为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

紫外-可见分光光度法

2011-10-20 38页 ppt 1MB 181阅读

用户头像

is_967726

暂无简介

举报
紫外-可见分光光度法nullnull第二章 紫外-可见分光光度法 (Ultraviolet and Visible Spectrophotometry, UV-Vis)   2.1 紫外-可见吸收光谱 2.2 吸收光谱的测量-----Lambert-Beer 定律 2.3 紫外-可见光度计仪器组成 2.4 分析条件选择 2.5 UV-Vis分光光度法的应用 UV-Vis方法是分子光谱方法,它利用分子对外来辐射的吸收特性。 UV-Vis涉及分子外层电子的能级跃迁;光谱区在160~780nm. UV-Vis主要用于分子的定量...
紫外-可见分光光度法
nullnull第二章 紫外-可见分光光度法 (Ultraviolet and Visible Spectrophotometry, UV-Vis)   2.1 紫外-可见吸收光谱 2.2 吸收光谱的测量-----Lambert-Beer 定律 2.3 紫外-可见光度计仪器组成 2.4 条件选择 2.5 UV-Vis分光光度法的应用 UV-Vis方法是分子光谱方法,它利用分子对外来辐射的吸收特性。 UV-Vis涉及分子外层电子的能级跃迁;光谱区在160~780nm. UV-Vis主要用于分子的定量分析,但紫外光谱(UV)为四大波谱之一,是鉴定 许多化合物,尤其是有机化合物的重要定性工具之一。 null2.1 紫外-可见吸收光谱 一、分子吸收光谱的形成 1. 过程:运动的分子外层电子--------吸收外来外来辐射------产生电子能级跃迁-----分子吸收谱。 2. 能级组成:除了电子能级(Electron energy level)外,分子吸收能量将伴随着分子的振动和转动,即同时将发生振动(Vibration)能级和转动(Rotation)能级的跃迁!据量子力学理论,分子的振-转跃迁也是量子化的或者说将产生非连续谱。因此,分子的能量变化E为各种形式能量变化的总和: 其中Ee最大:1-20 eV; Ev次之:0.05-1 eV; Er最小:0.05 eV 可见,电子能级间隔比振动能级和转动能级间隔大1~2个数量级,在发生电子能级跃迁时,伴有振-转能级的跃迁,形成所谓的带状光谱。 null 不同物质结构不同或者说其分子能级的能量(各种能级能量总和)或能量间隔各异,因此不同物质将选择性地吸收不同波长或能量的外来辐射,这是UV-Vis定性分析的基础。 定性分析具体做法是让不同波长的光通过待测物,经待测物吸收后,测量其对不同波长光的吸收程度(吸光度A),以吸光度A为纵坐标,辐射波长为横坐标作图,得到该物质的吸收光谱或吸收曲线,据吸收曲线的特性(峰强度、位置及数目等)研究分子结构。nullnullnull各轨道能级高低顺序: n**; 可能的跃迁类型:-*;-*;-*;n-*;-*;n-*null-*:C-H共价键,如CH4(125nm);C-C键,如C2H6(135nm),处于 真空紫外区; -* 和-*跃迁:尽管所需能量比上述-*跃迁能量小,但波长仍处于 真空紫外区; n-*:含有孤对电子的分子,如H2O(167nm);CH3OH(184nm);CH3Cl (173nm);CH3I(258nm);(CH3)2S(229nm);(CH3)2O(184nm) CH3NH2(215nm);(CH3)3N(227nm),可见,大多数波长仍小于 200nm,处于近紫外区。 以上四种跃迁都与成键和反键轨道有关(-*,-*,-*和n-*),跃迁能量较高,这些跃迁所产生的吸收谱多位于真空紫外区,因而在此不加讨论。 只有-*和n-*两种跃迁的能量小,相应波长出现在近紫外区甚至可见光区,且对光的吸收强烈,是我们研究的重点。 null2. 几个概念: 生色团(Chromogenesis group): 分子中含有非键或键的电子体系,能吸收外来辐射时并引起n-* 和-*跃迁,可产生此类跃迁或吸收的结构单元,称为生色团。 助色团(Auxochromous group) : 含有孤对电子,可使生色团吸收峰向长波方向移动并提高吸收强度的一些官能团,称之为助色团。 红移或蓝移(Redshift or blueshift): 在分子中引入的一些基团或受到其它外界因素影响,吸收峰向长波方向(红移)或短波方向移动(蓝移)的现象。 那么促使分子发生红移或蓝移的因素有哪些呢?null1)共轭体系的存在----红移 如CH2=CH2的-*跃迁,max=165~200nm;而1,3-丁二烯,max=217nm 2)异构现象:使异构物光谱出现差异。 如CH3CHO含水化合物有两种可能的结构:CH3CHO-H2O及CH3CH(OH)2; 已烷中,max=290nm,表明有醛基存在,结构为前者;而在水溶液中,此峰消失,结构为后者。 3)空间异构效应---红移 如CH3I(258nm), CH2I2(289nm), CHI3(349nm) 4)取代基:红移或蓝移。 取代基为含孤对电子,如-NH2、-OH、-Cl,可使分子红移;取代基为斥电子基,如-R,-OCOR,则使分子蓝移。 苯环或烯烃上的H被各种取代基取代,多产生红移。null5)pH值:红移或蓝移 苯酚在酸性或中性水溶液中,有210.5nm及270nm两个吸收带;而在碱性溶液中,则分别红移到235nm和 287nm(p- 共轭). 6)溶剂效应:红移或蓝移 由n-*跃迁产生的吸收峰,随溶剂极性增加,形成 H 键的能力增加,发生蓝移;由-*跃迁产生的吸收峰,随溶剂极性增加,激发态比基态能量有更多的下降,发生红移。 随溶剂极性增加,吸收光谱变得平滑,精细结构消失。null无机物分子能级跃迁 一些无机物也产生紫外-可见吸收光谱,其跃迁类型包括 p-d 跃迁或称电荷转移跃迁以及 d-d, f-f 跃迁或称配场跃迁。 1. 电荷转移跃迁 (Charge transfer transition) 一些同时具有电子予体(配位体)和受体(金属离子)的无机分子,在吸收外来辐射时,电子从予体跃迁至受体所产生的光谱。 max 较大 (104以上),可用于定量分析。null2. 配场跃迁(Ligand field transition) 过渡元素的 d 或 f 轨道为简并轨道(Degeneration orbit),当与配位体配合时,轨道简并解除,d 或 f 轨道发生能级分裂,如果轨道未充满,则低能量轨道上的电子吸收外来能量时,将会跃迁到高能量的 d 或 f 轨道,从而产生吸收光谱。 吸收系数 max 较小 (102),很少用于定量分析;多用于研究配合物结构及其键合理论。nullnull2.2 吸收光谱的测量-----Lambert-Beer 定律 一、  几个术语 当强度为I0的入射光束(Incident beam) 通过装有均匀待测物的介质时,该光束将被部分吸收,未被吸收的光将透过(Emergent)待测物溶液以及通过散射(Scattering)、反射(Reflection),包括在液面和容器表面的反射)而损失,这种损失有时可达10%,那么, I0=Ie + Is +I r 因此,在样品测量时必须同时采用参比池和参比溶液扣除这些影响!null二、Lambert-Beer 定律 当入射光波长一定时,待测溶液的吸光度A与其浓度和液层厚度成正比,即 k 为比例系数,与溶液性质、温度和入射波长有关。  当浓度以 g/L 表示时,称 k 为吸光系数,以 a 表示,即  当浓度以mol/L表示时,称 k 为摩尔吸光系数,以 表示,即  比 a 更常用。 越大,表示方法的灵敏度越高。 与波长有关,因此, 常以表示。 null三、偏离 L-B 定律的因素 样品吸光度 A 与光程 b 总是成正比。但当 b 一定时,A 与 c 并不总是成正比,即偏离 L-B 定律!这种偏离由样品性质和仪器决定。 1. 样品性质影响 a)待测物高浓度--吸收质点间隔变小—质点间相互作用—对特定辐射 的吸收能力发生变化--- 变化; b)试液中各组份的相互作用,如缔合、离解、光化反应、异构化、配 体数目改变等,会引起待测组份吸收曲线的变化; c)溶剂的影响:对待测物生色团吸收峰强度及位置产生影响; d)胶体、乳状液或悬浮液对光的散射损失。 nullnullb)谱带宽度与狭缝宽度:“单色光”仅是理想情况,经分光元件色散所得的“单色光”实际上是有一定波长范围的光谱带(即谱带宽度)。单色光的“纯度”与狭缝宽度有关,狭缝越窄,它所包含的波长范围越小,单色性越好。null2.3 紫外-可见光度计仪器组成 紫外-可见光度计仪器由光源、单色器、吸收池和检测器四部分组成。 一、光源 对光源基本要求:足够光强、稳定、连续辐射且强度随波长变化小。 1. 钨及碘钨灯:340~2500 nm,多用在可见光区; 2. 氢灯和氘灯:160~375nm,多用在紫外区。 二、单色器(Mnochromator) 与原子吸收光度仪不同,在UV-Vis光度计中,单色器通常置于吸收池的前面!(可防止强光照射引起吸收池中一些物质的分解) 三、吸收池(Cell,Container): 用于盛放样品。可用石英或玻璃两种制作,前者适于紫外区和可见光区;后者只适于可见光区。有些透明有机玻璃亦可用作吸收池。 四、检测器:硒光电池、PMT、PDAnullnullnull3. 分光光度计的校正 当光度计使用一段时间后其波长和吸光度将出现漂移,因此需要对其进行校正。 波长标度校正: 使用镨-钕玻璃(可见光区)和钬玻璃(紫外光区)进行校正。因为二者均有其各自的特征吸收峰。 吸光度标度校正: 采用 K2CrO4 液校正(在25oC时,于不同波长处测定0.04000g/L的 KOH 溶液(0.05mol/L)的吸光度 A,调整光度计使其A 达到教材 P31 中表 2.1 所列的吸光度。nullnull二、反应条件选择 显色剂的选择原则: 使配合物吸收系数  最大、选择性好、组成恒定、配合物稳定、显色剂吸收波长与配合物吸收波长相差大等。 2. 显色剂用量: 配位数与显色剂用量有关;在形成逐级配合物,其用量更要严格控制。 3. 溶液酸度:配位数和水解等与 pH 有关。 4. 显色时间、温度、放置时间等。 三、参比液选择 溶剂参比:试样组成简单、共存组份少(基体干扰少)、显色剂不吸收时,直 接采用溶剂(多为蒸馏水)为参比; 2. 试剂参比:当显色剂或其它试剂在测定波长处有吸收时,采用试剂作参比(不 加待测物); 3. 试样参比:如试样基体在测定波长处有吸收,但不与显色剂反应时,可以试样 作参比(不能加显色剂)。null四、干扰消除 1. 控制酸度: 配合物稳定性与pH有关,可以通过控制酸度提高反应选择性,副反应减少,而主反应进行完全。如在0.5MH2SO4介质中,双硫腙与Hg2+生成稳定有色配合物,而与Pb2+、Cu2+、Ni2+、Cd2+等离子生成的有色物不稳定。 2. 选择掩蔽剂 3. 合适测量波长 4. 干扰物分离 5. 导数光谱及双波长技术nullnull四null二、定量分析 1. 单组份定量方法 1)标准曲线法(略) 2)标准对比法: 该法是标准曲线法的简化,即只配制一个浓度为cs的标准溶液,并测量其吸光度,求出吸收系数k,然后由Ax=kcx求出cx 该法只有在测定浓度范围内遵守L-B定律,且cx与cs大致相当时,才可得到准确结果。null2. 多组分定量方法 由于吸光度具有加合性,因此可以在同一试样中测定多个组份。 设试样中有两组份 X 和 Y,将其显色后,分别绘制吸收曲线,会出现如图所示的三种情况:   图a):X,Y 组份最大吸收波长不重迭,相互不干扰,可以按两个单一组份处理。 图b)和c) :X,Y 相互干扰,此时可通过解联立方程组求得X和Y的浓度: 其中,X,Y 组份在波长 1 和 2 处的摩尔吸光系数  可由已知浓度的 X, Y 纯溶液测得。解上述方程组可求得 cx 及 cy。 nullnull4. 系数倍率法 情况同上。但其中一干扰组份 b 在测量波长范围内无吸收峰时,或者说没有等吸收点时可采用该法。 具体做法:同前法可得到下式, A1=A1a + A1b A2 =A2a + A2b 两式分别乘以常数k1、k2并相减,得到, S=k2(A2a+A2b)-k1(A1a+A1b)=(k2A2b-k1A1b)+(k2A2a-k1A1a) 调节信号放大器,使之满足k2/k1=A1b/A2b,则 S=(k2A2a-k1A1a)=(k22-k11)lca 因此,差示信号只与 ca 有关,从而求出 ca。同样可求出cb。nullnullnullnull3)导数峰高测量方法 测量方法有三,如下图: 正切法:相邻峰(极大或极小)切线中点至相邻峰切线(极小或极大)的距离d; 峰谷法:两相邻峰值(极大或极小)间的距离p1或p2; 峰零法:极值峰至零线间的距离。 null7. 配合物组成和稳定常数测定 1)摩尔比法(饱和法) 设配合物的显色反应为: 具体做法:固定cM,增加cR,并测定一系列MRn的吸光度A,以cR/cM比值对A作图,得如图所示曲线。其中,曲线拐点处对应的值为配合比 n。 设MRn电离度为,则null2)等摩尔连续变化法(Job法) 具体做法:保持cR+cM=c 恒定,但改变cM与cR的相对比例,若以cM/c对吸光度A作图,当达最大吸光度时cM/cR之比即为配位比。由两曲线外推的交点所对应的cM/c亦可得出配位比。若比值为0.5,则配位比n为1:1;若比值为0.33,则配位比n为1:2……或者n=(1-cM/c)/(cM/c) 设cM/c=f,则 该法适于离解度小、配合比低的配合物组成测定。null8. 弱酸离解常数的测定 设有一元弱酸HB,其离解反应如下: 若测出[B-]和[HB],即可求出Ka。 测定时,配制三份不同pH值的溶液。一份为强碱性,一份为强酸性,分别在B-和HB的最大吸收波长处测定吸光度,求出各自的摩尔吸光系数。 第三份为已知pH值的缓冲溶液,分别在B-和HB的最大吸收波长处测得总吸光度,解联立方程求得[B-]和[HB],然后按前式求出pKa或Ka。
/
本文档为【紫外-可见分光光度法】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索