为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

运动生理学名词解释

2017-10-14 14页 doc 33KB 68阅读

用户头像

is_890199

暂无简介

举报
运动生理学名词解释运动生理学名词解释 参考答案 (一)名词解释 液态镶嵌模型:关于细胞膜结构的学说.其基本内容是:细胞膜的共同结构是以液态的脂质双分子层为基架,其中镶嵌着具有不同结构和生理功能的蛋白质. 单纯扩散:脂溶性物质由细胞膜高浓度一侧向低浓度一侧的移动称为单纯扩散.这是一种简单的物理扩散过程,比较肯定的有O2和CO2等. 易化扩散:是体内不溶于脂质或溶解度较小的物质,借助于某些膜蛋白质,由高浓度一侧向低浓度一侧的扩散过程.易化扩散有载体易化扩散和通道易化扩散两种类型. 主动转运:是指在膜蛋白的参与下,细胞依靠本身的耗能过程,将...
运动生理学名词解释
运动生理学名词解释 参考答案 (一)名词解释 液态镶嵌模型:关于细胞膜结构的学说.其基本内容是:细胞膜的共同结构是以液态的脂质双分子层为基架,其中镶嵌着具有不同结构和生理功能的蛋白质. 单纯扩散:脂溶性物质由细胞膜高浓度一侧向低浓度一侧的移动称为单纯扩散.这是一种简单的物理扩散过程,比较肯定的有O2和CO2等. 易化扩散:是体内不溶于脂质或溶解度较小的物质,借助于某些膜蛋白质,由高浓度一侧向低浓度一侧的扩散过程.易化扩散有载体易化扩散和通道易化扩散两种类型. 主动转运:是指在膜蛋白的参与下,细胞依靠本身的耗能过程,将某种物质分子或离子由膜的低浓度一侧或低电位一侧移向高浓度或高电位一侧的过程.主动转运可分为原发性主动转运和继发性主动转运. 继发性主动转运:是指不直接消耗细胞代谢所产生能量,而是依靠另一物质浓度梯度的势能储备释放实现的跨膜物质主动转运过程,多见于小肠和肾小管上皮细胞对葡萄糖和氨基酸的主动转运. 出胞:是指细胞内的大分子物质或物质团块通过细胞膜结构和功能的变化从细胞排出的过程,也称胞吐. 入胞:细胞外某些物质团块等通过细胞膜结构和功能的变化 进入细胞的过程称为入胞,也称胞吞. G蛋白:G蛋白是可与鸟苷酸结合的蛋白的总称.G蛋白连接膜受体和细胞内的效应器蛋白(酶或离子通道). G蛋白耦联受体:G蛋白耦联受体是最大的细胞面受体家族.大约有100多种激素,神经递质和 其他信息分子调节靶细胞功能是通过它介导的.G蛋白耦联受体在分子结构上属于同一个受体超家族,都是由一条多肽链组成,其中含有7次跨膜疏水区域,因此也称7次跨膜受体.当细胞外信号分子与受体结合后,可以触发受体蛋白的构象改变,受体再进一步调节G蛋白的活性,将细胞外的信号传递到细胞内. 第二信使:是指细胞外信号分子作用于细胞膜后产生的细胞内信号分子.目前,已知的第二信使物质主要有环一磷酸腺苷,三磷酸肌醇,二酰甘油和Ca2+等. 静息电位:静息电位是指细胞在未受到刺激而处于安静状态时,存在于细胞膜内,外两侧的电位差,表现为膜内电位较膜外为负. 动作电位:是指可兴奋细胞受到一个阈刺激或阈上刺激时,膜电位在静息电位的基础上产生一个迅速的,可逆的,可传导的电位变化.动作电位由锋电位和后电位组成,是细胞兴奋的标志. 极化:安静时,膜两侧电位保持着内负外正的状态,称为极化状态. 阈电位:是能使Na+通道突然大量开放产生动作电位的临界膜电位数值.一般可兴奋细胞的阈电位大约比静息电位的绝对值小10,20mV. 局部电位:阈下刺激引起少量Na+通道开放,使少量Na+内流,在受刺激的局部出现一个较小的膜的除极化反应,称局部电位或局部兴奋. 超射:产生动作电位时,膜电位由零电位变为正电位的过程称为超射或反极化. 跳跃式传导:有髓神经纤维在轴突外面包有一层具有电绝缘性的髓鞘.两段髓鞘之间为郎飞结.由于结间髓鞘高电阻和低电容,当某一结外产生动作电位时,局部电流将主要在结区之间发生,并使邻近的郎飞结去极化达到阈电位,产生动作电位.这一过程在郎飞结处重复,好象动作电位由一个结区跳到另一个结区,这种动作电位的传导方式称为跳跃式传导. 量子式释放:神经肌接头处ACh的释放是通过出胞作用,以囊泡为单位倾囊释放的,称为量子式释放. Na+-K+泵:Na+-K+泵即Na+泵,因其具有ATP酶活性,也称Na+-K+依赖式ATP酶.Na+泵分解细胞产生的能量,用于将胞内的Na+移至胞外和将胞外的K+泵入胞内的逆浓度梯度转运,故其主要作用是"驱钠摄钾". 终板电位:终板膜产生的局部去极化电位.肌接头释放的ACh与N2型ACh受体结合后,导致与受体在同一分子上的通道 开放,使终板膜发生去极化,产生终板电位. 绝对不应期:绝对不应期是指细胞在一次兴奋的初期,无论接受多么强大的刺激,都不能再产生兴奋,这一时期,称为绝对不应期.在此期,兴奋性降低到零. 全或无现象:动作电位的"全或无"现象,具有两个方面的含义:?在单一可兴奋细胞,阈下刺激不引起动作电位,而动作电位一旦产生则其幅度即达最大值,不会因刺激强度增加而增大.也就是,阈刺激和阈上刺激引起同一细胞的动作电位幅度相等.?动作电位在同一细胞上传导时,不因传导距离增加而有所衰减,即呈不衰减传导. 兴奋-收缩耦联:肌膜的动作电位借Ca2+为中介引起肌丝滑 缩耦联包括:?肌膜动行的过程称为兴奋-收缩耦联.兴奋-收 作电位通过横管系统向内传导到细胞深处;?信息在三联管处传递;?肌浆网对Ca的储存,释放和再聚集及其与肌丝滑行的关系. 前负荷:在肌肉收缩前就加在肌肉上的负荷称前负荷.前负荷能改变肌肉收缩的初长度. 后负荷:是肌肉在收缩开始后才遇到的负荷或阻力. 等长收缩:肌肉收缩中只有长度发生缩短而张力保持不变的收缩形式称为等长收缩. 等张收缩:肌肉收缩时长度保持不变,只有张力的增加的收缩形式称为等张收缩. (三)问答题 简述细胞膜的分子组成和结构特点. 细胞膜以蛋白质和脂质为主,糖类只占极少量.细胞膜的共同结构是以液态的脂质双分子层为基架,其中镶嵌着具有不同结构和生理功能的蛋白质.膜脂质以脂质双层的形式存在于细胞膜中,主要由磷脂和胆固醇组成.膜蛋白主要以球形或α螺旋结构分散镶嵌在脂质双分子层中,可分为表面蛋白和整合蛋白两大类.表面蛋白主要分布在脂质双分子层的内表面或外表面,与膜表面结合较疏松.整合蛋白约占膜蛋白的70%,80%,其肽链一次或反复多次穿越脂质双分子层,与脂质很难分离.细胞膜中寡糖和多糖链以共价键的形式与膜蛋白或膜脂质结合,形成糖蛋白或糖脂. 试述细胞膜物质转运的形式及机制. 细胞膜跨膜物质转运过程可分为主动转运和被动转运.单纯扩散和易化扩散属于被动转运,主动转运则包括原发性主动转运,继发性主动转运以及出胞和入胞等.两者的主要区别是被转运的小分子物质或离子是否逆电位或逆化学浓度的转运,以及转运中是否需要细胞参与供给能量. 1,单纯扩散 脂溶性物质由细胞膜高浓度一侧向低浓度一侧的移动称为单纯扩散,这是一种简单的物理扩散过程.机体内依靠单纯扩散通过细胞膜的物质较少,比较肯定的有O2和CO2等.单纯扩散的能量来源于高浓度电化学梯度本身所包 含的势能. 助于膜2,易化扩散 体内不溶于脂质或溶解度较小的物质,借的某些蛋白质,由高浓度一侧向低浓度一侧的扩散称为易化扩散.易化扩散有两种类型:载体易化扩散和通道易化扩散. 3,主动转运 是指在膜蛋白的参与下,细胞依靠本身的耗能过程,将某种物质分子或离子由膜的低浓度一侧或低电位一侧移向高浓度或高电位一侧的过程.主动转运可分为原发性主动转运和继发性主动转运.其中,进行原发性主动转运的离子泵将细胞代谢产生的ATP分解释放能量,供给离子跨膜转运.继发性主动转运不是直接消耗细胞代谢所产生的ATP供能,而是依靠另一物质浓度梯度的势能储备而实现的主动转运,多见于小肠和肾小管上皮细胞对葡萄糖和氨基酸的主动转运. 4,出胞和入胞 出胞是指细胞内的大分子物质或物质团块从细胞排出的过程,也称胞吐.各种细胞的分泌活动就是出胞的一种主要表现形式.细胞外某些物质团块,如红细胞碎片,侵入体内的细菌,病毒,异物等进入细胞的过程称为入胞,也称胞吞.如果进入细胞的物质为固体物,则称吞噬;如果进入细胞的物质为液态,则称吞饮或胞饮.受体介导式入胞是最主要的入胞形式.这是一种与细胞膜表面受体有关的入胞. 简述单纯扩散和易化扩散的异同点. 易化扩散和单纯扩散的相同点是:扩散的动力都来自膜两侧物质的浓度梯度和电位梯度,转运过程不需要消耗细胞代谢所产生的能量.由于物质移动的能量来自高浓度溶液本身所含的势能储备,因而单纯扩散和易化扩散也称为被动转运.两者之间的不同点是:?单纯扩散所转运的物质是脂溶性的,易化扩散的物质是非脂溶性的;?单纯扩散率与膜两侧物质的浓度差成正比,而载体易化扩散仅当物质浓度很低时才保持这种关系,浓度增大时则表现出饱和现象,通道易化扩散的能力还决定于通道的关闭和开放,对离子转运的特异性不如载体严格;?单纯扩散是一种单纯的物理过程,易化扩散分别需要载体和通道蛋白的协助. 简述Na-K泵的本质,作用及生理意义. 在膜的主动转运过程中对细胞生存和活动最重要的是进行Na+,K+主动转运的Na+-K+泵.Na+-K+泵即Na+泵,因其具有ATP酶活性,也称Na+-K+依赖式ATP酶.Na+泵ATP酶分解产生的能量,用于将胞内的Na+移至胞外和将胞外的K+泵入胞内的逆浓度梯度转运,故其主要作用是"驱钠摄钾".当细胞内Na+浓度升高或细胞外K+浓度升高时,都可激活钠泵.一般,每消耗1分子ATP,可泵出3个Na+,摄入2个K+,故钠泵是一种生电性泵.据估计,在安静状态下细胞大约将代谢所获能量的20%,30%用于钠泵的转运活动. 钠泵的活动具有重要的生理意义:?由钠泵造成的细胞内高K+,是细胞进行代谢反应的必要条件.?钠泵的活动能将细胞内Na+和与之相伴的水泵出细胞,以维持细胞的正常渗透压和形态.?钠泵活动的最重要意义在于,它能建立一种势能储备和保持细胞内外Na+,K+不均匀分布.这样,膜上的离子通道一旦开放,Na+或K+便可迅速地顺浓度差进行跨膜扩散,这也是可兴奋组织或细胞具有兴奋性和产生兴奋的基础;同时,钠泵活动建立的Na+浓度势能储备也是一些营养物质,如葡萄糖,氨基酸等进行继发性主动转运的能量来源. 试述细胞膜受体在膜信号转导中的作用. 细胞膜受体是将细胞外信号导入细胞内的重要枢纽,在跨膜信号转导过程中,不同的跨膜信号转导方式由不同的膜受体介导.外界的刺激多种多样,可以引发不同的细胞产生不同的反应,但其间的信号转导过程却都是通过少数几种类似的途径或方式实现的. 1,离子通道受体介导的跨膜信号转导 目前已确定体内至少存在化学门控通道,电压门控通道和机械门控通道三种类型的通道样结构.在离子通道受体介导的跨膜信号转导系统中,其受体本身就是离子通道的组成部分.例如终板膜上与乙酰胆碱(ACh)特异性结合的N型ACh受体,是将运动神经的兴奋传给肌细胞的关键受体.受体和通道在同一个分子上.当两 个ACh分子与受体分子上的α亚单位结合后,受体-离子通道分子构象发生改变致使通道开放,Na+,K+都能通过,产生终板电位.在神经细胞和肌细胞膜上有Na+,K+,Ca2+的电压门控通道分子结构,控制这类通道开放和关闭的因素是通道所在膜两侧跨膜电位的改变.另外,许多细胞如耳蜗毛细胞膜上感受外来机械信号可能使膜的局部变形或牵引直接刺激附近膜中的机械门控通道,进而完成细胞内的信号转导. 2,G蛋白耦联受体介导的跨膜信号转导 G蛋白耦联受体是最大的细胞表面受体家族.大约有100多种激素,神经递质和其他信息分子调节靶细胞功能是通过其介导完成的.通过G蛋白耦联受体完成跨膜信号转导需要有膜受体,G蛋白,G蛋白效应器,第二信使,蛋白激酶等一系列存在于细胞膜,细胞浆和细胞核中的信号分子参与.G蛋白耦联受体在分子结构上属于同一个受体超家族,都是由一条多肽链组成,其中含有7次跨膜疏水区域.当细胞外信号分子与受体结合后,可以触发受体蛋白的构象改变,受体再进一步调节G蛋白的活性,将细胞外的信号传递到细胞内. 3,酶耦联受体介导的跨膜信号转导 酶耦联受体可分为两类:一类受体分子具有酶的活性,即受体与酶是同一蛋白分子,称为酪氨酸激酶受体;另一类受体本身没有酶的活性,但当它被配体激活时立即与酪氨酸激酶结合,并使之激活,称为结合酪氨酸激酶的受体. 试述G蛋白耦联受体介导的细胞信号转导系统. G蛋白耦联受体介导的信号转导是指细胞外信号分子-受体复合物与靶蛋白(酶或离子通道)的作用通过与G蛋白的耦联后,导致细胞内信使分子浓度或膜对离子通透性的改变,从而将细胞外信号传递到胞内的过程.通过G蛋白耦联受体完成跨膜信号转导需要有膜受体,G蛋白,G蛋白效应器,第二信使,蛋白激酶等一系列存在于细胞膜,细胞浆和细胞核中的信号分子参与.大约有100多种激素,神经递质和其他信息分子调节靶细胞功能是通过它介导的. 1,G蛋白耦联受体(7次跨膜受体) 与G蛋白耦联受体结合的细胞外信号分子尽管千差万别,但G蛋白耦联受体在分子结构上属于同一个受体超家族,都是由一条多肽链组成,其中含有7次跨膜疏水区域.当细胞外信号分子与受体结合后,可以触发受体蛋白的构象改变,受体再进一步调节G蛋白的活性,将细胞外的信号传递到细胞内. 2,G蛋白 G蛋白是可与鸟苷酸结合的蛋白的总称.G蛋白连接着膜受体和细胞内的效应器蛋白(酶或离子通道).G蛋白有 ,其共同特征是:?两类,包括单体G蛋白和异源三聚体G蛋白 由α,β,γ三个不同的亚单位组成;?具有结合GTP或GDP的能力,并有GTP酶(GTPase)的活性,能将结合的GTP分解形成GDP;?G蛋白构象的改变可激活效应器蛋白,使之活化, 从而实现细胞内,外信号的传递. 3,G蛋白效应器 G蛋白效应器包括催化生成第二信使的效应器酶和离子通道.G蛋白效应器酶主要有细胞膜上的腺苷酸环化酶(AC),磷脂酶C(PLC),依赖cGMP的磷酸二酯酶(PDE)和磷脂酶A2等. 4,第二信使 如将与细胞膜结合的细胞外信号分子称为第一信使,则第二信使是指第一信使作用于细胞膜后产生的细胞内信号分子.目前,已知的第二信使物质主要有环一磷酸腺苷(cAMP),三磷酸肌醇(IP3),二酰甘油(DG),环一磷酸鸟苷(cGMP)和Ca2+等. 5,蛋白激酶 这些第二信使既可直接作用于效应蛋白,也可活化相应的蛋白激酶,后者包括依赖于cAMP的蛋白激酶(蛋白激酶A,PKA),依赖于Ca2+的蛋白激酶(或称蛋白激酶C,PKC)等.这些蛋白激酶的激活可使底物蛋白磷酸化,使信号得到逐渐放大,产生各种生物学作用. 简述G蛋白耦联受体细胞内信号转导系统. G蛋白耦联耦联受体介导的信号转导系统中的配体-受体复合物与靶蛋白(酶或离子通道)的作用通过与G蛋白的耦联,导致细胞内信使分子浓度或膜对离子通透性的改变,从而将细胞外信号传递到胞内影响细胞的行为.根据第二信使及其以后作用途径的不同,主要的细胞内信号转导途径有: ?cAMP-PKA途径 腺苷酸环化酶位于细胞膜上的G蛋白效应器蛋白,可环化胞浆中的ATP生成cAMP,cAMP可进一步激活PKA,PKA再使某些底物蛋白发生磷酸化.这些底物蛋白通常也是基因表达的调节因子,表达的蛋白质可使细胞产生各种生物学效应.cAMP也可通过调节离子通道来实现第二信使的作用. ?IP3-Ca2+途径 许多配体与受体结合后可激活另一种G蛋白Gq,Gq能激活膜上的磷脂酶C,催化细胞膜上的二磷酸磷脂酰肌醇(PIP2)分解为DG和IP3两种第二信使.IP3受体激活后可导致细胞内Ca2+库中的Ca2+释放到胞浆中去.Ca2+作为第二信使,Ca2+既可以直接作用于底物蛋白发挥调节作用,也可以和胞浆中的钙调蛋白(CaM)结合后发挥作用. ?DG-PKC途径 细胞的PLC水解PIP2生成的另一个产物是DG.DG是脂溶性的,存在于膜的内表面,可活化蛋白激酶C.PKC有多种亚型,广泛分布于不同的组织中,激活后可使底物蛋白磷酸化,产生多种生物效应. -离子通道途径 G蛋白也可直接或间接通过第二信?G蛋白 使调控离子通道的活动实现信号转导. 试述静息电位及其形成机制. 静息电位是指细胞在未受到刺激而处于安静状态时,存在于细胞膜内,外两侧的电位差,表现为膜内电位较膜外为负,大都 在-10,-100mV之间.静息电位主要是由离子的跨膜扩散形成的.细胞内外K+的不均衡分布和安静时膜主要对K+有通透性,K+进行选择性跨膜移动,可能是细胞膜保持膜内较膜外为负的极化状态的基础. Na+-K+泵主动转运造成的细胞内,外离子的不均衡分布,是形成细胞生物电活动的基础.细胞外Na+浓度约为膜内7, ,而细胞内K+浓度比细胞外高20,40倍.安静时,膜对14倍 K+有通透性,K+必然有向细胞外扩散的趋势,其向膜外扩散的驱动力是跨膜的离子浓度差和电位差.当K+向膜外扩散时,膜内主要带负电的蛋白质却因膜对蛋白质不通透而不能透出细胞膜,于是K+向膜外扩散将使膜内电位变负而膜外变正.但K+向膜外扩散并不能无限制地进行,因为先扩散到膜外的K+所产生的外正内负的电场力,将阻碍K+继续向膜外扩散,并随着K+外流的增加,这种K+外流的阻力也不断增大.当促使K+外流的驱动力和阻止K+外流的阻力达到平衡时,膜对K+的净通量为零,于是K+不再向膜外扩散,此时膜两侧电位差稳定于某一数值不变,此电位差称为K+的电-化学平衡电位,也称K+的平衡电位(Ek).此即静息电位. 形成静息电位的机制除细胞膜内,外离子分布不均衡及膜对K+有较高通透性外,Na+-K+泵也参与静息电位的形成.总之,影响静息电位水平的因素主要有:?膜内,外K+浓度差;?膜对K+和Na+的相对通透性;?Na+-K+泵活动的水平. 试述动作电位及其形成机制. 动作电位或锋电位是可兴奋细胞的兴奋标志.动作电位是指可兴奋细胞受到一个阈刺激或阈上刺激时,膜电位在静息电位的基础上产生一个迅速的,可逆的,可传导的电位变化.不同组织细胞受到刺激后所产生的动作电位形态不尽相同.神经纤维的动作电位由锋电位和后电位两个部分组成的.锋电位是动作电位的主要部分.动作电位由去极相(上升支)和复极相(下降支)组成.后电位指膜电位恢复到静息电位前经历的一段较长的微弱电位变化的时期.后电位由后去极化或称负后电位以及后超极化或称正后电位组成. 动作电位是由于膜对Na+,K+通透性发生变化形成的.细胞膜内,外Na+浓度差很大.当神经纤维受到刺激时,首先激活膜上的Na+通道,引起少量Na+通道开放,Na+顺浓度差少量内流,使细胞膜轻度去极化.当膜电位降低到阈电位,引起电压门控Na+通道蛋白质分子的构象变化,大量的Na+通道被激活开放,Na+大量通过易化扩散跨膜进入细胞内.随着Na+内流增加,膜进一步去极化,而去极化本身又促进更多的Na+通道开放,如此反复形成Na+再生性循环,形成了动作电位的上升支.细胞膜在去极化过程中,Na+通道开放时间很短,仅万分之几秒,随后既关闭失活.使Na+通道开放的膜去极化也使电压门控K+通道延迟开放,膜对K+的通透性增大,膜内K+顺电化学 驱动力向膜外扩散,使膜内电位由正值向负值转变,直至原来的静息电位水平,便形成了动作电位的下降支即复极相.锋电位发生后,膜电位产生了微小而缓慢波动,持续时间较长的后电位.后电位包括负后电位和正后电位. 何谓动作电位的全或无现象 动作电位只要产生,动作电位的幅度就相同,不随刺激强度增加而增大;而刺激引起的去极化达不到阈电位时,则不能形成Na+内流和去极化的正反馈,不能产生动作电位,这一特性称为动作电位"全或无"特性.可兴奋细胞的动作电位及其传导过程表现为"全或无",具有两个方面的含义:?在单一可兴奋细胞,阈下刺激不引起动作电位,而动作电位一旦产生则其幅度即达最大值,不因刺激强度增加而增大.也就是,阈刺激和阈上刺激引起同一细胞的动作电位幅度相等.?动作电位在同一细胞上传导时,不因传导距离增加而有所衰减,即呈不衰减传导. 试述阈刺激,阈电位,局部电位与动作电位的关系. 在产生兴奋的有效刺激三因素中,固定了强度-时间变化率和刺激的持续时间不变,达到阈强度引起细胞兴奋产生动作电位的刺激称为阈刺激.当刺激强度增加达到阈强度后,由于刺激引起的去极化明显,开放的电压门控Na+通道数量增加,形 成Na+内流与去极化的正反馈,使膜去极化迅速发展形成动作电位上升支, 从动作电位形成过程看,阈电位是使去极化突然转变为锋电位的最小膜电位水平.也即阈电位是能使Na+通道突然大量开放产生动作电位的临界膜电位数值.一般可兴奋细胞的阈电位大约比静息电位的绝对值小10,20mV.可见,引起细胞兴奋或产生动作电位的关键在于能否使静息电位减小到阈电位水平,而与导致这种膜电位减小的手段或刺激方式无关.即膜电位一旦达到阈电位水平,此时的去极化不再依赖于刺激强度,膜电位的变化成为一种自动的过程并直至动作电位结束. 阈下刺激引起少量Na+通道开放,少量Na+内流,在受刺激的局部出现一个较小的膜的除极化反应,称局部电位或局部兴奋.局部电位与动作电位相比,其基本特点如下:?不是"全或无"的,而是有等级性和衰减性的,局部电位去极化幅度随着阈下刺激强度的大小而增减,呈等级性;?电紧张扩布.局部电位仅限于刺激部位,不能在膜上远距离扩布,随着扩布距离的增加,这种去极化电位迅速衰减和消失;?可以总和,互相叠加.先后多个或细胞膜相邻多处的阈下刺激所引起的局部电位可以叠加,产生时间总和,空间总和. 试比较局部电位与动作电位的不同. 局部电位与动作电位的比较 项 目 局部反应 动作电位 刺激强度 阈下刺激 阈刺激或阈上刺激 开放的钠通道 较少 多 电位变化幅度与 刺激强度的关系 ?小(在阈电位以下波动) ?分级性反应,随阈下刺激强度的增加而增大 ?大(达阈电位以上) ?"全或无"现象;单个阈下刺激不能产生动作电位;阈或阈上 刺激产生动作电位的幅度相等 不应期 无 有 可总和性 有(包括时间或空间总和) 无 传播特点 呈电紧张扩布,随时间和距离延长迅速衰减,不能连续向远处传播 能以局部电流的形式连续而不衰减地向远处传播 在生理实验中,人工地轻度增加细胞外液K+浓度时,细胞静息电位和动作电位有何改变 为什么 静息电位主要是由细胞内外K+的不均衡分布和安静时膜主要对K+有通透性,K+进行选择性跨膜移动形成的.在生理实验中,人为地改变离体神经纤维的浸浴液K+的浓度,因而改变 ,发现静息电位数值随着[K+]0改变而改变.当轻[K+]0/[K+]i值 度增加浸浴液K+浓度,即增加细胞外液K+浓度时,Ek变小,静息电位变小.动作电位的复极化过程是由K外流造成,人为地轻度增加离体神经纤维的浸浴液K+的浓度,增加了细胞外液K的浓度,使K外流速度减慢,可造成动作电位复极相(下降支)时间延长.由于动作电位的去极化是由Na内流造成,轻微K浓度增加,一般不会影响动作电位的上升支(去极相). 简述神经-肌肉接头处的兴奋传递过程及特点. 兴奋在神经-肌肉接头的传递是动作电位到达神经末梢后,使电压门控Ca2+通道开放,Ca2+内流入接头前膜引起ACh小 泡以出胞形式释放,ACh与接头后膜乙酰胆碱受体结合,引起化学门控通道开放,出现较强的Na+内流和较弱的K+外流产生终板电位,终板膜与邻近肌膜的局部电流使肌膜去极化达阈电位,导致肌膜的电压门控Na+通道打开,肌膜产生动作电位,完成了兴奋在神经-肌肉接头的传递.接头间隙内的ACh大部分可迅速被终板膜上的乙酰胆碱酯酶分解. 神经-肌肉接头传递的特点:?只能单向传递,兴奋只能从神经末梢传给肌纤维,而不能反方向进行;?有时间延搁:从神经末梢的动作电位到达至肌膜产生动作电位,大约需要0.5,1.0ms,比相等长度的神经纤维传导时间明显延长;?易受环境因素和药物的影响;?保持一对一的关系.许多药物或病理变化可作用于神经-肌肉接头兴奋传递的不同环节,来影响兴奋的正常传递和肌肉的收缩. 简述兴奋-收缩耦联的具体过程. 在动作电位和以肌丝滑行为基础的收缩过程之间,必须通过Ca2+作为中介联系起来.肌膜的动作电位借Ca2+为中介引起肌丝滑行的过程称为兴奋-收缩耦联,它包括三个主要步骤:?肌膜动作电位通过横管系统向内传导到细胞深处;?信息在三联管处传递,引起肌浆网Ca2+释放,即电诱导钙释放,使胞浆Ca2+浓度增加;?胞浆内的Ca2+到达Z线附近的细肌丝,并与肌钙蛋白结合,解除原肌凝蛋白对横桥头与肌纤蛋 白结合的阻碍,从而触发肌丝滑行而引起收缩. 何谓肌肉的最适初长度 为什么在肌肉的最适初长度时,肌肉收缩的效果最好 肌肉收缩时产生最大张力的前负荷或初长度称为最适前负荷或最适初长度.肌肉在最适初长度条件下进行收缩可以产生最佳效果,可以从肌小节的结构和收缩机制来说明.肌肉初长度决定每个肌小节的长度,因而也决定细肌丝和粗肌丝相重合的程度,决定肌肉收缩时有多少横桥可以与附近的细肌丝相互作用.通常,在体骨骼肌安静时肌小节的长度约为2.0,2.2μm.肌小节长度若大于3.5μm以上,粗,细肌丝完全没有重叠,主动张力为零;肌小节长度小于1.6μm,细肌丝穿过M线造成两侧细肌丝相互重叠发生卷曲,干扰了部分横桥与细肌丝的接触,肌肉收缩的张力相应减少;肌小节长度为2.2μm,2.0μm,处于最适初长度时,粗,细肌丝约处于最适重叠状态,即所有的横桥都能与细肌丝接触,肌肉收缩的主动张力达最大值.
/
本文档为【运动生理学名词解释】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索