为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

MSP430经典例程讲解

2011-12-26 14页 doc 86KB 19阅读

用户头像

is_442275

暂无简介

举报
MSP430经典例程讲解 这只是我在学习TI公司生产的16位超的功耗单片机MSP430的随笔,希望能对其他朋友有所借鉴,不对之处还请多指教。 下面,开始430之旅。 讲解430的书现在也有很多了,不过大多数都是详细说明底层硬件结构的,看了不免有些空洞和枯燥,我认为了解一个MCU的操作首先要对其基础特性有所了解,然后再仔细研究各模块的功能。 1、首先你要知道msp430的存储器结构。典型微处理器的结构有两种:冯 ? 诺依曼结构----程序存储器和数据存储器统一编码;哈佛结构----程序存储器和数据存储器。MSP430系列单片机属于前者,而常用的m...
MSP430经典例程讲解
这只是我在学习TI公司生产的16位超的功耗单片机MSP430的随笔,希望能对其他朋友有所借鉴,不对之处还请多指教。 下面,开始430之旅。 讲解430的书现在也有很多了,不过大多数都是详细说明底层硬件结构的,看了不免有些空洞和枯燥,我认为了解一个MCU的操作首先要对其基础特性有所了解,然后再仔细研究各模块的功能。 1、首先你要知道msp430的存储器结构。典型微处理器的结构有两种:冯 ? 诺依曼结构----程序存储器和数据存储器统一编码;哈佛结构----程序存储器和数据存储器。MSP430系列单片机属于前者,而常用的mcs51系列属于后者。 0-0xf特殊功能寄存器;0x10-0x1ff外围模块寄存器;0x200-?根据不同型号地址从低向高扩展;0x1000-0x107f seg_b0x1080_0x10ff seg_a 供flash信息存储,剩下的从0xffff开始向下扩展,根据不同容量,例如149为60KB,0xffff-0x1100 2、复位信号是MCU工作的起点,430的复位型号有两种:上电复位信号POR和上电清楚信号PUC。POR信号只在上电和RST/NMI复位管脚被设置为复位功能,且低电平时系统复位。而PUC信号是POR信号产生,以及其他如看门狗定时溢出、安全键值出现错误是产生。但是,无论那种信号触发的复位,都会使MSP430在地址0xffff处读取复位中断向量,然后程序从中断向量所指的地址开始执行。复位后的状态不写了,详见参考书,嘿嘿。 3、系统时钟是一个程序运行的指挥官,时序和中断也是整个程序的核心和中轴线。430最多有三个振荡器:DCO内部振荡器;LFXT1外接低频振荡器,常见的32768HZ,不用外接负载电容;也可接高频450KHZ-8M,需接负载电容;XT2接高频450KHZ-8M,加外接电容。 430有三种时钟信号:MCLK系统主时钟,可分频1/2/4/8,供CPU使用,其他外围模块在有选择情况下也可使用;SMCLK系统子时钟,供外围模块使用,可选则不同振荡器产生的时钟信号;ACLK辅助时钟,只能由LFXT1产生,供外围模块。 4、中断是430处理器的一大特色,因为几乎每个外围模块都能产生,430可以在没有任务时进入低功耗状态,有事件时中断唤醒CPU,处理完毕再次进入低功耗状态。 整个中断的响应过程是这样的,当有中断请求时,如果CPU处于活动状态,先完成当前命令;如果处于低功耗,先退出,将下一条指令的PC值压入堆栈;如果有多个中断请求,先响应优先级高的;执行完后,等待中断请求标志位复位,要注意,单中断源的中断请求标志位自动复位,而多中断的标志位需要软件复位;然后系统总中断允许位SR.GIE复位,相应的中断向量值装入PC,程序从这个地址继续执行。这里要注意,中断允许位SR.GIE和中断嵌套问题。如果当你执行中断程序过程中,希望可以响应更高级别的中断请求时,必须在进入第一个中断时把SR.GIE置位。 其实,其他的外围模块时钟沿着时钟和中断这个核心来执行的。具体的结构我也不罗索了,可以参考430系列手册。 ----------------------------------------------------------- 上面把430单片机的基础特性交待了一下,让大家整体有了结构的印象,后面我想在写一下C语言对430编程的整体结构。基本上属于框架结构,即整体的模块化编程,其实这也是硬件编程的基本法则拉(可不是我规定的法则哦)。 首先是程序的头文件,包括#i nclude ,这是14系列,因为常用149;其他型号可自己修改。还可以包括#i nclude "data.h" 等数据库头文件,或函数变量声明头文件,都是你自己定义的哦。 接着就是函数和变量的声明 void Init_Sys(void);系统初始化。系统初始化是个整体的概念,广义上讲包括所有外围模块的初始化,你可以把外围模块初始化的子函数写到Init_Sys()中,也可以分别写各个模块的初始化。但结构的简洁,最好写完系统的时钟初始化后,其他所用到的模块也在这里初始化。 void Init_Sys() { unsigned int i; BCSCTL1&=~XT2OFF; //打开XT2振荡器 do { IFG1 &= ~OFIFG; // 清除振荡器失效标志 for (i = 0xFF; i > 0; i--); // 延时,等待XT2起振 } while ((IFG1 & OFIFG) != 0); // 判断XT2是否起振 BCSCTL2 =SELM_2+SELS; //选择MCLK、SMCLK为XT2 //以下对各种模块、中断、外围设备等进行初始化 _EINT(); //打开全局中断控制 } 这里涉及到时钟问题,通常我们选择XT2为8M晶振,也即系统主时钟MCLK为8M,CPU执行命令以此时钟为准;但其他外围模块可以在相应的控制寄存器中选择其他的时钟,ACLK;当你对速度要求很低,定时时间间隔大时,就可以选择ACLK,例如在定时器Timea初始化中设置。 主程序: void main( void ) { WDTCTL = WDTPW + WDTHOLD; //关闭看门狗 InitSys(); //初始化 //自己任务中的其他功能函数 while(1); } 主程序之后我要讲讲中断函数,中断是你做单片机任务中不可缺少的部分,也可以说是灵魂了(夸张吗)。 /***************************************************************************** 各中断函数,可按优先级依次书写 ******************************************************************************/ 举个定时中断的例子: 初始化 void Init_Timer_A(void) { TACTL = TASSEL0 + TACLR; // ACLK, clear TAR CCTL0 = CCIE; // CCR0 中断使能 CCR0=32768; //定时1s TACTL|=MC0; //增计数模式 } 中断服务 #pragma vector=TIMERA0_VECTOR __interrupt void TimerA0() { // 你自己要求中断执行的任务 } 当然,还有其他的定时和多种中断,各系列芯片的中断向量个数也不同。 整体的程序设计结构,包括了所有外围模块及内部时钟,中断,定时的初始化。具体情况大家可以根据自己的需要添加或者减少,记住,模块化设计时最有力的武器。 这可是个人的经典啊,谢谢支持。因为经常使用149,所以这是149的结构,其他的再更改,根据个人需要。 /***************************************************************************** 文件名:main.c 描述:MSP430框架程序。适用于MSP430F149,其他型号需要适当改变。 不使用的中断函数保留或者删除都可以,但保留时应确保不要打开不需要的中断。 *****************************************************************************/ #include //头文件 void InitSys(); //函数声明 int main( void ) { WDTCTL = WDTPW + WDTHOLD; //关闭看门狗 InitSys(); //初始化 start: //以下填充用户代码 LPM3; //进入低功耗模式n,n:0~4。若不希望进入低功耗模式,屏蔽本句 goto start; } /***************************************************************************** 系统初始化 ******************************************************************************/ void InitSys() { unsigned int iq0; //使用XT2振荡器 BCSCTL1&=~XT2OFF; //打开XT2振荡器 do { IFG1 &= ~OFIFG; // 清除振荡器失效标志 for (iq0 = 0xFF; iq0 > 0; iq0--); // 延时,等待XT2起振 } while ((IFG1 & OFIFG) != 0); // 判断XT2是否起振 BCSCTL2 =SELM_2+SELS; //选择MCLK、SMCLK为XT2 //以下填充用户代码,对各种模块、中断、外围设备等进行初始化 _EINT(); //打开全局中断控制,若不需要打开,可以屏蔽本句 } /***************************************************************************** 端口1中断函数 多中断中断源:P1IFG.0~P1IFG7 进入中断后应首先判断中断源,退出中断前应清除中断标志,否则将再次引发中断 ******************************************************************************/ #pragma vector=PORT1_VECTOR __interrupt void Port1() { //以下为参考处理程序,不使用的端口应当删除其对于中断源的判断。 if((P1IFG&BIT0) == BIT0) { //处理P1IN.0中断 P1IFG &= ~BIT0; //清除中断标志 //以下填充用户代码 } else if((P1IFG&BIT1) ==BIT1) { //处理P1IN.1中断 P1IFG &= ~BIT1; //清除中断标志 //以下填充用户代码 } else if((P1IFG&BIT2) ==BIT2) { //处理P1IN.2中断 P1IFG &= ~BIT2; //清除中断标志 //以下填充用户代码 } else if((P1IFG&BIT3) ==BIT3) { //处理P1IN.3中断 P1IFG &= ~BIT3; //清除中断标志 //以下填充用户代码 } else if((P1IFG&BIT4) ==BIT4) { //处理P1IN.4中断 P1IFG &= ~BIT4; //清除中断标志 //以下填充用户代码 } else if((P1IFG&BIT5) ==BIT5) { //处理P1IN.5中断 P1IFG &= ~BIT5; //清除中断标志 //以下填充用户代码 } else if((P1IFG&BIT6) ==BIT6) { //处理P1IN.6中断 P1IFG &= ~BIT6; //清除中断标志 //以下填充用户代码 } else { //处理P1IN.7中断 P1IFG &= ~BIT7; //清除中断标志 //以下填充用户代码 } LPM3_EXIT; //退出中断后退出低功耗模式。若退出中断后要保留低功耗模式,将本句屏蔽 } /***************************************************************************** 端口2中断函数 多中断中断源:P2IFG.0~P2IFG7 进入中断后应首先判断中断源,退出中断前应清除中断标志,否则将再次引发中断 ******************************************************************************/ #pragma vector=PORT2_VECTOR __interrupt void Port2() { //以下为参考处理程序,不使用的端口应当删除其对于中断源的判断。 if((P2IFG&BIT0) == BIT0) { //处理P2IN.0中断 P2IFG &= ~BIT0; //清除中断标志 //以下填充用户代码 } else if((P2IFG&BIT1) ==BIT1) { //处理P2IN.1中断 P2IFG &= ~BIT1; //清除中断标志 //以下填充用户代码 } else if((P2IFG&BIT2) ==BIT2) { //处理P2IN.2中断 P2IFG &= ~BIT2; //清除中断标志 //以下填充用户代码 } else if((P2IFG&BIT3) ==BIT3) { //处理P2IN.3中断 P2IFG &= ~BIT3; //清除中断标志 //以下填充用户代码 } else if((P2IFG&BIT4) ==BIT4) { //处理P2IN.4中断 P2IFG &= ~BIT4; //清除中断标志 //以下填充用户代码 } else if((P2IFG&BIT5) ==BIT5) { //处理P2IN.5中断 P2IFG &= ~BIT5; //清除中断标志 //以下填充用户代码 } else if((P2IFG&BIT6) ==BIT6) { //处理P2IN.6中断 P2IFG &= ~BIT6; //清除中断标志 //以下填充用户代码 } else { //处理P2IN.7中断 P2IFG &= ~BIT7; //清除中断标志 //以下填充用户代码 } LPM3_EXIT; //退出中断后退出低功耗模式。若退出中断后要保留低功耗模式,将本句屏蔽 } /***************************************************************************** USART0发送中断函数 ******************************************************************************/ #pragma vector=USART0TX_VECTOR __interrupt void Usart0Tx() { //以下填充用户代码 LPM3_EXIT; //退出中断后退出低功耗模式。若退出中断后要保留低功耗模式,将本句屏蔽 } /***************************************************************************** USART0接收中断函数 ******************************************************************************/ #pragma vector=USART0RX_VECTOR __interrupt void Usart0Rx() { //以下填充用户代码 LPM3_EXIT; //退出中断后退出低功耗模式。若退出中断后要保留低功耗模式,将本句屏蔽 } /***************************************************************************** USART1发送中断函数 ******************************************************************************/ #pragma vector=USART1TX_VECTOR __interrupt void Usart1Tx() { //以下填充用户代码 LPM3_EXIT; //退出中断后退出低功耗模式。若退出中断后要保留低功耗模式,将本句屏蔽 } /***************************************************************************** USART1接收中断函数 ******************************************************************************/ #pragma vector=USART1RX_VECTOR __interrupt void Ustra1Rx() { //以下填充用户代码 LPM3_EXIT; //退出中断后退出低功耗模式。若退出中断后要保留低功耗模式,将本句屏蔽 } /***************************************************************************** 基本定时器中断函数 ******************************************************************************/ #pragma vector=BASICTIMER_VECTOR __interrupt void BasTimer() { //以下填充用户代码 LPM3_EXIT; //退出中断后退出低功耗模式。若退出中断后要保留低功耗模式,将本句屏蔽 } /***************************************************************************** 定时器A中断函数 多中断中断源:CC1~2 TA ******************************************************************************/ #pragma vector=TIMERA1_VECTOR __interrupt void TimerA1() { //以下为参考处理程序,不使用的中断源应当删除 switch (__even_in_range(TAIV, 10)) { case 2: //捕获/比较1中断 //以下填充用户代码 break; case 4: //捕获/比较2中断 //以下填充用户代码 break; case 10: //TAIFG定时器溢出中断 //以下填充用户代码 break; } LPM3_EXIT; //退出中断后退出低功耗模式。若退出中断后要保留低功耗模式,将本句屏蔽 } /***************************************************************************** 定时器A中断函数 中断源:CC0 ******************************************************************************/ #pragma vector=TIMERA0_VECTOR __interrupt void TimerA0() { //以下填充用户代码 LPM3_EXIT; //退出中断后退出低功耗模式。若退出中断后要保留低功耗模式,将本句屏蔽 } /***************************************************************************** 定时器B中断函数 多中断源:CC1~6 TB ******************************************************************************/ #pragma vector=TIMERB1_VECTOR __interrupt void TimerB1() { //以下为参考处理程序,不使用的中断源应当删除 switch (__even_in_range(TBIV, 14)) { case 2: //捕获/比较1中断 //以下填充用户代码 break; case 4: //捕获/比较2中断 //以下填充用户代码 break; case 6: //捕获/比较3中断 //以下填充用户代码 break; case 8: //捕获/比较4中断 //以下填充用户代码 break; case 10: //捕获/比较5中断 //以下填充用户代码 break; case 12: //捕获/比较6中断 //以下填充用户代码 break; case 14: //TBIFG定时器溢出中断 //以下填充用户代码 break; } LPM3_EXIT; //退出中断后退出低功耗模式。若退出中断后要保留低功耗模式,将本句屏蔽 } /***************************************************************************** 定时器B中断函数 中断源:CC0 ******************************************************************************/ #pragma vector=TIMERB0_VECTOR __interrupt void TimerB0() { //以下填充用户代码 LPM3_EXIT; //退出中断后退出低功耗模式。若退出中断后要保留低功耗模式,将本句屏蔽 } /***************************************************************************** AD转换器中断函数 多中断源:摸拟0~7、VeREF+、VREF-/VeREF-、(AVcc-AVss)/2 没有处理ADC12TOV和ADC12OV中断标志 ******************************************************************************/ #pragma vector=ADC_VECTOR __interrupt void Adc() { //以下为参考处理程序,不使用的中断源应当删除 if((ADC12IFG&BIT0)==BIT0) { //通道0 //以下填充用户代码 } else if((ADC12IFG&BIT1)==BIT1) { //通道1 //以下填充用户代码 } else if((ADC12IFG&BIT2)==BIT2) { //通道2 //以下填充用户代码 } else if((ADC12IFG&BIT3)==BIT3) { //通道3 //以下填充用户代码 } else if((ADC12IFG&BIT4)==BIT4) { //通道4 //以下填充用户代码 } else if((ADC12IFG&BIT5)==BIT5) { //通道5 //以下填充用户代码 } else if((ADC12IFG&BIT6)==BIT6) { //通道6 //以下填充用户代码 } else if((ADC12IFG&BIT7)==BIT7) { //通道7 //以下填充用户代码 } else if((ADC12IFG&BIT8)==BIT8) { //VeREF+ //以下填充用户代码 } else if((ADC12IFG&BIT9)==BIT9) { //VREF-/VeREF- //以下填充用户代码 } else if((ADC12IFG&BITA)==BITA) { //温度 //以下填充用户代码 } else if((ADC12IFG&BITB)==BITB) { //(AVcc-AVss)/2 //以下填充用户代码 } LPM3_EXIT; //退出中断后退出低功耗模式。若退出中断后要保留低功耗模式,将本句屏蔽 } /***************************************************************************** 看门狗定时器中断函数 ******************************************************************************/ #pragma vector=WDT_VECTOR __interrupt void WatchDog() { //以下填充用户代码 LPM3_EXIT; //退出中断后退出低功耗模式。若退出中断后要保留低功耗模式,将本句屏蔽 } /***************************************************************************** 比较器A中断函数 ******************************************************************************/ #pragma vector=COMPARATORA_VECTOR __interrupt void ComparatorA() { //以下填充用户代码 LPM3_EXIT; //退出中断后退出低功耗模式。若退出中断后要保留低功耗模式,将本句屏蔽 } /***************************************************************************** 不可屏蔽中断函数 ******************************************************************************/ #pragma vector=NMI_VECTOR __interrupt void Nmi() { //以下为参考处理程序,不使用的中断源应当删除 if((IFG1&OFIFG)==OFIFG) { //振荡器失效 IFG1 &= ~OFIFG; //以下填充用户代码 } else if((IFG1&NMIIFG)==NMIIFG) { //RST/NMI不可屏蔽中断 IFG1 &= ~NMIIFG; //以下填充用户代码 } else //if((FCTL3&ACCVIFG)==ACCVIFG) { //存储器非法访问 FCTL3 &= ~ACCVIFG; //以下填充用户代码 } LPM3_EXIT; //退出中断后退出低功耗模式。若退出中断后要保留低功耗模式,将本句屏蔽 }
/
本文档为【MSP430经典例程讲解】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索