生理3.1.3.3 主动运输 如果微生物仅依靠单纯扩散和促进扩散这两种方式对营养物质的吸收只能从高浓度到低浓度的扩散,这样微生物就不能吸收低于细胞内浓度的外界营养物质,生长代谢就会受到限制。实际上微生物细胞中的有些物质以高于细胞外的浓度在细胞内积累。如大肠杆菌在生长期中,细胞中的钾离子浓度比细胞外环境高许多倍。以乳糖为碳源的微生物,细胞内的乳糖浓度比细胞外高于500倍。可见主动运输的特点是营养物质由低浓度向高浓度进行,是逆浓度梯度的。 微生物的生理微生物的生理 因此这种物质的运输过程不仅需要渗透酶,还需要代谢能量(ATP)的参与。目前研究的比较深入的是大肠杆菌对乳糖的吸收,其细胞膜的渗透酶为β-半乳糖苷酶,它可以在细胞内外特异性地与乳糖结合(在膜内结合程度比膜外小),在代谢能(ATP)的作用下,酶蛋白构型发生变化而使乳糖达到膜内,并在膜内降低其对乳糖的亲和力而在膜内释放出来,从而实现乳糖由细胞外的低浓度向细胞内的高浓度运输。 微生物的生理微生物的生理3.1.3.4 基团转位 在微生物对营养物质的吸收过程中,还有一种特殊的运输方式叫基团转位,这种方式除了具有主动运输的特点外,主要是被运输的物质改变的其本身的性质,有些化学基团被转移到被运输的营养物质上。如许多的糖及糖的衍生物在运输中由细菌的磷酸酶系统催化,使其磷酸化,这样磷酸基团被转移到糖分子上,以磷酸糖的形式进入细胞。 基团转位可转运葡萄糖、甘露糖、果糖、和β-半乳糖苷以及嘌呤、嘧淀、乙酸等,但不能运输氨基酸。这个运输系统主要存在于兼厌氧菌和厌氧菌中,也有研究表明,某些好氧菌,如枯草杆菌和巨大芽孢杆菌也利用磷酸转移酶系统将葡萄糖运输到细胞内。 微生物的生理微生物的生理3.1.4 培养基 培养基是经人工配制而成的并适合于不同微生物生长繁殖或积累代谢产物的营养基质。是研究微生物的形态构造、生理功能以及生产微生物制品等方面的物质基础。由于各种微生物所需要的营养物质不同,所以培养基的种类很多,但无论何种培养基,都应当具备满足所要培养的微生物生长代谢所必需的营养物质。我们配制培养基不但需要根据不同微生物的营养要求,加入适当种类和数量的营养物质,并要注意一定的碳氮比(C/N),还要调节适宜的酸碱度(pH),保持适当的氧化还原电位和渗透压。 微生物的生理微生物的生理3.1.4.1 配制培养基的基本原则 (1)根据不同微生物的对营养的要求 所有的微生物的生长每殖都需要培养基中含有碳源、氮源、无机盐、生长因子等,但不同的微生物对营养物质的需求是不一样的。因此,在配制培养基时,首先要考虑不同微生物的营养需求,如果是自养型的微生物则主要考虑无机碳源,异养型的微生物主要提供有机碳源外,还要考虑加入适量的无机矿物质元素,有些微生物在培养时还需加入一定的生长因子,如在培养乳酸细菌时,要求在培养基中加入一些氨基酸和维生素等才能很好地生长。 微生物的生理微生物的生理 (2)根据营养物质的浓度及配比 只有培养基中营养物质的浓度合适时微生物才能生长良好。营养物质过低时,不能满足微生物生长需要,浓度过高时则可能对微生物生长起抑制作用。如培养基中高浓度的糖类、无机盐、生长因子不仅不能促进微生物生长,反而对微生物有杀死或抑制其生长。另外,培养基中营养物质的配比也直接影响微生物的生长繁殖及代谢产物的积累。尤其是碳氮比(C/N)影响最明显。如在利用微生物发酵生产谷氨酸时,C/N为4/l时菌体大量繁殖,积累少量谷氨酸;当C/N为3/1时,菌体繁殖受到抑制,谷氨酸的产量则明显增加。 微生物的生理微生物的生理 不同的微生物菌种要求不同的C/N比,同一菌种,在不同的生长时期也有不同的要求,一般在发酵工业,在配制发酵培养基时对C/N比的要求比较严格,因为C/N比例对发酵产物的积累影响很大。种子培养基营养越丰富对菌体生长越有利,尤其是N源要丰富。 微生物的生理微生物的生理 (3)适当的pH 培养基的pH必须控制的不同范围内,才能满足不同微生物的生长繁殖或产生代谢产物。不同类型的微生物的生长繁殖或积累代谢产物的最适pH条件各不相同。一般来说,大多数细菌的最适pH 值在7.0~8.0范围,放线菌要求pH 值在 7.5~8.5,酵母要求pH 值在3.8~6.0,霉菌适宜的pH值在4.0~5.8。另外,微生物在生长代谢过程中,由于营养物质被分解和代谢产物的形成与积累,可引起pH值的变化,对于大多数的微生物来说,主要是由于酸性产物使培养基pH下降,这种变化往往影响微生物的生长和繁殖。所以在配制培养基中需加一些缓冲剂来维持培养基pH的相对恒定。常用的缓冲剂有磷酸盐类或碳酸钙缓冲剂。 微生物的生理微生物的生理 (4)培养基中原料的选择 在配制培养基时,应尽量利用廉价且获得的原料作为培养基的成分,特别是发酵工业中,培养基用量大,选择培养基的原料时,除了必须考虑容易被微生物利用以及满足工艺要求外,还应考虑经济价值。尤其是应尽量减少主粮的利用,采用以副产品代用原材料的方法。如微生物单细胞蛋白的生产中主要是以纤维水解物,废糖蜜等代替淀粉,葡萄糖等。大量的农副产品如麸皮、米糠、花生饼、豆饼、酒糟、酵母浸膏等都是常用的发酵工业培养基的原料。 微生物的生理微生物的生理3.1.4.2培养基的类型及应用 (1)根据营养成分划分 ①天然培养基。指利用天然的有机物配制而成的培养基。例如牛肉膏、麦芽汁,豆芽汁、麦曲汁,马铃薯,玉米粉,麸皮,花生饼粉等制成的培养基。天然培养基的特点是配制方便、营养全面而丰富、价格低廉,适合于各类异养微生物生长,并适于大规模培养微生物之用。缺点是它们的成分复杂,不同单位生产的或同一单位不同批次所提供的产品成分也不稳定,一般自养型微生物则不能在这类培养基上生长。 微生物的生理微生物的生理 ② 合成培养基。是由化学成分完全了解的物质配制而成的培养基,也称化学限定培养基。如高氏1号培养基和查氏培养基就属于此种类型。此类培养基优点是成分精确、重复性较强,一般用于实验室进行营养代谢、分类鉴定和菌种选育等工作。缺点是配制料复杂,微生物在此类培养基上生长缓慢,成本较高,不适宜用于大规模的生产。 ③ 半合成培养基。 用一部分天然的有机物作为碳源、氮源及生长素等物质,并适当补充无机盐类,这样配制的培养基称为半合成培养基。如实验室中使用的马铃薯蔗糖培养基属于半合成培养基。此类培养基用途最广,大多数微生物都在此类培养基上生长。 微生物的生理微生物的生理 (2)根据物理状态来划分 ① 液体培养基。把各种营养物质溶于水中,混合制成水溶液,调节适当的pH,成为液体状的培养基质。液体培养基培养微生物时,通过搅拌可以增加培养基的通气量,同时使营养物质分布均匀,有利于微生物的生长和积累代谢产物。常用于大规模工业化生产和实验室观察微生物生长特征及应用方面的研究。 ② 固体培养基。 在液体培养基中加入一定量的凝固剂,如琼脂(1.5%~2.0%)、明胶等煮沸冷却后,使其凝成固体状态。常作为观察、鉴定、活菌计数和分离纯化微生物的培养基。 微生物的生理微生物的生理 ③ 半固体培养基。加入少量的凝固剂((0.5%~0.8%的琼脂)则成半固体状的培养基。常用来观察微生物的运动特征、分类鉴定及噬菌体效价滴定等。 (3)根据用途划分 ① 增殖培养基 (加富培养基)。根据某种微生物的生长要求,加入有利于这种微生物生长繁殖而不适合其他微生物生长的营养物质配制的培养基,这种培养基称为增殖培养基或称为加富培养基。这种培养基常用于菌种分离筛选。 微生物的生理微生物的生理 ② 鉴别培养基。根据微生物代谢特点通过指示剂的显色反应以鉴定不同种类的微生物的培养基,称为鉴别培养基。 ③ 选择培养基。是用来将某种微生物从混杂的微生物群体中分离出来的培养基。根据不同种类微生物的特殊营养要求或对某种化学物质的敏感性不同,在培养基中加入特殊的营养物质或化学物质以抑制不需要微生物的生长,而促进某种需要菌的生长,这类培养基叫选择培养基。 微生物的生理微生物的生理3.2 微生物的生长 3.2.1 微生物生长与繁殖 微生物在适宜的条件下,不断从周围环境中吸收营养物质,并转化为细胞物质的组分和结构。同化作用的速度超过了异化作用,使个体细胞质量和体积增加,称为生长。单细胞微生物,如细菌个体细胞增大是有限的,体积增大到一定程度就会分裂,分裂成两个大小相似的子细胞,子细胞又重复上述过程,使细胞数目增加,称为繁殖。单细胞微生物的生长实际是以群体细胞数目的增加为标志的。霉菌和放线菌等丝状微生物的生长主要表现为菌丝的伸长和分枝,其细胞数目的增加并不伴随着个体数目的增多而增加。微生物的生理微生物的生理 因此,其生长通常以菌丝的长度、体积及重量的增加来衡量,只有通过形成无性孢子或有性孢子使其个体数目增加才叫繁殖。生长与繁殖的关系是: 个体生长→个体繁殖→群体生长 群体生长=个体生长+个体繁殖 除了特定的目的以外,在微生物的研究和应用中只有群体的生长才有实际意义,因此,在微生物学中提到的“生长”均指群体生长。这一点与研究高等生物时有所不同。 微生物的生理微生物的生理3.2.2微生物生长量的测定方法 研究微生物生长的对象是群体,那么测定微生物生长繁殖的方法既可以选择测定细胞数量,也可以选择测定细胞生物量。 3.2.2.1 细胞数量的测定 (1)稀释平板菌落计数法 是一种最常用的活菌计数法。在大多数的研究和生产活动中,人们往往更需要了解活菌数的消长情况。从理论上讲, 在高度稀释条件下每一个活的单细胞均能繁殖成一个菌落,因而可以用培养的方法使每个活细胞生长成一个单独的菌落,并通过长出的菌落数去推算菌悬液中的活菌数,因此菌落数就是待测样品所含的活菌数。此法所得到的数值往往比直接法测定的数字小。 微生物的生理微生物的生理 稀释平板计数法可分为两种方法:一种是涂布法,另一种是倾注法。涂布平板法是将一定体积样品菌液稀释后取一定量涂布于平板表面,在最适条件下培养后,从平板上出现的菌落数乘菌液的稀释度,即可算出原菌液的含菌数。倾注法是将经过灭菌冷却至45~50℃的琼脂培养基与稀释后一定量的样品在平皿中混匀,凝固后进行培养,然后进行计数。 微生物的生理微生物的生理 这种方法在操作时,有较高的技术要求。其中最重要的是应使样品充分混匀,并让每支移液管只能接触一个稀释度的菌液。有人认为,对原菌液浓度为109个/mL的微生物来说,如果第一次稀释即采用10-4级(用10μl菌液至100mL无菌水中),第二次采用10-2级(吸1mL上述稀释液至100mL无菌水中),然后再吸此菌液0.2mL进行表面涂布和菌落计数,则所得的结果最为精确。其主要原因是,一般的吸管壁常因存在油脂而影响计数的精确度(有时误差竟高达15%)。 该法的缺点是程序麻烦,费工费时,操作者需有熟练的技术。而且在混合微生物样品中只能测定占优势并能在供试培养基上生长的类群。 微生物的生理微生物的生理 (2)血球计数板法 血球计数板是一块特制的载玻片,计数是在计数室内进行的,即将一定稀释度的细胞悬液加到固定体积的计数器小室内,在显微镜下观测小室内细胞的个数,计算出样品中细胞的浓度,稀释浓度以记数室中的小格含有4~5个细胞为宜。由于计数室的体积是一定(0.1mL)的,这样可根据计数出来的数字,就可以算出单位体积菌液内的菌体总数。但一般情况下,要取一定数量的计数室进行计数,在算出计数室的平均菌数后,再进行计算。这种方法的特点是测定简便、直接、快速,但测定的对象有一定的局限性,只适合于个体较大的微生物种类,如酵母菌、霉菌的孢子等;此外测定结果是微生物个体的总数,其中包括死亡的个体和存活的个体,要想测定活菌的个数,还必须借助其他方法配合。 微生物的生理微生物的生理 (3)液体稀释培养法 对未知菌样作连续10倍系列稀释。根据估计数,从最适宜的3个连续10倍稀释液中各取5mL试样,接种到3组共15支装有培养液的试管中(每管接入1mL)。经培养后,记录每个稀释度出现生长的试管数,然后查MPN(most probable number)表,再根据样品的稀释倍数就可以算出其中的活菌量。该法常用于食品中微生物的检测,例如饮用水和牛奶的微生物限量检查。 微生物的生理微生物的生理 (4)比浊法 在细菌培养生长过程中,由于细胞数量的增加,会引起培养物混浊度的增高,使光线透过量降低。在一定浓度范围内,悬液中细胞的数量与透光量成反比,与光密度成正比。比浊管是用不同浓度的BaCl2与稀H2SO4配制成的10支试管,其中形成的BaSO4有10个梯度,分别代表10个相对的细菌浓度(预先用相应的细菌测定)。某一未知浓度的菌液只要在透射光下用肉眼与某一比浊管进行比较,如果两者透光度相当,即可目测出该菌液的大致浓度。 如果要作精确测定,则可用分光光度计进行。在可见光的450~650nm波段内均可测定。 微生物的生理微生物的生理3.2.2.2 细胞生物量的测定 (1)称干重法 即测定单位体积的培养物中细菌的干质量。该法要求培养物中没有除菌体外的固体颗粒,对单细胞及多细胞均适用。可用离心法或过滤法测定,一般菌体干重为湿重的10%~20%。在离心法中,将待测培养液放入离心管中,用清水离心洗涤1~5次后,进行干燥。干燥温度可采用105℃、100℃或红外线烘干,也可在较低的温度(80℃或40℃)下进行真空干燥,然后称干重。以细菌为例,一个细胞一般重约10-12~10-13g。 微生物的生理微生物的生理 另一种方法为过滤法。丝状真菌可用滤纸过滤,而细菌则可用醋酸纤维膜等滤膜进行过滤。过滤后,细胞可用少量水洗涤,然后在40℃下真空干燥,称干重。以大肠杆菌为例,在液体培养物中,细胞的浓度可达2×109个/mL。100mL培养物可得10~90mg干重的细胞。这种方法较适合于丝状微生物的生长量的测定,对于细菌来说,一般在实验室或生产实践中较少使用。 (2)总氮量测定 大多数细菌的含氮量为其干重的12.5%,酵母菌为7.5%,霉菌为6.0%。根据其含氮量再乘以6.25,即可测得粗蛋白的含量(其中包括杂环氮和氧化型氮),然后再换算成生物量。 微生物的生理微生物的生理 (3)DNA含量测定 DNA在各种细胞内的含量最为稳定,不会因加入营养物而发生变化。尽管DNA测定方法较繁琐,费用也高,但在某些特殊情况下,DNA测定可发挥其特殊的的优势,如固定化载体内的微生物含量一般无法用直接法测定,但可以将载体粉碎后测定DNA来估算微生物的细胞数 (4)代谢活动法 从细胞代谢产物来估算,在有氧发酵中,CO2是细胞代谢的产物,它与微生物生长密切相关。在全自动发酵罐中大多采用红外线气体分析仪来测定发酵产生的CO2量,进而估算出微生物的生长量。 微生物的生理微生物的生理3.2.3微生物生长规律 3.2.3.1 微生物群体的生长规律 根据对某些单细胞微生物在封闭式容器中进行分批(纯)培养的研究,发现在适宜条件下,不同微生物的细胞生长繁殖有严格的规律性。单细胞的微生物,如细菌、酵母菌在液体培养基中,可以均匀地分布,每个细胞接触的环境条件相同,都有充分的营养物质,故每个细胞都迅速地生长繁殖。霉菌多数是多细胞微生物,菌体呈丝状,在液体培养基中生长繁殖的情况与单细胞微生物不一样。如果采取摇床培养,则霉菌在液体培养中的生长繁殖情况,近似于单细胞微生物,因液体被搅动,菌丝处于分布比较均匀的状态,而且菌丝在生长繁殖过程中不会象在固体培养基上那样有分化现象,孢子产生也较少。 微生物的生理微生物的生理 (1)微生物的生长曲线 将少量单细胞微生物纯菌种接种到新鲜的液体培养基中,在最适条件下培养,在培养过程中定时测定细胞数量,以细胞数的对数为纵坐标,时间为横坐标,可以画出一条有规律的曲线,这就是微生物的生长曲线(growth curve)。生长曲线严格说应称为繁殖曲线,因为单细胞微生物,如细菌等都以细菌数增加作为生长指标。这条曲线代表了细菌在新的适宜环境中生长繁殖至衰老死亡的动态变化。根据细菌生长繁殖速度的不同可将其分为四个时期(见图3-1)。 微生物的生理微生物的生理1—适应期;2—对数生长期;3—稳定期;4—衰亡期 图3-1 细菌的生长曲线 微生物的生理微生物的生理 ① 延滞期(lag phase)又叫适应期。是指微生物接种到新的培养基中,一般不立即进行繁殖,生长速率常数为零,需要经一段时间自身调整,诱导合成必要的酶、辅酶或合成某些中间代谢产物。此时,细胞重量增加,体积增大,但不分裂繁殖,细胞长轴伸长(如巨大芽孢杆菌的长度由3.4μm增长到9.1~19.8μm),细胞质均匀,DNA含量高。细胞内RNA尤其是rRNA含量增高,原生质体嗜碱性。对外界不良条件的反应敏感。 微生物的生理微生物的生理 在发酵工业,为提高生产效率,除了选择合适的菌种外,常要采取措施缩短延滞期。其主要方法有:a.以对数期的种子接种,因对数期的菌种生长代谢旺盛,繁殖力强,则子代培养期的适应期就短。b.适当增加接种量。生产上接种量的多少是影响延滞期的的一个重要因素。接种量大,延滞期短,反之则长。一般采用3%~8%,接种量,根据不同的微生物及生产具体情况而定,一般不超过1/10接种量。微生物的生理微生物的生理 c.培养基成分。现在发酵生产中,常采用发酵培养的成分与种子培养基的成分相近。因为微生物生长在营养丰富的天然培养基中要比生长在营养单调的合成培养基中延滞期短。 适应期的出现,可能是微生物刚被接种到新鲜培养基的中,一时还缺乏分解或催化有关底物的酶,或是缺乏充足的中间代谢产物,为产生诱导或合成有关的中间代谢物,就需要有一适应过程,于是就出现了生长的延滞。 微生物的生理微生物的生理 ② 对数生长期(logarithmic phase)又称指数生长期。是指在生长曲线中,紧接着延滞期后的一段时期。此时的菌体通过对新的环境适应后,细胞代谢活性最强,生长旺盛,分裂速度按几何级数增加,群体形态与生理特征最一致,抵抗不良环境的能力最强。其生长曲线表现为一条上升的直线。 在对数生长期,每一种微生物的世代时间(细胞每分裂一次所需要的时间)是一定的,这是微生物菌种的一个重要特征。以分裂增殖时间t除以分裂增殖代数(n),即可求出每增一代所需的时间(G)。 微生物的生理微生物的生理 设对数期开始时的时间为t1,活菌数为,经培养时间t2后,活菌数为,则 两边到对数得: 所以: 世代时间: 则 微生物的生理微生物的生理 从上式可以看出,在一定时间内,菌体细胞分裂次数愈多,世代时间越短,分裂速度越快。不同微生物菌体其对数生长期中的世代时间不同,同一种微生物在不同培养基组分和不同环境条件下,如培养温度、培养基pH值、营养物性质等,世代时间也不同。但每种微生物在一定条件下,其世代时间是相对稳定的。繁殖最快的世代时间只有9.8min左右,最慢的世代时间长达33h,多数种类世代时间为20~30min。如表3-2。 微生物的生理微生物的生理 影响微生物对数期增代时间的因素很多,主要有:菌种、营养成分、营养物浓度、培养温度。 表3-2  几种细菌在最适条件下生长的世代时间 微生物的生理微生物的生理 ③ 稳定期(stationary phase) 又称最高生长期。在一定溶剂的培养基中,由于微生物经对数生长期的旺盛生长后,某些营养物质被消耗,有害代谢产物积累以及pH值、氧化还原电位、无机离子浓度等变化,限制了菌体继续高速度增殖,初期细菌分裂间隔的时间开始延长,曲线上升逐渐缓慢。随后,部分细胞停止分裂,少数细胞开始死亡,使新增殖的细胞数与老细胞死亡数几乎相等,处于动态平衡,细菌数达到最高水平,接着死亡数超过新增殖数,曲线出现下降趋势。这时,细胞内开始积累贮藏物质如肝糖原、异染颗粒、脂肪滴等,大多数芽孢细菌在此时形成芽孢。同时,发酵液中细菌的产物的积累逐渐增多,是发酵目的产物生成的重要阶段(如抗生素等)。 微生物的生理微生物的生理 ④ 衰亡期(decay phase)。稳定期后,环境变得不适合于细菌的生长,细胞生活力衰退,死亡率增加,以致细胞死亡数大大超过新生数,细菌总数急剧下降,这时期称为衰亡期。这个时期细胞常出现多形态等畸形以及液泡,有许多菌在衰亡期后期常产生自溶现象,使工业生产中后处理过滤困难。产生衰亡期的原因主要是外界环境对继续生长的细菌越来越不利,从而引起细菌细胞内的分解代谢大大超过合成代谢,导致菌体死亡。 微生物的生理微生物的生理 (2)细菌的个体生长与同步生长 在分批培养中,细菌群体以一定速率生长,但所有细胞并非同时进行分裂,即使培养中的细胞处于同一生长阶段,它们的生理状态和代谢活动也不完全一样。要研究每个细胞所发生的变化是很困难的。为了解决这一问题,就必须设法使微生物群体处于同一发育阶段,使群体和个体行为变得一致,所有的细胞都能同时分裂,因而发展了单细胞的同步培养技术。即设法使群体中的所有细胞尽可能都处于同样细胞生长和分裂周期中,然后分析此群体的各种生物化学特征,从而了解单个细胞所发生的变化。 微生物的生理微生物的生理 获得细菌同步培养的方法主要有两类,其一是通过调整环境条件来诱导同步性,如通过变换温度、光线或对处于稳定期的培养物添加新鲜培养基等来诱导同步;其二是选择法(又称机械法),它是利用物理方法从不同步的细菌群体中选择出同步的群体,一般可用过滤分离法或梯度离心法来达到。在这两种方法中,由于诱导法可能导致与正常细胞循环周期不同的周期变化,所以不及选择法好,这在生理学研究中尤其明显。 微生物的生理微生物的生理 在选择法中,有代表性的是硝酸纤维素薄膜法。其大致过程为:将菌液通过装有硝酸纤维素滤膜的过滤器,由于细菌与滤膜带有不同的电荷,所以处于不同生长阶段的细菌均附着在膜上;将膜翻转,再用新鲜的培养液滤过培养;附着在膜上的细菌开始分裂,分裂的子细胞不能与薄膜直接接触,由于菌体自身重量,加上它附带的培养液的重量,使菌体下落到收集器内;收集器在短时间内获得的细菌都处于同一分裂阶段的新细胞,用这些细胞接种培养,于是就获得了同步生长。 微生物的生理微生物的生理3.2.3.2 微生物连续培养法 连续培养又叫开放培养,是相对分批培养或密闭培养而言的。 在分批培养中,培养基是一次性加入,不再补充,随着微生物的生长繁殖活跃,营养物质逐渐消耗,有害代谢产物不断积累,细菌的对数生长期不可能长时间维持。连续培养是在研究生长曲线的基础上,认识到了稳定期到来的原因,采取在培养器中不断补充新鲜营养物质,并搅拌均匀;另一方面,及时不断地以同样速度排出培养物(包括菌体和代谢产物)。这样,培养物就达动态平衡,其中的微生物可长期保持在对数期的平衡生长状态和稳定的生长速率上。此法是目前发酵工业的发展方向。 微生物的生理微生物的生理 连续培养的方法主要有恒浊连续培养和恒化连续培养两类。 (1)恒浊连续培养 用浊度计来检测培养液中菌液浓度,使培养液中细菌的浓度恒定的培养方法称为恒浊培养。所涉及的培养和控制装置称为恒浊器。当恒浊器中浊度超过预期数值时,可促使培养液流速加快,使浊度下降;浊度计低于预期数值时,流速减慢,使浊度增加。这种方法可自动地进行控制,使培养物维持一定的浊度。浊度下降,表明体系中有丰富营养物质,浊度的改变是培养物中的菌体数量的标志。 微生物的生理微生物的生理 在恒浊器中通过控制培养液的流速,从而获得密度高、生长速度恒定的微生物细胞的连续培养液。微生物在恒浊器中,始终能以最高生长速率进行生长,并可在允许范围内控制不同的菌体密度。在生产实践上,为了获得大量菌体或与菌体生长相平行的某些代谢产物如乳酸、乙醇时,可以采用恒浊法。 微生物的生理微生物的生理 (2)恒化连续培养 控制恒定的流速,使培养器内营养物质的浓度基本恒定,使细菌生长所消耗的物质及时得到补充,从而维持细菌恒定的生长速率的一种连续培养方法称为恒化培养。 当营养物浓度偏高时,并不影响微生物的生长速度,而当营养物浓度较低时,则影响菌体生长速度,而且在一定范围内,生长速率与营养物浓度成正比关系。营养物质浓度的确定往往是将培养基中的一种微生物生长所必需的营养物控制在较低的浓度下,作为限制生长的因子,其他营养物是过量的。通过控制生长因子的浓度,来保持菌体恒定的生长速率。常用的限制性生长因子一般是氮源、碳源、无机盐或其他生长因子等。 微生物的生理微生物的生理 恒化法主要用于实验室的科学研究中,特别是用于与生长速率相关的各种理论研究中。 连续培养如用于发酵工业中,就称为连续发酵。连续发酵与分批发酵相比有许多优点:①高效。它简化了装料、灭菌、出料、清洗发酵罐等许多单元操作,从而减少了非生产时间和提高了设备的利用率;②自控。便于利用各种仪表进行自动控制;③产品的质量较稳定;④节约了大量动力、人力、水和蒸气,且使水、汽、电的负荷均匀合理。 微生物的生理微生物的生理 连续培养或连续发酵也有一定的缺点。最主要的缺点是菌种易于退化,处于长期高速繁殖下的微生物,即使其自发突变率极低,也无法避免变异的发生,尤其易发生比原生产菌株生长速率更高、营养要求低和代谢产物少的负变类型;其次是易受杂菌污染,在长期运转中,要保持各种设备无渗漏,尤其是通气系统不出任何故障,是极其困难的。因此,连续培养是有时间限制的,一般可达数月至一二年。此外,在连续培养中,营养物质的利用率一般也低于分批培养。 微生物的生理微生物的生理3.2.3.3 影响微生物生长的环境因素 影响微生物生长的外界因素很多,除了营养物质,还有许多物理、化学因素。当环境条件的改变在一定限度内,可引起微生物形态、生理、生长、繁殖等特征的改变;当环境条件的变化超过一定极限时,则导致微生物的死亡。研究环境条件与微生物之间的相互关系,有助于了解微生物在自然界的分布与作用,也可指导人们在食品加工过程中有效地控制微生物的生命活动,保证食品的安全性,延长食品的货架期。 影响微生物生长的环境因素主要是温度、水、pH、氧气等。 微生物的生理微生物的生理 (1)温度 温度是影响微生物生长繁殖最重要的因素之一。在一定温度范围内,机体的代谢活动与生长繁殖随着温度的上升而增加,当温度上升到一定程度,开始对机体产生不利的影响,如再继续升高,则细胞功能急剧下降以至死亡。与其他生物一样,任何微生物的生长温度尽管有高有低,但总有最低生长温度、最适生长温度和最高生长温度这三个重要指标,这就是生长温度的三个基本点。 最低生长温度是指微生物能进行繁殖的最低温度界限。处于这种温度条件下的微生物生长速率很低,如果低于此温度则生长完全停止。 微生物的生理微生物的生理 最适生长温度  是指某微生物分裂的世代时间最短或生长速率最高时的培养温度。但是,同一微生物,不同的生理生化过程有着不同的最适温度,也就是说,最适生长温度并不等于生长量最高时的培养温度,也不等于发酵速度最高时的培养温度或累积代谢产物量最高时的培养温度。因此,生产上要根据微生物不同生理代谢过程温度的特点,采用分段式变温培养或发酵。例如,嗜热链球菌的最适生长温度为37℃,最适发酵温度为47℃,累积产物的最适温度为37℃。 最高生长温度是指微生物生长繁殖的最高温度界限。在此温度下,微生物细胞易于衰老和死亡。微生物所能适应的最高生长温度与其细胞内酶的性质有关。例如细胞色素氧化酶以及各种脱氢酶的最低破坏温度常与该菌的最高生长温度有关。 微生物的生理微生物的生理 微生物按其生长温度范围可分为低温型微生物、中温型微生物和高温型微生物三类,见表3-3。 表3-3  不同温型微生物的生长温度范围 微生物的生理微生物的生理 ① 低温型微生物,又称嗜冷微生物。可在较低的温度下生长。它们常分布在地球两极地区的水域和土壤中,即使在其微小的液态水间歇中也有微生物的存在。常见的产碱杆菌属、假单胞菌属、黄杆菌属、微球菌属等常使冷藏食品腐败变质。有些肉类上的霉菌在零下10℃仍能生长,如芽枝霉;荧光极毛菌可在零下4℃生长,并造成冷冻食品腐败变质。 低温也能抑制微生物的生长。在0℃以下,菌体内的水分冻结,生化反应无法进行而停止生长。有些微生物在冰点下就会死亡,主要原因是细胞内水分变成了冰晶,造成细胞脱水或细胞膜的物理损伤。因此,生产上常用低温保藏食品,各种食品的保藏温度不同,分为寒冷温度、冷藏温度和冻藏温度。 微生物的生理微生物的生理 寒冷温度:指在室温(14~15℃)和冷藏温度之间的温度。嗜冷微生物能在这一温度范围内生长,但生长比较缓慢,保藏食品的有效期较短,一般仅适宜于保藏果蔬食品。 冷藏温度:指在0~5℃之间的温度。在这一温度范围内,微生物的生命活动已显著减弱,可用于储存果蔬、鱼肉、禽蛋、乳类等食品。 冻藏温度:指低于0℃以下的温度。在-18℃以下的温度几乎阻止所有微生物的生长。在冻藏温度下可以较长期地保藏食品。 微生物的生理微生物的生理 ② 中温型的微生物。绝大多数微生物属于这一类。最适生长温度在20~40℃之间,最低生长温度10~20℃,最高生长温度40~45℃。它们又可分为嗜室温和嗜体温性微生物。嗜体温性微生物多为人及温血动物的病原菌,它们生长的极限温度范围在10~45℃,最适生长温度与其宿主体温相近,在35~40℃之间,人体寄生菌为37℃左右。引起人和动物疾病的病原微生物、发酵工业应用的微生物菌种以及导致食品原料和成品腐败变质的微生物,都属于这一类群的微生物。因此,它与食品工业的关系最为密切。 微生物的生理微生物的生理 ③ 高温型微生物。它们适于在45~50℃以上的温度中生长,在自然界中的分布仅局限于某些地区,如温泉、日照充足的土壤表层、堆肥、发酵饲料等腐烂有机物中,如堆肥中温度可达60~70℃。能在55~70℃中生长的微生物有芽孢杆菌属、梭状芽孢杆菌、嗜热脂肪芽孢杆菌、高温放线菌属、甲烷杆菌属等;温泉中的细菌;其次是链球菌属和乳杆菌属。有的可在近于100℃的高温中生长。这类高温型的微生物,给罐头工业、发酵工业等带来了一定难度。 微生物的生理微生物的生理 高温型的微生物耐热机理可能是菌体内的蛋白质和酶比中温型的微生物更能抗热,尤其蛋白质对热更稳定;同时高温型微生物的蛋白质合成机构——核糖体和其他成分对高温抗性也较大;细胞膜中饱和脂肪酸含量高,它比不饱和脂肪酸可以形成更强的疏水键,因此可保持在高温下的稳定性并具正常功能。 微生物的生理微生物的生理 (2)水分活度与渗透压 水是微生物营养物质的溶剂,水分对维持微生物的正常生命活动是必不可少的。水在微生物细胞中有两种存在形式:结合水和游离水。结合水与溶质或其他分子结合在一起,很难加以利用。游离水则可以被微生物利用。 水分活度(Activity of the water, Aw)是用来表示微生物在天然环境和人为环境中实际利用游离水的含量。是指在相同条件下,密闭容器内该溶液的蒸汽压(p)与纯水蒸汽压(p0)之比,即Aw= p/p0 。纯水的Aw=1,各种微生物在Aw =0.63~0.99的培养条件下生长。 微生物的生理微生物的生理 微生物必须在较高的Aw环境中生长繁殖,Aw太低时,微生物生长迟缓、代谢停止,甚至死亡。但不同的微生物,其生长的最适Aw不同,即最低的水分活性区域不同。如细菌的最Aw低值见图3-4。         表3-4  一些微生物生长的最低水活度 微生物的生理微生物的生理 细胞内溶质浓度与胞外溶质浓度(如0.85%NaCl溶液)相等时的状态,称为等渗状态;溶液的溶质浓度高于胞内溶质浓度,则称为高渗溶液,能在此环境中生长的微生物,称为耐高渗微生物。当溶质浓度很高时,细胞就会脱水,发生质壁分离,甚至死亡。盐渍(5%~30%食盐)和蜜饯(30%~80%糖)可以抑制或杀死微生物,这是一些常用食品保存法的依据;若溶液的溶质浓度低于胞内溶质浓度,则称为低渗溶液,微生物在低渗溶液中,水分向胞内转移,细胞膨胀,甚至胀破。这是低渗破碎细胞法(通常将洗净并离心得到的菌体投入80倍预冷的(5×10)~4mol∕LMgCl2溶液中,剧烈搅拌,使细胞内溶物释放到溶液中)的原理。该方法对细胞壁较牢固的革兰氏阳性菌不适用。 微生物的生理微生物的生理 干燥环境(Aw<0.60~0.70)条件下,多数微生物代谢停止,处于休眠状态,严重时引起脱水,蛋白质变性,甚至死亡,这是干燥条件能保存食品和物品,防止腐败和霉变的原理,同时,这也是微生物菌体保藏技术的依据之一。不同微生物在不同的生长时期对干燥的抵抗能力不同。酵母菌失去水后可保存数个月;产荚膜的菌比不产荚膜的菌对干燥的抵抗力强;小型、厚壁细胞的微生物比长型、薄壁细胞的微生物抗干燥能力强;芽孢、孢子抗干燥的能力比营养细胞强。 微生物的生理微生物的生理 影响微生物对干燥抵抗力的因素较多,干燥时温度升高,微生物容易死亡,微生物在低温下干燥时,抵抗力强,所以,干燥后存活的微生物若处于低温下,可用于保藏菌种;干燥的速度快,微生物抵抗力强,缓慢干燥时,微生物死亡多;微生物在真空干燥时,在加保护剂(血清、血浆、肉汤、蛋白胨、脱脂牛乳)的菌悬液中,分装在安瓿内,低温下可保持长达数年甚至10年的生命力。 微生物的生理微生物的生理 (3)pH 微生物生长的pH值范围极广, 一般在pH2~8之间,有少数种类还可超出这一范围,事实上,绝大多数种类都生长在pH5 ~9之间。 不同的微生物都有其最适生长pH值和一定的pH范围,即最高、最适与最低三个数值,在最适pH范围内微生物生长繁殖速度快,在最低或最高pH值的环境中,微生物虽然能生存和生长,但生长非常缓慢而且容易死亡。一般霉菌能适应pH值范围最大,酵母菌适应的范围较小,细菌最小。 微生物的生理微生物的生理 霉菌和酵母菌生长最适pH值都在5.0~6.0,而细菌的生长最适pH值在7.0左右。一些最适生长pH值偏于碱性范围内微生物,有的是嗜碱性,称嗜碱性微生物,如硝化菌、尿素分解菌、根瘤菌和放线菌等;有的不一定要在碱性条件下生活,但能耐较碱的条件,称耐碱微生物,如若干链霉菌等。生长pH值偏于酸性范围内的微生物也有两类,一类是嗜酸微生物,如硫杆菌属等,另一类是耐酸微生物,如乳酸杆菌、醋酸杆菌、许多肠杆菌和假单胞菌等。 微生物的生理微生物的生理 微生物在其代谢过程中,细胞内的pH值相当稳定,一般都接近中性,保护了核酸不被破坏和酶的活性;但微生物会改变环境的酸碱度,使培养基的原始pH值变化。发生的原因: 糖类和脂肪代谢产酸,蛋白质代谢产碱,以及其他物质代谢产生酸碱。一般随着培养时间的延长,培养基会变得较酸,当碳氮比例高的培养基,如培养真菌的培养基,经培养后其pH值常会明显下降,而碳氮比例低的培养基,如培养一般细菌的培养基,经培养后,其pH值常会明显上升。 微生物的生理微生物的生理 (4)氧 氧气对微生物的生命活动有着重要影响。按照微生物与氧气的关系,可把它们分成好氧菌和厌氧菌两大类。好氧菌中又分为专性好氧、兼性厌氧和微好氧菌;厌氧菌分为专性厌氧菌、耐氧菌。 ①专性好氧菌。要求必须在有分子氧的条件下才能生长,有完整的呼吸链,以分子氧作为最终氢受体,细胞有超氧化物歧化酶(SOD)和过氧化氢酶,绝大多数真菌和许多细菌都是专性好氧菌,如米曲霉、醋酸杆菌、荧光假单胞菌、枯草芽孢杆菌和蕈状芽孢杆菌等。 微生物的生理微生物的生理 ②专性厌氧菌。专性厌氧菌的特征是:分子氧存在对它们有毒,即使是短期接触空气,也会抑制其生长甚至死亡;在空气或含10%CO2的空气中,它们在固体或半固体培养基的表面上不能生长,只能在深层无氧或低氧化还原势的环境下才能生长;其生命活动所需能量是通过发酵、无氧呼吸、循环光合磷酸化或甲烷发酵等提供;细胞内缺乏SOD和细胞色素氧化酶,大多数还缺乏过氧化氢酶。常见的厌氧菌有罐头工业的腐败菌如肉毒梭状芽孢杆菌、嗜热梭状芽孢杆菌、拟杆菌属、双歧杆菌属以及各种光和细菌和产甲烷菌等。 微生物的生理微生物的生理 ③耐氧菌。一类可在分子氧存在时进行厌氧呼吸的厌氧菌,即它们的生长不需要氧,但分子氧存在对它也无毒害。它们不具有呼吸链,仅依靠专性发酵获得能量。细胞内存在SOD和过氧化物酶,但没有过氧化氢酶。一般乳酸菌多数是耐氧菌,如乳链球菌、乳酸乳杆菌、肠膜明串珠菌和粪链球菌等,乳酸菌以外的耐氧菌如雷氏丁酸杆菌。 微生物的生理微生物的生理 ④兼性厌氧菌。在有氧或无氧条件下都能生长,但有氧的情况下生长得更好;有氧时进行好氧呼吸产能,无氧时进行发酵或无氧呼吸产能;细胞含SOD和过氧化氢酶。许多酵母菌和许多细菌都是兼性厌氧菌。例如酿酒酵母、大肠杆菌和普通变形杆菌等。 ⑤微好氧菌。只能在较低的氧分压(0.01~0.03×101k Pa,正常大气压为0.2×101kPa)下才能正常生长的微生物。也通过呼吸链以氧为最终氢受体而产能。例如霍乱弧菌、一些氢单胞菌、拟杆菌属和发酵单胞菌属。 微生物的生理微生物的生理3.3 微生物生长的控制 在环境中存在着各种微生物,有一部分对人类是有害的。它们通过多种方式,传播到合适的基质或生物对象上而给人类带来种种危害。例如,食品的霉腐变质、实验室中的微生物、动植物组织或细胞纯培养物的污染,培养基、生化试剂、生物制品或药物的变质,发酵工业中杂菌污染及噬菌体引起的倒罐,人和动植物受病源微生物的感染而患各种传染病等。因此,采取有效措施来杀灭或控制这些有害微生物具有重要的实践意义。 微生物的生理微生物的生
/
本文档为【微生物的生理】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索