为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > 楔形焊接工艺简介

楔形焊接工艺简介

2011-11-19 50页 ppt 1MB 42阅读

用户头像

is_517380

暂无简介

举报
楔形焊接工艺简介null焊接质量分析 焊接质量分析 莫卓亚 2007.8.201 焊接过程出现的问题以及解决方法1 焊接过程出现的问题...
楔形焊接工艺简介
null焊接质量分析 焊接质量分析 莫卓亚 2007.8.201 焊接过程出现的问以及解决方法1 焊接过程出现的问题以及解决方法 1 焊接过程出现的问题以及解决方法1 焊接过程出现的问题以及解决方法1 焊接过程出现的问题以及解决方法1 焊接过程出现的问题以及解决方法1 焊接过程出现的问题以及解决方法1 焊接过程出现的问题以及解决方法1 焊接过程出现的问题以及解决方法1 焊接过程出现的问题以及解决方法1 焊接过程出现的问题以及解决方法1 焊接过程出现的问题以及解决方法1 焊接过程出现的问题以及解决方法1 焊接过程出现的问题以及解决方法1 焊接过程出现的问题以及解决方法1 焊接过程出现的问题以及解决方法2 Three factors affecting the bonding result2 Three factors affecting the bonding resultThree factors that will affect the bonding result should be considered in the design of the wire bonder : FAB forming technology Bonding technology Loop technology ( from JauLiang Chen, Member IEEE) 2.1 FAB forming technology2.1 FAB forming technologyThe parameters which affect the gold wire ball formation include: 1.Tail length left after second bonder 2.Type and shape of capillaries used 3.Material characteristics of gold wire 4.Supplied voltage, current and time of EFO unit 5.Gap between tail and electrode plate 6.Relative position between capillary and electrode plate 2.1 FAB Modeling for Gold WB for different WD2.1 FAB Modeling for Gold WB for different WDDifferent EFO settings can achieve the same FAB size for the same wire diameter Fig1.EFO time-FAB charts for 1.0 mil Au at 30mA, 40mA and 50mA EFO currents These results conclude that the different levels of EFO settings deliver the same input energy to produce the same FAB or output energy 2.1 FAB Modeling for Gold WB for different WD2.1 FAB Modeling for Gold WB for different WDEFO输入的能量理想示为: 对于一个确定的bonding系统,R是确定的, 当EFO放电击穿空气间隙时,可以将R忽略 因此: 理想情况,能量完全传递时,n=2 因为存在能量损失,所以n=1~2 2.1 FAB Modeling for Gold WB for different WD2.1 FAB Modeling for Gold WB for different WD理想情况下,输入能量=输出能量 输出能量可由FAB size 表示 输入能量可由EFO current and EFO time 表示 在相同的设置和环境下 2.1 FAB Modeling for Gold WB for different WD2.1 FAB Modeling for Gold WB for different WDThe energy transfer efficiency charts in Figure show a direct relationship between the FAB size and the EFO input energy for each reference wire diameter. Fig2:Energy Transfer Efficiency charts for: 0.6mil, 0.8mil, 1.0mil, 1.5mil, 2mil, 2.3mil, 2.7mil and 3.2mil Au wire 2.1 FAB Modeling for Gold WB for different WD2.1 FAB Modeling for Gold WB for different WDThe EFO settings required to achieve the desired FAB size can be calculated from the Energy Transfer Efficiency charts Shortcoming in using the Energy Transfer Efficiency charts to carry out FAB size predictions for a particular wire size is that reference data points are required for that same wire size. A,B are constants for each particular wire 2.1 FAB Modeling for Gold WB for different WD2.1 FAB Modeling for Gold WB for different WD利用上面的公式,输入的能量直接对应于wire size Fig3:Constant Energy Gap Chart for 0.6mil to 3.2mil Au wire 2.1 FAB Modeling for Gold WB for different WD2.1 FAB Modeling for Gold WB for different WD1.There is a constant input energy change as FAB ratio changes across the range of wire diameters 2.This is due to the use of FAB ratios, instead of the absolute FAB size. 3.A 10% change in FAB ratio will lead to a 10% change in the absolute FAB size, will lead to a proportional change in 2.1 FAB Modeling for Gold WB for different WD2.1 FAB Modeling for Gold WB for different WDA single characteristic equation can be formulated to calculate the FAB size for any wire diameter from Fig3 The equation was found to be more accurate when it describes the energy transfer relationship for fine and heavy wire separately, as shown in Figures 4 and 5. Fig4:Constant Energy Gap Chart for fine wires and Fig5 Constant Energy Gap Chart for heavy medium wires: 0.6mil to less than 2mil wire 2.0mil to 3.2mil wire 2.1 FAB Modeling for Gold WB for different WD2.1 FAB Modeling for Gold WB for different WDThe following equation, which is derived from the constant energy gap concept, is the single characteristic equation that describes the relationship between the delivered input EFO energy and the FAB size, which is the measurable output energy. Where the coefficients and variables are shown in Table 1 2.1 FAB Modeling for Gold WB for different WD2.1 FAB Modeling for Gold WB for different WDTable 1: Coefficients of the semi-empirical model for fine, medium and heavy Au wires. 2.1 FAB Modeling for Gold WB for different WD2.1 FAB Modeling for Gold WB for different WD对于公式的总结 This semi-empirical equation(半经验主义公式), which can be implemented in the wire bonder software, can serve as a tool to calculate the EFO time needed to form the desired FAB size that was keyed in by the operator.2.1 FAB Modeling for Gold WB for different WD2.1 FAB Modeling for Gold WB for different WDShortcoming in using semi-empirical model Given changes in bonding environment, setups or conditions that affect the FAB size formed at the same EFO settings and wire diameter, a new set of reference FAB data points can be collected to numerically modify the semi-empirical model. The methodology to build the model will still be the same. Therefore, the application of this model can also be extended to copper wire bonding, as long as a set of reference copper FAB data points are available.2.1 FAB Modeling for Gold WB for different WD2.1 FAB Modeling for Gold WB for different WDVerification of Semi-empirical Model The verification FAB data points were collected from 0.6mil, 0.7mil, 0.8mil, 0.9mil, 1.0mil, 1.2mil, 1.5mil, 2.0mil, 2.3mil, 2.5mil, 2.7mil and 3.0mil and 3.2mil Au wire, over a range of EFO current and time settings. The model proved to be highly consistent and reliable in predicting the Au FAB size.2.2 Taguchi DOE实验设计法FAB成型工艺参数优化2.2 Taguchi DOE实验设计法FAB成型工艺参数优化3个疑问? PART2只考虑了EFO supplying time and EFO current 来预测FAB ball size 有没有道理? 如何证明EFO supplying time and EFO current are the two parameters affecting the FAB ball size most? PART3 Taguchi DOE 如何实现 FAB 成型工艺参数优化? 2.2 Taguchi DOE实验设计法FAB成型工艺参数优化2.2 Taguchi DOE实验设计法FAB成型工艺参数优化Taguchi方法原理 Taguchi方法是日本学者田口玄一提出的一种试验设计方法,它用到一种特别的正交表。 正交表的符号为: 其中字母L表示正交表,n为正交试验的次数,q为试验的因素数,t为因素的水平数。这些标准的正交矩阵保证了用最少的实验次数来反映影响性能参数的所有因素的全部信息。 2.2 Taguchi DOE实验设计法FAB成型工艺参数优化2.2 Taguchi DOE实验设计法FAB成型工艺参数优化正交矩阵的特性为均衡分散性和整齐可比性: (1)每一独立变量垂直对应的一列有着特定的取值设置组合;每一变量的各水平出现相同的次数。(2) 独立变量的每一个取值都被用到; (3) 正交矩阵每一变量的取值顺序不能任意改变。 这是因为正交矩阵中的任意两列是相互正交的,向量对权的内积为零2.2 Taguchi DOE实验设计法FAB成型工艺参数优化2.2 Taguchi DOE实验设计法FAB成型工艺参数优化Table2:实验因素和水平设置表 Note: EFO Supplying Time:1 scale = 1msec EFO Current: 1 scale = 5mA EFO Voltage: 1 scale = 450V 1p=4.3um Table1 shows the selection of each parameter’s level used in this study. 2.2 Taguchi DOE实验设计法FAB成型工艺参数优化2.2 Taguchi DOE实验设计法FAB成型工艺参数优化Table3:experiment result 正交表的符号为: 2.2Taguchi DOE实验设计法FAB成型工艺参数优化2.2Taguchi DOE实验设计法FAB成型工艺参数优化在Taguchi分析中,采用信噪比S/N来研究各个参数对目标的影响。 本实验选用 1 EFO Supplying Time 2 EFO Current 3 EFO Voltage 4 Tail Length 5 Spark Gap作为主要实验因素2.2 Taguchi DOE实验设计法FAB成型工艺参数优化2.2 Taguchi DOE实验设计法FAB成型工艺参数优化Table 4 :S/N calculation2.2 Taguchi DOE实验设计法FAB成型工艺参数优化2.2 Taguchi DOE实验设计法FAB成型工艺参数优化Figure6:sensitivity diagram Figure7: signal-to-noise ratio diagram EFO current and EFO supplying time are the two parameters affecting the FAB ball size most. A,BA,B2.2 Taguchi DOE实验设计法FAB成型工艺参数优化2.2 Taguchi DOE实验设计法FAB成型工艺参数优化从figure7中可以得到,对信噪比影响最小的组合是: ——A1B1C1D1E3,这是粗糙得到一组较为优化的参数。 如何得到精确的经过优化的工艺参数组合? ——Using the Taguchi method with neural network,a small number of experiments can easily find the proper parameters setting.2.2 Taguchi DOE实验设计法FAB成型工艺参数优化2.2 Taguchi DOE实验设计法FAB成型工艺参数优化Table5:EBP neural network training pattern for experiment 2.2 Taguchi DOE实验设计法FAB成型工艺参数优化2.2 Taguchi DOE实验设计法FAB成型工艺参数优化Table6:EBP Prediction for experiment 12.2 Taguchi DOE实验设计法FAB成型工艺参数优化2.2 Taguchi DOE实验设计法FAB成型工艺参数优化Table 7:FAB ball size comparison between EBP prediction and verification results Fig 8:comparison between prediction and real ball size2.2 Taguchi DOE实验设计法FAB成型工艺参数优化2.2 Taguchi DOE实验设计法FAB成型工艺参数优化Part 3 conclusion ——in this part ,the Taguchi method EBP together with EBP neural network was used to find the best parameters setting for gold wire ball formation. From the experiment results ,the following can be concluded: 1)By the Taguchi method ,through a limited number of experiment , it is very easy to find the effect of process parameters. 2)In this part ,EFO current and EFO applying time are the two parameters that affect the FAB ball formation significantly. 3)With EBP neural network training, one can predict the ball formation precisely . And with proper adjustment , the best process parameters can be set correctly. 3 Looping Technology——实验细节3 Looping Technology——实验细节Wire propertise——Two gold ball bonding wire types, A and B, of 20μm diameter 3 Looping Technology ——实验细节3 Looping Technology ——实验细节Wires Mechanical Properties The elongation to break (% EL), the break load (BL), and elastic modulus (E) of the wire A and wire B are summarized below. Wire A has higher break load compared to wire B. The elastic modulus of both wires is similar3 Looping Technology——FAB, Grain Size and HAZ3 Looping Technology——FAB, Grain Size and HAZFig.8. Average grain width at the neck of the FAB of the wire A and wire B. Wire A has a finer grain size at the neck compared to wire B for all FAB sizes. Increasing the FAB size increases the neck grain size, due to the larger heat input.3 Looping Technology ——FAB, Grain Size and HAZ3 Looping Technology ——FAB, Grain Size and HAZFig. 9. Vickers hardness (HV) at the neck of the FAB Wire A has a higher hardness than wire B and the microhardness decreases as the FAB size increases 3 Looping Technology ——FAB, Grain Size and HAZ3 Looping Technology ——FAB, Grain Size and HAZFig. 10. The HAZ length of the FAB of the wire A and B It was observed that wire A had longer HAZ compared to wire B and HAZ length increases as the FAB size increases3 Looping Technology——ball pull test3 Looping Technology——ball pull testThe ball pull test results for wire A and B are shown in Fig. 11 There is no significant difference in the ball pull results between wire A and wire B at the same bonding condition. In addition, there seems to be a slight decrease in the ball pull force as the FAB size increases, and slight increase in the pull force as the loop height increases due to geometry effect.3 Looping Technology——Looping Profile Measurements3 Looping Technology——Looping Profile MeasurementsIt was clear that wire A and wire B had different looping behavior at 35 and 45 μm FAB sizes3 Looping Technology——Looping Profile Measurements3 Looping Technology——Looping Profile MeasurementsIt was clear that wire A and wire B had similar looping behavior at 55 and 65 μm FAB sizes. 3 Looping Technology——Looping Profile Measurements3 Looping Technology——Looping Profile MeasurementsComparing wire A and wire B, it was clear the difference in the chemical composition between wire A and wire B played a role which contributed to their looping behavior. The different alloying elements in the wire A and wire B were responsible for the different hardness, grain size, and HAZ length in both wires. However, while the difference in hardness, grain size, and HAZ length in wire A and wire B were observed on all FAB sizes, it was not very clear why the difference in the loop profile was only observed in 35 and 45 μm FAB sizes only.3 Looping Technology——stacked die package3 Looping Technology——stacked die packageComparison of different wire bond looping profiles A normal ball bonding process places a ball bond on the die first, performs a loop motion to the substrate, then places a stitch bond on the lead. A reverse ball bonding process places a bump on the die pad first. After the bump is formed, a ball bond is placed on the substrate and the stitch bond is placed on the bump 3 Looping Technology ——stacked die package3 Looping Technology ——stacked die packageFigure 14. Folded forward loop with less than 3 mil loop height. 待补充4 补充材料——拉力测试4 补充材料——拉力测试断线点”1” 晶片表面有污秽 参数调较不恰当 断线点”2” 参数调较不恰当 焊线质量 邦线周围有污秽 断线点”3” 焊线质量 铁钧有尖物 断线点”4” 参数调较不恰当 焊线质量 邦线周围有污秽 断线点”5” 厎板表面有污秽 参数调较不恰当4 补充材料——可接受邦线的规格4 补充材料——可接受邦线的规格 ASM 标准 宽度(W) = 1.3 - 1.8  长度(L) = 2 - 2.2  线尾长度(T) = 0.5   = 邦线的直径线尾长度长度宽度邦线的直径4 补充材料——邦线品质检查4 补充材料——邦线品质检查没有尾巴尾巴过长冷邦不可接受邦头的出现4 补充材料——the ball bonding process4 补充材料——the ball bonding process视频!
/
本文档为【楔形焊接工艺简介】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索