为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > 注塑机工作原理和电能消耗

注塑机工作原理和电能消耗

2017-10-13 25页 doc 49KB 13阅读

用户头像

is_574951

暂无简介

举报
注塑机工作原理和电能消耗注塑机工作原理和电能消耗 1、注塑机的工作循环 1)锁合模:模扳快速接近定模扳(包括慢-快-慢速),且确认无异物存在下,系统转为高压,将模板锁合(保持油缸 内压力)。 2)射台前移到位:射台前进到指定位置(喷嘴与模具紧贴)。 3)注塑:可设定螺杆以多段速度,压力和行程,将料筒前 端的溶料注入模腔。 4)冷却和保压:按设定多种压力和时间段,保持料筒的压 力,同时模腔冷却成型。 5)冷却和预塑:模腔内制品继续冷却,同时液力马达驱动螺杆旋转将塑料粒子前推,螺杆在设定的背压控制下后退,当螺杆后退到预定位置,螺杆停止旋转,注射...
注塑机工作原理和电能消耗
注塑机工作原理和电能消耗 1、注塑机的工作循环 1)锁合模:模扳快速接近定模扳(包括慢-快-慢速),且确认无异物存在下,系统转为高压,将模板锁合(保持油缸 内压力)。 2)射台前移到位:射台前进到指定位置(喷嘴与模具紧贴)。 3)注塑:可设定螺杆以多段速度,压力和行程,将料筒前 端的溶料注入模腔。 4)冷却和保压:按设定多种压力和时间段,保持料筒的压 力,同时模腔冷却成型。 5)冷却和预塑:模腔内制品继续冷却,同时液力马达驱动螺杆旋转将塑料粒子前推,螺杆在设定的背压控制下后退,当螺杆后退到预定位置,螺杆停止旋转,注射油缸按设定松 退,预料结束。 6)射台后退:预塑结束后,射台后退到指定位置。 7)开模:模扳后退到原位(包括慢-快-慢速) 8)顶出:顶针顶出制品。 2、注塑机的电能消耗 注塑机的电能消耗主要现在以下几个部分:?液压系统油泵的电能消耗 ,?加热器的电能消耗 ?循环冷却水泵的电能消耗(在注塑车间内,一般多台注塑机共用一台冷却水 泵),其中液压油泵电机的用电量占整个注塑机用电量的80%以上,所以降低其耗电量是注塑机节能的关键。 提高模具质量的基本途径 模具质量并不是一个简单的话题,它包括以下几个方面: ?制品质量:制品尺寸的稳定性、符合性,制品表面的光洁度、制品的利用率等等; ?使用寿命:在确保制品质量的前提下,模具所能完成的工作循环次数或生产的制件数量; ?模具的使用维护:是否属最方便使用、脱模容易、生产辅助时间尽可能的短; ?维修成本、维修周期性等等。 提高模具质量的基本途径: ?首先制件的要合理,尽可能选用最好的结构,制件的设计者要考虑到制件的技术要求及其结构必须符合模具制造的工艺性和可行性。 ?模具的设计是提高模具质量的最重要的一步,需要考虑到很多因素,包括模具材料的选用,模具结构的可使用性及安全性,模具零件的可加工性及模具维修的方便性,这些在设计之初应尽量考虑得周全些。 ? 模具材料的选用既要满足客户对产品质量的要求,还需考虑到材料的成本及其在设定周期内的强度,当然还要 根据模具的类型、使用工作方式、加工速度、主要失效 形式等因素来选材。例如:冲裁模的主要失效形式是刃口磨损,就要选择表面硬度高、耐磨性好的材料;冲压模主要承受周期性载荷,易引起表面疲劳裂纹,导致表层剥落,那就要选择表面韧性好的材料;拉深模应选择磨擦系数特别低的材料;压铸模由于受到循环热应力作用,故应选择热疲劳性强的材料;对于注塑模,当塑件 为ABS、PP、PC之类材料时,模具材料可选择预硬调质钢,当塑件为高光洁度、透明的材料时,可选耐蚀不锈钢,当制品批量大时,可选择淬火回火钢。另外 还需要考虑采用与制件亲和力较小的模具材料,以防粘模加剧模具零件的磨损,从而影响模具的质量。 ?模具结构设计时,尽量结构紧凑、操作方便,还要保证模具零件有足够的强度和刚度;在模具结构允许时,模具零件各表面的转角应尽可能设计成圆角过渡,以避免应力集中;对于凹模、型腔及部分凸模、 型芯,可采用组合或镶拼结构来消除应力集中,细长凸模或型芯,在结构上需采取适当的保护措施;对于冷冲模,应配置防止制件或废料堵塞的装置(如:弹顶销、 压缩空气等)。 与此同时,还要考虑如何减少滑动配合件及频繁撞击件在长期使用中磨损所带来的对模具质量的影响。 ?在设计中必须减少在维修某一零部件时需拆装的范围,特别是易损件更换时,尽可能减少其拆装范围。 ? 模具的制造过程也是确保模具质量的重要一环,模具制造过程中的加工方法和加工精度也会影响到模具的使用寿命。各零部件的精度直接影响到模具整体装配情况, 除掉设备自身精度的影响外,则需通过改善零件的加工方法,提高钳工在模具磨配过程中的技术水平,来提高模具零件的加工精度;若模具整体装配效果达不到要 求,则会在试模中让模具在不正常状态下动作的几率提高,对模具的总体质量将会有很大影响。因此,为保证模具具有良好的原始精度—原始的模具质量,在制造过程中首先要合理选择高精度的加工方法,如电火花、线切割、数控加工等等,同时应注意模具的精度检查,包括模具零件的加工精度、装配精度及通过试模验收工作综合检查模具的精度,在检查时还需尽量选用高精度的测量仪器,对于那些成形表面曲面结构复杂的模具零件,若用普通的直尺、游标卡就无法达到精确的测量数 据,这时就需选用三坐标测量仪之类的精密测量设备,来确保测量数据的准确性。 ?对模具主要成形零部件进行表面强化,以提高模具零件表面耐磨性,从而更好地提高模具质量。对于表面强化,要根据不同用途的模具,选用不同的强化方法。例如:冲裁模可采用电火花强化、硬质合金堆焊等,以提高模具零件表层的耐磨性和抗压强度;压铸模、塑料模等热加工模具钢零件可采用渗氮(硬氮化)处理,以提高零件的耐磨性、耐热疲 劳性和耐磨蚀性;拉深模、弯曲模可采 用渗硫处理,以减少摩擦系数,提高材料的耐磨性;碳氮共渗(软氮化)可应用于各类模具的表面强化处理。另外,近几年发展起来的一种称为FCVA真空镀金刚石膜技术,能在零件表层形成一层与基体结合异常牢固又十分光滑均匀密实的保护膜,这种技术特别适合于模具表面保护性处理,也是提高模具质量的一种效果显著 的方法。当然,如果制件属试制产品或生产批量相当小的话,就不一定非要进行模具零件的表面强化处理。 ?模具的正确使用与维护,也是提高模具质量的一大因素。例如:模具的安装调试方式应恰当,在有热流道的情况下,电源接线要正确,冷却水路要满足设计要求,模具在生产中注塑机、压铸机、压力机 的参数需与设计要求相符合等等。在正确使用模具时,还需对模具进行定期维护保养,模具的导柱、导套及其他有相对运动的部位应经常加注润滑油,对于锻模、塑料模、压铸模之类模具在每模成形前都应将润滑剂或起模剂喷涂于成形零件表面。对模具进行有的防护性维护,并通过维护过程中的数据处理,则可预防模具在生产中可能出现的问题,还可提高维修工作效率。 总之,要想提高模具的质量,首先必须每个环节都要考虑到对模具质量的影响,其次还须通过各部门的通力合作。模具的质量是模具企业自身实力的真实体现。 结束语 质量是一个古老而又常新的话题~模具的质量,无论是模具的设计者和制造者、制件的设计者,还是模具的使用者都应积极关心的问题,随着技术的不断创新、新材料的广泛采用、加工工艺的不断变革,使用与维护条件的差异等等都不同程度的影响模具的质量。“模具质量”的涉及面很广泛,相当复杂,提高模具质量的方法有 多种,途径也很多,本文仅从自己的观点略作阐述,应该能使模具行业的读者们对“如何提高模具质量”有更广泛、更深刻的认识。 造成注塑制品颜色及光泽缺陷的原 因 正常情况下,注塑制件表面具有的光泽主要由塑料的类型、着色剂及模面的光洁度所决定。但经常也会因为一些其他的原因造成制品的表面颜色及光泽缺陷、表面暗色等缺陷。造成这种原因及解决方法分析如下: (1)模具光洁度差,型腔表面有锈迹等,模具排气不良。 (2)模具的浇注系统有缺陷,应增大冷料井,增大流道、抛光主流道、分流道和浇口。 (3)料温与模温偏低,必要时可用浇口局部加热办法。 (4)加工压力过低、速度过慢、注射时间不足、背压不足,造成密实性差而使表面暗色。 (5)塑料要充分塑化,但要防止料的降解,受热要稳定,冷却要充分,特别是厚壁的。 (6)防止冷料进入制件,必要时改用自锁式弹簧或降低喷嘴温度。 (7)使用的再生料过多,塑料或着色剂质量差,混有水汽或其它杂质,使用的润滑剂质量差。 (8)锁模力要足够。 模具缺陷分析--塑件充填不满和溢 料 注塑件缺陷的特征 一、注塑过程不完全,因为模腔没有填满塑料或注塑过程缺少某些细节。 二、可能出现问题的原因 (1).注塑速度不足。 (2).塑料短缺。 (3).螺杆在行程结束处没留下螺杆垫料。 (4).运行时间变化。 (5).射料缸温度太低。 (6).注塑压力不足。 (7).射嘴部分被封。 (8).射嘴或射料缸外的加热器不能运作。 (9).注塑时间太短。 (10).塑料贴在料斗喉壁上。 (11).注塑机容量太小(即注射重量或塑化能力)。 (12).模温太低。 (13).没有清理干净模具的防锈油。 (14).止退环损坏,熔料有倒流现象。 三、补救方法 (1).增加注塑速度。 (2).检查料斗内的塑料量。 (3).检查是否正确设定了注射行程,需要的话进行更改。 (4).检查止逆阀是否磨损或出现裂缝。 (5).检查运作是否稳定。 (6).增加熔胶温度。 (7).增加背压。 (8).增加注塑速度。 (9).检查射嘴孔有没有异物或未塑化塑料。 (10).检查所有的加热器外层用安培表检验能量输出是否正 确。 (11).增加螺杆向前时间。 (12).增料斗喉区的冷却量,或降低射料缸后区温度。 (13).用较大的注塑机。 (14).适当升高模温。 (15).清理干净模具内的防锈剂。 (16).检查或更换止退环。 溢料 可能出现问题的原因 1)料桶,喷嘴及模具温度太高; 2)注射压力太大,锁模力太小; 3)模具密合不严,有杂物或模板已变形; 4)型腔排气不良; 5)塑料的流动性太好 对注塑模具一些常见故障的排除 注塑模具的结构形式和模具加工质量直接影响着塑件制品质量和生产效率。注塑模具生产和塑料制品生产实践中最常见,最常出现的一些模具故障及其主要原因分析排除如下。 1. 浇口脱料困难。在注塑过程中,浇口粘在浇口套内,不易脱出。开模时,制品出现裂纹损伤。此外,操作者必须用铜棒尖端从喷嘴处敲出,使之松动后方可脱模,严 重影响生产效率。这种故障主要原因是浇口锥孔光洁度差,内孔圆周方向有刀痕。其次是材料太软,使用一段时间后锥孔小端变形或损伤,以及喷嘴球面弧度太小, 致使浇口料在此处产生铆头。浇口套的锥孔较难加工,应尽量采用标准件,如需自行加工,也应自制或购买专用铰刀。锥孔需经过研磨至Ra0.4以上。此外,必须设置浇口拉料杆或者浇口顶出机构。 2.导柱损伤。导柱在模具中主要起导向作用,以保证型芯和型腔的成型面在任何情况下互不相碰,不能以导柱作为受力件或定位件用。在以下几种情况下,注射时动,定模将产生巨大的侧向偏移力:(1). 塑件壁厚要求不均匀时,料流通过厚壁处速率大,在此处产生较大的压力;(2). 塑件侧面不对称,如阶梯形分型面的模具,相对的两侧面所受的反压力不相等。 3 . 大型模具,因各向充料速率不同,以及在装模时受模具自重的影响,产生动)定模偏移。在上述几种情况下,注射时侧向偏移力将加在导柱上,开模时导柱表面拉毛,损伤,严重时导柱弯曲或切断,甚至无法开模。为了解决以上问题,在模具分型面上增设高强度的定位键四面各一个,最简便有效的是采用圆柱键。导柱孔与分模面的垂直度至关重要.在加工时是采用动,定模对准位置夹紧后,在镗床上一次镗完,这样可保证动,定模孔的同心度,并使垂直度误差最小。此外,导柱及导套的热处理硬度务必达到设计要求。 4.动模板弯曲。模具在注射时,模腔内熔融塑料产生巨大的反压力,一般在600 ~ 1000公斤/厘米2。模具制造者有时不重视此问题,往往改变原设计尺寸,或者把动模板用低强度钢板代替,在用顶杆顶料的模具中,由于两侧座跨距大,造成 注射时模板下弯。故动模板必须选用优质钢材,要有足够厚度,切不可用A3等低强度钢板,在必要时,应在动模板下方设置支撑柱或支撑块,以减小模板厚度,提 高承载能力。 5.顶杆弯曲,断裂或者漏料。自制的顶杆质量较好,就是加工成本太高,现在一般都用标准件,质量差。顶杆与孔的 间隙如果太大,则出现漏料,但如果间隙太小,在注射时由于模温升高,顶杆膨胀而卡死。更危险的是,有时顶杆被顶出一般距离就顶不动而折断,结果在下一次合模时这段露出的 顶杆不能复位而撞坏凹模。为了解决这个问题,顶杆重新修磨,在顶杆前端保留10 ~ 15毫米的配合段,中间部分磨小0.2毫米。所有顶杆在装配后,都必须严格检查其配合间隙,一般在0.05~0.08毫米内,要保证整个顶出机构能进退自 如。 6.冷却不良或水道漏水。模具的冷却效果直接影响制品的质量和生产效率,如冷却不良,制品收缩大,或收缩不均匀而出现翘面变形等缺陷。另一方面模整体或局部过热,使模具不能正常成型而停产,严重者使顶杆等活动件热胀卡死而损坏。冷却系统的设计,加工以产品形状而定,不要因为模具结 构复杂或加工困难而省去这个系统,特别是大中型模具一定要充分考虑冷却问题。 7.定距拉紧机构失灵。摆钩,搭扣之类的定距拉紧机构一般用于定模抽芯或一些二次脱模的模具中,因这类机构在模具的两侧面成对设置,其动作要求必须同步,即合模同时搭扣,开模到一定位置同时脱钩。一旦失去同步,势必造成被拉模具的模板歪斜而损坏,这些机构的零件要有较高的刚度和耐磨性,调整也很困难,机构寿命较短,尽量避免使用,可以改用其他机构。在抽心力比较小的情况下可采用弹簧推出定模的方法,在抽芯力比较大的情况下可采用动模后退时型芯滑动,先完成抽芯动作后再分模的结构,在大型模具上可采用液压油缸抽芯。斜销滑块式抽芯机构损坏。这种机构较常 出现的毛病大多是加工上不到位以及用料太小,主要有以下两个问题。 斜销倾角A大,优点是可以在较短的开模行程内产生较的大抽芯距。但是采取过大的倾角A,当抽拔力F为一定值时,在抽芯过程中斜销受到的弯曲力P=F/COSA, 也越大,易出现斜销变形和斜孔磨损。同时,斜销对滑块产生向上的推力N=FTGA也越大,此力使滑块对导槽内导向面的正压力增大,从而增加了滑块滑动时的 摩擦阻力。易造成滑动不顺,导槽磨损。根据经验,倾角A不应大于25 8.有些模具因受模板面积限制,导槽长度太小,滑块在抽 芯动作完毕后露出导槽外面,这样在抽芯后阶段和合模复位初阶段都容易造成滑块倾斜,特别是在合模时,滑块复位不顺,使滑块损伤,甚至压弯破坏。根据经验, 滑块完成抽芯动作后,留在滑槽内的长度不应小于导槽全长的2/3. 9最后在设计,制造模具时,应根据塑件质量的要求,批量的大小,制造期限的要求等具体情况,既能满足制品要求,在模具结构上又最简便可靠,易于加工,使造价低,这才是最完美的 模具注塑产品的色差控制 色差是注塑中常见的缺陷,色差影响因素众多,涉及原料树脂、色母、色母同原料的混合、注塑工艺、注塑机等, 在实际的生产过程中我们一般从以下五个方面来进行色差的控制。 1.消除注塑机及模具因素的影响 要选择与注塑主品容量相当的注塑机,如果注塑机存在物料死角等问题,最好更换设备。对于模具浇注系统、排气槽等造成色差的,可通过相应部分模具的维修模来解决。必须首先解决好注塑机及模具问题才可以组织生产,以削减问题的复杂性。 2.消除原料树脂、色母的影响 控制原材料是彻底解决色差的关键。因此,尤其是生产浅色制品时,不能忽视原料树脂的热稳定性不同对制品色泽波动带来的明显影响。鉴于大多数注塑生产厂家本 身并不生产塑料母料或色母,这样,可将注意的焦点放在生产管理和原材料检验上。即加强原材料入库的检验;生产中同一产品尽可能采用同一厂家、同一牌号母 料、色母生产;对于色母,我们在批量生产前要进行抽检试色,既要同上次校对,又要在本次中比较,如果颜色相差不大,可认为合格,如同批次色母有轻微色差, 可将色母重新混合后再使用,以减少色母本身混合不均造成的色差。同时,我们还需重点检验原料树脂、色母的热稳定性,对于热稳定性不佳的,我们建议厂家进行 调换。 3.减少料筒温度对色差的影响 生产中常常会遇到因某个加热圈损坏失效,或是加热控制部分失控长烧造成料筒温度剧烈变化从而产生色差。这类原因产生的色差很容易判定,一般加热圈损坏失效 产生色差的同时会伴随着塑化不均现象,而加热控制部分失控长烧常伴随着产品气斑、严重变色甚至焦化现象。因此生产中需经常检查加热部分,发现加热部分损坏 或失控时及时更换维修,以减少这类色差产生几率。 4(减少注塑工艺调整时的影响 非色差原因需调整注塑工艺参数时,尽可能不改变注塑温度、背压、注塑周期及色母加入量,调整同时还需观察工艺参数改变对色泽的影响,如发现色差应及时调 整。尽可能避免使用高注射速度、高背压等引起强剪切作用的注塑工艺,防止因局部过热或热分解等因素造成的色差。严格控制料筒各加热段温度,特别是喷嘴和紧 靠喷嘴的加热部分。 5(掌握料筒温度、色母量对产品颜色变化的影响 在进行色差调整前还必须知道产品颜色随温度、色母量变化的趋势。不同色母随生产的温度或色母量的改变,其产品颜色变化规律是不同的。可通过试色过程来确定其变化规律。除非已知道这种色母颜色的变化规律,否则不可能很快地调好色差 塑胶产品缺陷的粗劣分析 1.表面起膜 树脂的添加剂流经产品表面时,形成的白色、灰色的 蔓延现象被称为表面起膜。 产生的主要原因: 1、树脂内部的添加剂是主要原因 2、造成过度应力的注塑条件等也是引发原因 2.飞边 产生的主要原因 1、注塑机加工不良 2、注塑机容量不足 3、加工条件不良 4、锁模力不足 5、模具贴得不紧 6、模具的变形 7、树脂流动太好 8、Gas Vent过大 9、注塑压力较大 10、模具面上存在异物 3.透明性底下 PPS、SAN等透明产品出现的透明性低下的现象 产生的主要原因 1、脱模剂使用过多 2、混入其它树脂 3、混入其它型号 4、模具的加工状态,模具温度等加工条件不合适。 4.异色、褪色 产品的颜色与标准颜色不同的现象。树脂颜色不同为异色;注塑后颜色发生改变的现象为变色。 产生的主要原因 1、着色错误 2、树脂污染 3、过多使用粉碎品 4、注塑机污染 5、树脂的热化等 5.表面突起 产生的主要原因 1、原料内混入异物 2、颜料未分散 3、模具加工状态 4、使用再利用原 6.未填满 树脂没有填满Cavity的全部,冷却凝固后成型品的一 部分出现不足的现象。 进料调节不当A缺料 B多料 注射压力不妥 料量过低 模具温度低或温度分布不合理 塑料流动性高 喷嘴配合不良 塑料熔块堵塞加料通道 喷嘴冷料入模 模具设计不合理 模具浇注系统有缺陷 7.流痕 树脂没有填满Cavity的全部,冷却凝固后成型品的一 部分出现不足的现象。 进料调节不当A缺料 B多料 注射压力不妥 料量过低 模具温度低或温度分布不合理 塑料流动性高 喷嘴配合不良 塑料熔块堵塞加料通道 喷嘴冷料入模 模具设计不合理 模具浇注系统有缺陷 8.黑线 产品表面形成黑色线条的现象 挥发物润滑剂或脱膜剂 树脂的热化 黑色颜料 注塑要清洁不良 模具表面受到污染(油、油脂等异物) 排气不良 成型机的老化及损伤 过多使用再利用原料 9.成型收缩 成型品的尺寸产生影响的因素多种多样,其主要变数 有模具、产品形状、成型条件及后工程、树脂的种类 等。 (a) 随模具的设计及成型品的形状而产生的差异。 随Gate 的位置、形状、面积、尺寸会有所不同,通常Gate附近所承受的注塑压较高,因此收缩较小。当Gate及Runner面积较大、Runner的长度较短时 收缩较小。随模具温度及偏差,各部位的尺寸会有所不同。模具随加工的尺寸公差而变形,因此收缩尺寸也会有不同。按取出产品的方法而产生变形,因此尺寸也会 改变。 (b) 按产品的形状引起的收缩差异。 按产品厚度不同成型收缩也不,通常较厚的部分收缩较大。 (c) 成型品尺寸随成型条件的变化 按 成型温度与模具温度,成型收缩不同。同一Cavity压力下,通常温度越高收缩越大。保压与注塑压力越大收缩越小。同一Cavity压力下,填充、保压时 间越增加,收缩越小。与成型品不相适应的成型机大小(锁膜压、容量)也会对成型品的尺寸产生影响。螺杆的防止回流Ring发生磨损时,适宜的注塑压不能传 到成型品上,而且因计量不均匀,可发生较大的成型收缩。收缩率随树脂不同出现的差异:玻璃纤维等填充剂得到补充的话,收缩率会变小;随树脂吸收水份的程 度,尺寸也会有所不同。 10. 黑斑 产品表面形成的小黑点、蓝点。因注塑机环境,作业环境,树脂的清洁状态而引起的。 11. 银线 [1] 产生的主要原因 (a) 因原料含有水份及挥发物 由于原料干燥不足以及其它原因,超过适当的水份含量时,因为水份面加速了热分解及气体的产生。 夏季雨天时,因酷热的温度和较大的湿度,在移动原料或经长期保管时,吸收了较多的水份,因此不能以一般干燥条件来干燥,应使用除干燥机交原料进行较长时间的干燥。 (b) 由于树脂的热分解 通常,树脂应在适宜的使用范围内设定成型温度。若在较高的成型温度下作业时,会由于热分解而导致产生银线及引起物性低下。 选择适合成型品的注塑成型机。(产品重量一般为料筒容量的40-80%) 加热器及热电偶接触不良时,实际设定温度正常或Barrel的一部分受到局部加热,也会出现银线。 [2] 预防的对策 (a) 成型条件 注塑过程:填充到模具内时,所产生的气体应排出到模具外。 计量过程:螺杆转速过高的话,料筒温度上升,以致加速树脂扮解及气体的产生,因此应保持适当的螺杆速度。而且以适宜的背压最大限度地抑制已达到可塑化的树脂之间的空隙与气体的流入。 (b) 模具 模具形状,设计模具时应考虑到填充时会导致流动阻碍的产品的深度差及厚度差。模具内应设置有效的Gas Vent。长期大量生产时,树脂产生的气体残量累积在模具的Vent部分,这也是造成Gas Vent堵塞,致使银线等不良现象产生的直接原因。 12. 熔接线 成型品表面形成细线的现象。 熔接线发生在注塑成型时熔融树脂合流的地方。熔融树脂填充凝固后,树脂互相遇合的界面显示在表面上,致使强度及外观降低。 出现在具有两个以上Gate的产品中或Hole,厚度存在差异的成型品上。 作为成型条件是不可避免的现象。设计模具时,在改 变Gate位置及厚度的同时,将有可能产生熔接线的部分移动到强度及外观质量不是重要的位置。 [1] 产生的主要原因 熔接线位置不良及流动性不足。(对策:增加树脂及模具温度,增加注塑压力及速度) 模具内存在空气或挥发物时。(对策:用酒精、香蕉水等清扫,设置Gas Vent) 因脱模剂,着色剂等。Gate位置不良时。(对策:调整模具等) [2] 针对不良现象的详细对策 (a) 通过调节成型条件,降低熔接线的鲜明度,或改变位置或填充时使树脂的凝固达到最小化。 树脂温度及模具温度上升 注塑速度及注塑压力上升 保压及保压时间上升 (b) 设计模具时,将熔接线的位置移动到外观及强度不是很重要的地方。 扩大Weld部分的Gas Vent 改变Gate位置及使Gate个数达到最适宜化 增加产品厚度 (c) 原材料的充分干燥(抑制气体的产生) 13.破裂、白化 广义的破裂包括破裂及细微破裂的Crazing。接产生的原因可以分为机械性破裂与化学应力破裂。 [1] 机械性破裂(Mechanical Crack) 作 用于塑料上的物理性作用力比塑料固有物性及结构上的支持力大的时候,因随不了而产生破裂。为了防止破裂的产生,在进行产品设计时,须引起注意。设计时,选 好所使用的材料与型号后,应考虑到作用于物体上的外力,设计出既可反映稳定率又可以分散作用力的结构。提高结构上的支持力时,可加大产品的厚度或加固 Rib,也可设计成Round结构以分散作用力。 [2]化学应力破裂(ESC Crack) 化学应力破裂(ESC:Environmental Stress Crack)是指因化学药品的作用,塑料膨胀,从而加重了内部应力,致使总应力值高出塑料的破坏强度而产生的破裂。 化学应力破裂在成型品的装配过程中,使用润滑剂、洗剂等时,其所含有的一部分物质可诱发产品破裂。根据产品的脆弱结构、残留应力标准,是否产生破裂存在一定的差异,受温度压力等的影响。 因化学药品造成的破裂,其破裂面根干净,有时会产 生光泽,可轻易得到确认。 为了防止因化学应力引起的破裂,工艺上应禁止使用 可诱发破裂的化学药品。在用户的使用条件下,会形 成问题的配件应通过改变材料等方法作到防患于未 燃。 引发化学应力破裂的化学药品如下:冰乙酸、增塑剂 (DOP等)。 酒精类、石蜡系列的油脂、酯、过多的硅系列脱模剂、 汽油石油等油类、豆油等食用油、溶剂类等 塑料型材发脆的原因及分析 型材发脆基本上在制品的物理、力学性能上得到充分体现。其主要特征为:下料时崩口、冷冲破裂。造成型材制品物理、力学性能差的原因有很多,主要表现为以下几种: 一、配方及混料工艺不合理 1、填料过多 针对目前市场上型材价格低,而原材料价格上涨的格局,型材厂家都是在 降低成本上作文章,正规的型材厂家通过配方的优化组合,是在不降低质量的前提下,降低了成本;有些厂家却在降低成本的同时也降低了制品质量。由于配方组份 的原因,最直接有效的办法是增加填料,在PVC-U 塑料异型材中常用的填料为碳酸钙。在以前的配方体系中多数是填加重钙,其目的是增加刚性和降低成本,但 重钙由于本身粒子形状不规则而且粒径比较粗与PVC树脂本体的相溶性差,所以其添加份数很低,而且份数增大时会对型材的色泽和表观造成影响。现在随着技术 的发展,大多采用超细轻质活化碳酸钙、甚至是纳米级碳酸钙、其不仅起到增加刚性和填充的作用,而且还具有改性的作用,但是其填加量并不是无限度的,其比例 应该加以控制。现在有些厂家为了降低成本将碳酸钙加到20-50质量份,这大大降低了型材的物理力学性能,造成本章所说的型材发脆现象。 2、抗冲击改性剂添加种类、数量 抗冲击改性剂是在应力作用下,能够提高聚氯乙烯破裂总能量的一种高分 子聚合物。目前硬质聚氯乙烯的抗冲击改性剂的主要品种有CPE、ACR、MBS、ABS、EVA等,其中CPE、EVA、ACR改性剂的分子结构中不含双 键,耐候性能好,适宜做户外建筑材料,它们与PVC共混,能有效的提高硬聚氯乙烯的抗冲击性能、加工性、耐候性及在一定范围内提高焊角强度。 在PVC/CPE共混体系中,其冲击强度随CPE的用量增加而增加, 呈S形曲线。添加量在8质量份以下时,体系的冲击强度增长幅度非常小;添加量在8-15质量份时增加幅 度最大;之后增长幅度又趋于平缓。当CPE用量在8 质量份以下时不足以形成网状结构;当CPE用量在8-15质量份时,其在共混体系中连续均匀分散,形成分相不分离的网状结构,使共混体系的冲击强度增长幅 度最大;当CPE用量超过15质量份时,就不能形成连续均匀的分散,而是有部分CPE形成凝胶状,这样在两相界面上就不会有适宜分散的CPE颗粒来吸收冲 击能量,因而冲击强度增长趋于缓慢。 而在PVC/ACR共混体系中,ACR可显著提高共混体系的抗冲击性 能。同时“核一壳”粒子可均匀分散在PVC基体中,PVC是连续相,ACR是分散相,分散在PVC连续相中与PVC相互作用,起到加工助剂的作用,促进 PVC的塑化和凝胶化,塑化时间短,具有很好的加工性能。成形温度和塑化时间对缺口冲击强度影响较小,弯曲弹性模量下降也小。一般用量在5-7质量份,经 ACR改性的硬PVC制品有优良的室温冲击强度或低温冲击强度。 而经实验论证,ACR与CPE相比抗冲击强度要高30%左右。因此在配方中尽可能采用PVC/ACR共混体系,而用CPE改性且用量低于8质量份时往往会引起型材发脆。 3、稳定剂过多或过少 稳定剂的作用是抑制降解,或与释放出的氯化氢反应以及防止聚氯乙烯加 工时变色。稳定剂根据种类不同用量也不同,但总的一点来说,用量过多会推迟物料的塑化时间从 而使物料出口模时还欠塑化,其配方体系中各分子之间没有完全溶 合,其分子间结构不牢固造成。而用量过少时会造成配方体系中相对低分子物降解或分解(也可以说成过塑化),对各组份分子间结构的稳固性造成破坏。因此稳定 剂用量多少也会对型材的抗冲击强度造成影响,过多或过少都会造成型材强度降低引起型材发脆现象。 4、外润滑剂用量过多 外润滑剂与树脂相溶性较低,能够促进树脂粒子间的滑动,从而减少摩擦 热量并推迟熔化过程,润滑剂的这种作用在加工过程早期(也就是在外部加热作用和内部产生的摩擦热使树脂完全熔化和熔体中树脂失去识别特征之前)是最大的。 外润滑剂又分前期润滑和后期润滑、润滑过度的物料在各种条件下都表现为较差的外形,如果润滑剂用量不妥,可能造成流痕,产量低,浑浊,冲击性差,表面粗 糙、粘连,塑化差等。特别是用量过多时,就会造成型材的密实度差、塑化差,而导致冲击性能差,引起型材发脆。 5、热混加料顺序、温度设值以及熟化时间对型材的性能也有决定性的因素 PVC-U配方的组分很多,所选择加料顺序应有利于发挥每种助剂的作用,并有利于提高分散速度,而避免其不良的协同效应,助剂的加料顺序应有助于提高助剂的相辅相成效果,克服相克相消的作用,使应在PVC树脂中分散的助剂, 充分进入PVC树脂内部。 典型的铅盐稳定体系配方加料顺序如下: a(低速运转时,将PVC树脂加到热混锅中; b(在60?时,高速运转下加入稳定剂及皂类; c(在80?左右,高速运转下加入内润滑剂、颜料、抗冲击改性剂、加工助剂; d(在100?左右,高转速下加入蜡类等外润滑剂; e(在110?,高速运转下加入填料; f(在110?-120?低转速下排出物料至冷混桶中进行降温; g(冷混至料温降至40?左右时,卸料过筛。 上面加料顺序较为合理,但在实际生产过程中,根据自身的设备及各种条件也有所不同,多数厂家除树脂外,其他助剂一同加入。还有的是轻质活化碳酸钙同主料一起加入等等。这就要求企业技术人员根据本企业的特点制定出适合自己的加工工艺及投料顺序。 一般热混温度在120?左右,温度太低时物料达不到凝胶化和混料均匀,高于此温度部分物料可能会分解挥发,而且干混粉料发黄。 混料时间一般在7-10min物料才能达到密实、均化、部分凝胶化。 而冷混一般在40?以下,而且要求冷却时间要短,如温度大于40?且冷却速度又慢,则制备的干混料会相 对常规密实度差。干混料的熟化时间一般在24小时, 大于这个时间物料易吸收水份或结块,小于这个时间物料各分子间的结构还不太稳定,造成挤出时型材外形尺寸和壁厚波动较大。以上环节如不加强控制都会对型材 制品的质量造成影响,个别情况便会表现为型材发脆。 二、挤出工艺不合理 1、物料塑化过度或不足 这与工艺温度设定和喂料比例有关,温度设定过高会造成物料过塑化,其组分中部分分子量较低的成份会分解、挥发;温度过低其组份中各分子间没有完全熔合,分 子结构不牢固。而喂料比例太大造成物料受热面积和剪切增大,压力增大,易引起过塑化;喂料比例太小造成物料受热面积和剪切减小,会造成欠塑化。无论是过塑 化还是欠塑化都会造成型材切割崩口现象。 2、机头压力不足 一方面与模具设计有关(这在下 面单独描述)另一方面是与加料比例 和温度设定有关,压力不足时,物料 得密实度就差,就会成组织疏松出现型材料脆现象,这时应调整计量加料转速和挤出螺杆转速使机头压力控制在25Mpa-35Mpa之间。 3、制品中的低分子成份未排出 制品中 的低分子成分产生一般有两个途径,一是在热混时产生,这在热混时通过抽湿和排气系统可以排出。二是部分残存的和挤出受热受压时产生的水份和氯化氢气体。这 一般通过主机排气段的强制排气系统来强制排出,真空度一般在-0.05Mpa-0.08Mpa之间,不开或过低,都会在制品中残存低分子成份,造成型材力 学性能下降。 4、螺杆转矩太低 螺杆的 转矩是反应机械在受力状态下的数值,工艺温度设值的高低,喂料比例的多少都直接在螺杆转矩值上得到体现,螺杆转矩太低从某种程度上反应出温度偏低或喂料比 例小,这样物料在挤出程度中同样得不到充分塑化,也就会降低型材的力学性能。根据不同的挤出设备和模具,螺杆转矩一般掌握在60%-85%之间就能满足要 求。 5、牵引速度与挤出速度不匹配 牵引速度太快会造成型材壁薄力学性能下降,而牵引速度太慢,型材受到的阻力大,制品处于高拉伸状态,也会对型材的力学性能造成影响。 三、模具设计不合理 1、口模截面设计不合理,尤其是内筋的分布和交界面角度的处理。这样会造成应力集中现象存在,需要改进设计和消除交界面处的直角和锐角。 2、模 头压力不足。模头处压力大小是直接受模具的压 缩比,特别是模具平直段的长度来决定的。模头的压缩比太小或平直段太短都会造成制品不致密,影响物理性能。模 头压力的改变一方面可以通过改变模头平直段长度来调整流料阻力;另一方面在模具设计阶段可选择不同的压缩比来改变挤出压力,但必须注意机头压缩比要与挤出 机螺杆的压缩比相适应;还可以通过改变配方,调整挤出工艺参数,增加多孔板来改变熔体压力的大小。 3、对于因分流筋汇合不良造成的性能下降应适当增加筋与外表面、筋与筋汇流处的长度,或者增大压缩比来解决。 4、口模出料不均匀,造成型材壁厚薄不一致,或者密实度不一致。这也就造成了型材两个面之间的力学性能上的差别,我们在实验时有时冷冲一面合格一面不合格,也恰恰证明了这一点。至于壁薄等非标型材这里就不再多说。 5、定 型模的冷却速率。冷却水温往往没有引起足够的重视,冷却水的作用是将型材拉伸的大分子链及时冷却定型,达到使用目的。缓慢的冷却可以使分子链有足够的时间 舒展,有利于定型。而急速冷却,水温与挤出型坯的温差太大,制品受骤冷不利于制品低温性能的提高。从高分子物理学解释,PVC大分子链在温度、外力的作用 下,发生卷曲、拉伸过程,当温度、外力撤出后,大分子链没有及时恢复自由状态而外于玻璃态,大分子链杂乱无序排列,造成宏观上制品低温冲击性能低。从塑料 加工工艺学解释PVC异型材在挤 出后,制品撤去温度、外力后有应力松弛过程。适宜的冷却水温有利于这个过程。冷却水温过低,制品中的应力没有来得及消除, 造成制品性能下降。所以异型材冷却采用缓冷方式,并可防止成型后的制品翘曲,弯曲和收缩现象,可以防止由于内应力作用而使制品冲击强度降低。一般水温度控 制在20?。为了使型坯柔和地冷却而不致骤冷,将连接冷却定型套的水管接在定型的后部,让水在定型套中流动方向与型坯运动方向相反而从定型套前排出。这样 也不致于造成因水温过低造成型坯骤冷、产生过大内应力,使型材脆化,型材的抗冲击性能下降。 四、混料设备和挤出设备在本章中作为一个固化因素不再论述 五、值得我们商讨的是有一种情况,在型材取样试验时,无论是冷冲、角强度还是加热后尺寸变化率等都达标,(GB/T8814-2004),但是在下料时切口还是有轻微不明显的崩口现象,特别是内筋。 一种说法此种现象属正常现象是受外界因素影响即: ?门窗制作时,加工环境温度低于12?。这不仅对下料造成崩口,而且对焊角强度等都会造成一系列影响; ?下料时进锯速度过快,通常这时切割锯切割时声音比较急促且尖锐; ?切割锯片老化或有脱齿现象。 另一种则认为还是型材本身的原因,即配方和挤出工艺等,笔者认为这几个方面兼而有之,除以上说法外。这里面还有一个刚性指标和柔性指标的协调问题。即只要找到其最佳平衡点,那么问题就会迎刃而解。 (1) 配方体系对刚性指标和柔性指标的影响,配方中要增加或减小刚性指标必然要增加或减少填料,而增加填料又直接影响其柔性指标。填料过多,型材便会出现冷冲不 达标,焊接强度降低。填料过少,型材便会出现尺寸变化率大。相同的是增加或减小柔性指标,必然要增加或减小抗冲改性剂或加工助剂,而增加或减小加工助剂又 直接影响其刚性指标。加工助剂过多,则型材刚性指标下降;加工助剂过少,则型材刚性指标上升,在配方中这两者是一个既矛盾又统一的相互制约的因素,但不能 说要提高刚性指标却又要保持柔性指标便可以在增加填料的同时又无原则增加加工助剂,这是不合理的。所以在配方体系中要确定一个最佳结合点,以达到其刚性和 柔性的平衡。 (2) 挤出工艺对型材刚性和柔性指标的影响。挤出温度设定的高低是影响物料塑化程度的因素之一,物料过塑化物料中的低分子聚合物分解,挥发,造成分子间结构变化 会增大刚性指标和降低柔性指标。物料塑化不足,物料中各组分的分子之间还没有充分溶合会降低刚性指标,同时柔性指标得到充分展现。螺杆转矩和挤出压力与型 材的刚性指标 成正比,随转矩和压力升高而增加。柔性指标则与其成反比,随转矩和压力的升高而降低。 需要补充的是,在刚开机挤出时会偶然发现个别型材没有崩口现象,但却发现其内筋已有轻微气泡,这又是一个新问题。有三种假设: ?此段型材挤出时的加工温度要高于常规工艺温度,如果是则说明前面我们所设定的加工工艺温度偏低,型材欠塑化,而要提高工艺温度却不要让其内筋发泡,则要适当增加稳定剂的用量,这当然也与物料的挤出速度即物料在机筒内的停留时间有关。 ?螺杆芯温过高,如是这种情况则更好解决,适当降低螺杆芯部温度便可。 ?主机没有开真空或真空度过低。如是这样则型材的加热后状态不过关,如果加热后状态没有问题则还是要回到前面两个问题中去。 这也就 说明,虽然型材试验各项指标都合格,也不能说明你的配方体系和挤出工艺绝对没有问题,说不准在哪个环节出现小小的纰漏。因此我们在研究任何问题时都要统筹 考虑,不能枉下结论就是哪一点,哪一方面的问题,造成无端的争辨,我们应该本着严谨的科学态度逐一排查,逐一斟酌。
/
本文档为【注塑机工作原理和电能消耗】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索