为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

毕业设计论文—浅谈中央处理器(CPU)的功能与发展

2017-09-24 19页 doc 47KB 357阅读

用户头像

is_511210

暂无简介

举报
毕业设计论文—浅谈中央处理器(CPU)的功能与发展毕业设计论文—浅谈中央处理器(CPU)的功能与发展 南京机电职业技术学院信息工程系2011级毕业论文 毕业设计(论文) 题目 浅谈中央处理器(CPU)的功能与发展 姓名 徐刘竑 学号 G1130515 系部 信息工程系 专业 软件技术.net 指导教师: 卞志勇 2014 年 1 月 30 日 南京机电职业技术学院信息工程系2011级毕业论文 摘 要 CPU,中央处理单元,是数字计算机的重要组成部分,其目的是对从内存中接收的指令进行译码,同时对存储于内部寄存器,存储器或输入输出接口单元的数据执行传输、...
毕业设计论文—浅谈中央处理器(CPU)的功能与发展
毕业设计论文—浅谈中央处理器(CPU)的功能与发展 南京机电职业技术学院信息工程系2011级毕业论文 毕业设计(论文) 目 浅谈中央处理器(CPU)的功能与发展 姓名 徐刘竑 学号 G1130515 系部 信息工程系 专业 软件技术.net 指导教师: 卞志勇 2014 年 1 月 30 日 南京机电职业技术学院信息工程系2011级毕业论文 摘 要 CPU,中央处理单元,是数字计算机的重要组成部分,其目的是对从内存中接收的指令进行译码,同时对存储于内部寄存器,存储器或输入输出接口单元的数据执行传输、算术运算、逻辑运算以及控制操作。在外部,CPU为转换指令数据和控制信息提供一个或多个总线并从组件连接到它。在通用计算机开始的第一章,CPU作为处理器的一部分被屏蔽了。但是CPU有可能出现在很多电脑之间,相对简单的所谓微控制器的计算机被用在电脑和其他数字化系统中,以执行限制或专门任务。例如,一个微控制器出现在普通电脑的键盘和检测器中,但是这些组件也被屏蔽。在这种微控制器中,与我们在这一章中所讨论的CPU可能十分不同。字长也许更短,编制数量少,指令集有限。相对而言,性能差,但对完成任务来说足够了。最重要的是它的微控制器的成本很低,符合成本效益。 接下来的几页里,我还会给大家介绍我国的“龙芯”,知名的Intel“酷睿”和AMD“速龙”,解剖全球先进的CPU。最后讨论CPU的未来发展趋势。本论文通过网上搜索CPU功能,向有关人士了解CPU性能的来完成,并借阅了有关书籍和文章。 关键字:中央处理器,功能,发展 南京机电职业技术学院信息工程系2011级毕业论文 目录 1、文献综述 ……………………………………………………………………3 2、设计,论文,的内容……………………………………………………………4 2.1CPU主要的性能指标…………………………………………………………4 2.2CPU的简介…………………………………………………………5 2.3CPU的基本结构………………………………………………………………5 2.3.1运算逻辑 2.3.2寄存器部件寄存器部件 2.3.3控制部件控制部件 2.4CPU中央处理器的功能………………………………………………………6 2.4.1指令控制 2.4.2操作控制 2.4.3时间控制 2.4.4数据加工 2.5CPU的厂商……………………………………………………………7 2.5.1Intel公司 2.5.2AMD公司 2.5.3BM和Cyrix 2.5.4IDT公司 2.6CPU的发展史…………………………………………………………………7 2.6.1简介 2.6.2主要实例 参考文献………………………………………………………………………13 南京机电职业技术学院信息工程系2011级毕业论文 致谢……………………………………………………………………………14 浅谈中央处理器(CPU)的功能与发展 1、文献综述 中央处理器(英文Central Processing Unit,CPU)是一台电脑的运算核心和控制核心。其主要功能是解释计算机指令以及处理计算机软件中的数据。一个小小的东西竟然能主宰一台计算机,它的功能到底有什么特殊呢,它的未来又是有怎样的突破呢, 目前国外高性能微处理器的研制有两个明显的趋势。一是研制高性能处理器的公司在市场的洗牌中越来越集中到少数几家;二是单处理器性能的继续提高在主频、结构、功耗等方面都碰到了明显的障碍,因此各微处理器公司都纷纷推出多核结构的微处理器。 据中科院计算所介绍,“十一五”期间,中科院计算所讲研制多核的龙芯3号,可用来研制生产高性能的计算机和服务器,进一步缩小了与国外先进水平的差距。现在龙芯系列研发和推广的重点依然是龙芯2号产品,与此同时也未放弃龙芯1号和3号的继续研发,龙芯家族的各号产品嵌入式系统(龙芯1号),PC机(龙芯2号)和 南京机电职业技术学院信息工程系2011级毕业论文 服务器(龙芯3号)研发讲齐头并进。而对中国这个潜力广阔的大市场,龙芯还有很长的一段路要走,合理得找准十场地位,如何发挥其产品的技术又是并加大应用推广的力度,是目前龙芯处理所需要做的。 未来,将有越来越多中国品牌出现在国际市场,那是我们将用着快速高效的中国“芯”。 通过研究让自己对计算机大脑CPU的功能(指令的执行过程,时序产生器的工作与控制原理,微程序控制技术)与发展上有更好的认知。 2、设计(论文)的内容 2.1CPU主要的性能指标 主频:即CPU内部核心工作的时钟频率,单位一般是兆赫兹(MHz)。这是我们平时无论是使用还是购买计算机都最关心的一个参数,我们通常所说的133、166、450等就是指它。对于同种类的CPU,主频越高,CPU的速度就越快,整机的性能就越高。 外频和倍频数:外频即CPU的外部时钟频率。外频是由电脑主板提供的,CPU的主频与外频的关系是:CPU主频,外频×倍频数。 内部缓存:采用速度极快的SRAM制作,用于暂时存储CPU运算时的最近的部分指令和数据,存取速度与CPU主频相同,内部缓存的容量一般以KB为单位。当它全速工作时,其容量越大,使用频率最高的数据和结果就越容易尽快进入CPU进行运算,CPU工作时与存取速度较慢的外部缓存和内存间交换数据的次数越少,相对电脑的运算速度可以提高。 地址总线宽度:地址总线宽度决定了CPU可以访问的物理地址空间,简单地说就是CPU到底能够使用多大容量的内存。 多媒体扩展指令集(MMX)技术:MMX是Intel公司为增强Pentium CPU 在音像、图形和通信应用方面而采取的新技术。这一技术为CPU增加了全新的57条MMX指令,这些加了MMX指令的 CPU比普通CPU在运行含有MMX指令的程序时,处理多媒体的能力上提高了60,左右。即使不使用MMX指令的程序,也能获得15,左右的性能提升。 微处理器在多方面改变了我们的生活,现在认为理所当然的事,在以前却是难以想象的。六十年代计算机大得可充满整个房间,只有很少的人能使用它们。六十年代中期集成电路的发明使电路的小型化得以在一块单一的硅片上实现,为微处理器的发展奠定了基础。在可预见的未来,CPU的处理能力将继续保持高速增长,小型化、集成化永远是发展趋势,同时会形成不同层次的产品,也包括专用处理器。 南京机电职业技术学院信息工程系2011级毕业论文 2.2CPU的简介 CPU内部结构大概可以分为控制单元、运算单元、存储单元和时钟等几个主要部分。 运算器是计算机对数据进行加工处理的中心,它主要由算术逻辑部件(ALU:Arithmetic and Logic Unit)、寄存器组和状态寄存器组成。 2.3CPU的基本结构 包括运算逻辑部件、寄存器部件和控制部件等。 2.3.1运算逻辑 运算逻辑部件,可以执行定点或浮点算术运算操作、移位操作以及逻辑操作,也可执行地址运算和转换。 2.3.2寄存器部件寄存器部件 包括通用寄存器、专用寄存器和控制寄存器。通用寄存器又可分定点数和浮点数两类,它们用来保存指令中的寄存器操作数和操作结果。通用寄存器是中央处理器的重要组成部分,大多数指令都要访问到通用寄存器。通用寄存器的宽度决定计算机内部的数据通路宽度,其端口数目往往可影响内部操作的并行性。 专用寄存器是为了执行一些特殊操作所需用的寄存器。控制寄存器通常用来指示机器执行的状态,或者保持某些指针,有处理状态寄存器、地址转换目录的基地址寄存器、特权状态寄存器、条件码寄存器、处理异常事故寄存器以及检错寄存器等。 有的时候,中央处理器中还有一些缓存,用来暂时存放一些数据指令,缓存越大,说明CPU的运算速度越快,目前市场上的中高端中央处理器都有2M左右的二级缓存,高端中央处理器有4M左右的二级缓存。 2.3.3控制部件控制部件 控制部件,主要负责对指令译码,并且发出为完成每条指令所要执行的各个操作的控制信号。 南京机电职业技术学院信息工程系2011级毕业论文 其结构有两种:一种是以微存储为核心的微程序控制方式;一种是以逻辑硬布线结构为主的控制方式。 微存储中保持微码,每一个微码对应于一个最基本的微操作,又称微指令;各条指令是由不同序列的微码组成,这种微码序列构成微程序。中央处理器在对指令译码以后,即发出一定时序的控制信号,按给定序列的顺序以微周期为节拍执行由这些微码确定的若干个微操作,即可完成某条指令的执行。 简单指令是由(3,5)个微操作组成,复杂指令则要由几十个微操作甚至几百个微操作组成。逻辑硬布线控制器则完全是由随机逻辑组成。指令译码后,控制器通过不同的逻辑门的组合,发出不同序列的控制时序信号,直接去执行一条指令中的各个操作。 2.4CPU中央处理器的功能 指令顺序控制 操作控制 时间控制 数据加工 2.4.1指令控制 这是指控制程序中指令的执行顺序。程序中的各指令之间是有严格顺序的,必须严格按程序规定的顺序执行,才能保证计算机工作的正确性。 2.4.2操作控制 一条指令的功能往往是由计算机中的部件执行一序列的操作来实现的。中央处理器(CPU)要根据指令的功能,产生相应的操作控制信号,发给相应的部件,从而控制这些部件按指令的要求进行动作。 2.4.3时间控制 就是对各种操作实施时间上的定时。在一条指令的执行过程中,在什么时间做什么操作均应受到严格的控制。只有这样,计算机才能有条不紊地自动工作。 2.4.4数据加工 即对数据进行算术运算和逻辑运算,或进行其他的信息处理。 2.5CPU的厂商 2.5.1Intel公司 南京机电职业技术学院信息工程系2011级毕业论文 Intel是生产CPU的老大哥,它占有80%多的市场份额,Intel生产的CPU就成了事实上的x86CPU技术规范和。最新的PII成为CPU的首选。 2.5.2AMD公司 目前使用的CPU有好几家公司的产品,除了Intel公司外,最有力的挑战的就是AMD公司,最新的K6和K6-2具有很好性价比,尤其是K6-2采用了3DNOW技术,使其在3D上有很好的表现。 2.5.3BM和Cyrix 美国国家半导体公司IBM和Cyrix公司合并后,使其终于拥有了自己的芯片生产线,其成品将会日益完善和完备。现在的MII性能也不错,尤其是它的价格很低。 2.5.4IDT公司 IDT是处理器厂商的后起之秀,但现在还不太成熟。 2.6CPU的发展史 2.6.1简介 CPU是计算机的核心,其重要性好比心脏对于人一样。任何东西从发展到壮大都会经历一个过程,CPU能够发展到今天这个规模和成就,其中的发展史更是耐人寻味。CPU电脑硬件的发展可谓日新月异,短短20年,PC的发展速度远远超过了人类历史上任何一次工业革命的发展速度,让我们一起来回顾那些激动人心的岁月吧。 2.6.2主要实例 主要叙述了目前两大CPU巨头——Intel和AMD的产品发展历程。 一、X86时代的CPU CPU的溯源可以一直去到1971年。在那一年,当时还处在发展阶段的INTEL公司推出了世界上第一台微处理器4004。这不但是第一个用于计算器的4位微处理器,也是第一款个人有能力买得起的电脑处理器~ 1978年,Intel公司再次领导潮流,首次生产出16位的微处理器,并命名为i8086,同时还生产出与之相配合的数学协处理器 i8087,这两种芯片使用相互兼容的指令集,但在i8087指令集中增加了一些专门用于对数、指数和三角函数等数学计算指令。所以人们把这些指令集统一称之为X86指令集。虽然以后Intel又陆续生产出第二代、第三代等更先进和更快的新型CPU,但都 仍然兼容原来的X86指令,而且Intel在后续CPU的命名上沿用了原先的X86序列,直到后 南京机电职业技术学院信息工程系2011级毕业论文 来因商标注册问题,才放弃了继续用阿拉伯数字命名。1979年,INTEL公司推出了8088芯片,它仍旧是属于16位微处理器,内含29000个晶体管,时钟频率4.77MHz,地址总线 为20位,可使用1MB内存。8088内部数据总线都是16位,外部数据总线是8位,而它的兄弟8086是16位。1981年8088芯片首次用于IBM PC机中,开创了全新的微机时代。(个人电脑)的概念开始在全世界范围内发展起来。 1982年,许多年轻的读者尚在襁褓之中的时候,INTE已经推出了划时代的最新产品枣80286芯片,该芯片比8006和8088都有了飞 跃的发展,虽然它仍旧是16位结构,但是在CPU的内部含有13.4万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆 为16位,地址总线24位,可寻址16MB内存。从80286开始,CPU的工作方式也演变出两种来:实模式和保护模式。 1985年INTEL推出了80386芯片,它是80X86系列中的第一种32位微处理器,而且制造工艺也有了很大的进步, 80386内部内含27.5万个晶体管,时钟频率为12.5MHz,后提高到20MHz,25MHz,33MHz。80386的内部和外部数据总线都是 32位,地址总线也是32位,可寻址高达4GB内存。它除具有实模式和保护模式外,还增加了一种叫虚拟86的工作方式,可以通过同时模拟多个8086处理器来提供多任务能力。除了标准的80386芯片,也就是我们以前经常说的80386DX外,出于不同的市场和应用考虑,INTEL又陆续推出了一些其它类 型的80386芯片:80386SX、80386SL、80386DL等。1988年推出的80386SX是市场定位在80286和80386DX之间的 一种芯片,其与80386DX的不同在于外部数据总线和地址总线皆与80286相同,分别是16位和24位(即寻址能力为16MB)。 1990年推出的80386 SL和80386 DL都是低功耗、节能型芯片,主要用于便携机和节能型台式机。80386 SL与80386 DL的不同在于前者是基于80386SX的,后者是基于80386DX的,但两者皆增加了一种新的工作方式:系统管理方式。当进入系统管理方式后,CPU 就自动降低运行速度、控制显示屏和硬盘等其它部件暂停工作,甚至停止运行,进入“休眠”状态,以达到节能目的。1989年,我们大家耳熟能详的80486 芯片由INTEL推出,这种芯片的伟大之处就在于它实破了100万个晶体管的界限,集成了120万个晶体管。80486的时钟频率从25MHz逐步提高到 33MHz、50MHz。80486是将80386和数学协处理器80387以及一个8KB的高速缓存集成在一个芯片内,并且在80X86系列中首次采用 了RISC(精简指令集)技术,可以在一个时钟周期内执行一条指令。它还采用了突发总线方式,大大提高了与内存的数据交换速度。1990年推出了80486SX,它是486类型中的一种低价格机型,其与80486DX的区别在于它没有数学协处理器。80486 DX2由系用了时钟倍频技术,也就是说芯片内部的运行速度是外部总线运行速度的两倍,即芯片内部以2倍于系统时钟的速度运行,但仍以原有时钟速度与外界通 讯。80486 DX2的内部时钟频率主要有40MHz、50MHz、66MHz等。 南京机电职业技术学院信息工程系2011级毕业论文 奔腾 Pro 200MHZCPU的L2 CACHE就是运行在200MHZ,也就是工作在与处理器相同的频率上。这样的设计领奔腾 Pro达到了最高的性能。 而Pentimu Pro最引人注目的地方是它具有一项称为“动态执行”的创新技术,这是继奔腾在超标量体系结构上实现实破之后的又一次飞跃。Pentimu Pro系列的工作频率是150/166/180/200,一级缓存都是16KB,而前三者都有256KB的二级缓存,至于频率为200的CPU还分为三种 版本,不同就在于他们的内置的缓存分别是256KB,512KB,1MB。不过由于当时缓存技术还没有成熟,加上当时缓存芯片还非常昂贵,因此尽管 Pentimu Pro性能不错,但远没有达到抛离对手的程度,加上价格十分昂贵,一次Pentimu Pro实际上出售的数目非常至少,市场生命也非常的短,Pentimu Pro可以说是Intel第一个失败的产品。 2、辉煌的开始——奔腾 MMX: Pro的教训,在1996年底推出了奔腾系列的改进版本,厂家代号INTEL吸取了奔腾 P55C,也就是我们平常所说的奔腾 MMX(多能奔腾)。这款处理器并没有集成当时卖力不讨好的二级缓存,而是独辟蹊径,采用MMX技术去增强性能。 MMX技术是INTEL最新发明的一项多媒体增强指令集技术,它的英文全称可以“多媒体扩展指令集”。MMX是Intel公司在1996年为 增强奔腾 CPU在音像、图形和通信应用方面而采取的新技术,为CPU增加了57条MMX指令,除了指令集中增加MMX指令外,还将CPU芯片内的L1缓存由原来的 16KB增加到32KB(16K指命+16K数据),因此MMX CPU比普通CPU在运行含有MMX指令的程序时,处理多媒体的能力上提高了60,左右。MMX技术不但是一个创新,而且还开创了CPU开发的新纪元,后 来的SSE,3D NOW~等指令集也是从MMX发展演变过来的。在Intel推出奔腾 MMX的几个月后,AM也推出了自己研制的新产品K6。K6系列CPU一共有五种频率,分别是:166/200/ 233/266/300,五种型号都采用了66外频,但是后来推出的233/266/300已经可以通过升级主板的BIOS 而支持100外频,所以CPU的性能得到了一个飞跃。特别值得一提的是他们的一级缓存都提高到了64KB,比MMX足足多了一倍,因此它的商业性能甚至还 优于奔腾 MMX,但由于缺少了多媒体扩展指令集这道杀手锏,K6在包括游戏在内的多媒体性能要逊于奔腾 MMX。 3、优势的确立——奔腾 ?: 1997年五月,INTEL又推出了和奔腾 Pro同一个级别的产品,也就是影响力最大的CPU——奔腾 ?。第一代奔腾 ?核心称为Klamath。作为奔腾?的第一代芯片,它运行在66MHz总线上,主频分233、266、300、333Mhz四种,接着又推出 100Mhz总线的奔腾 ?,频率有300、350、400、450Mhz。奔腾II采用了与奔腾 Pro相同的核心结构,从而继承了原有奔腾 Pro处理器优秀的32位性能,但它加快 南京机电职业技术学院信息工程系2011级毕业论文 了段寄存器写操作的速度,并增加了MMX指令集,以加速16位操作系统的执行速度。由于配备了可重命名的段寄存 器,因此奔腾?可以猜测地执行写操作,并允许使用旧段值的指令与使用新段值的指令同时存在。在奔腾?里面,Intel一改过去BiCMOS制造工艺的笨拙 且耗电量大的双极硬件,将750万个晶体管压缩到一个203平方毫米的印模上。奔腾?只比奔腾 Pro大6平方毫米,但它却比奔腾 Pro多容纳了200万个晶体管。由于使用只有0.28微米的扇出门尺寸,因此加快了这些晶体管的速度,从而达到了X86前所未有的时钟速度。 Intel奔腾?处理器 在接口技术方面,为了击跨INTEL的竞争对手,以及获得更加大的内部总线带宽,奔腾?首次采用了最新的solt1接口标准,它不再用陶瓷封装, 而是采用了一块带金属外壳的印刷电路板,该印刷电路板不但集成了处理器部件,而且还包括 也称SEC 卡)相连,只需将该印刷32KB的一级缓存。如要将奔腾?处理器与单边插接卡( 电路板(PCB)直接卡在SEC卡上。SEC卡的塑料封装外壳称为单边插接卡盒,也称SEC(Single- edgecontactCartridge)卡盒,其上带有奔腾?的标志和奔腾?印模的彩色图像。在SEC卡盒中,处理器封装与L2高速缓存和 TagRAM均被接在一个底座(即SEC卡)上,而该底座的一边(容纳处理器核心的那一边)安装有一个铝制散热片,另一边则用黑塑料封起来。奔腾?CPU 内部集合了32KB片内L1高速缓存(16K指令/16K数据);57条MMX指令;8个64位的MMX寄存器。750万个晶体管组成的核心部分,是以 203平方毫米的工艺制造出来的。处理器被固定到一个很小的印刷电路板(PCB)上,对双向的SMP有很好的支持。至于L2高速缓存则有,512K,属于 四路级联片外同步突发式SRAM高速缓存。这些高速缓存的运行速度相当于核心处理器速度的一半(对于一个266MHz的CPU来说,即为133MHz)。 奔腾?的这种SEC卡设计是插到Slot1(尺寸大约相当于一个ISA插槽那么大)中。所有的Slot1主板都有一个由两个塑料支架组成的固定机构。一个 SEC卡可以从两个塑料支架之间滑入Slot1中。将该SEC卡插入到位后,就可以将一个散热槽附着到其铝制散热片上。266MHz的奔腾?运行起来只比 200MHz的奔腾Pro稍热一些(其功率分别为38.2瓦和37.9瓦),但是由于SEC卡的尺寸较大,奔腾?的散热槽几乎相当于Socket7或 Socket8处理器所用的散热槽的两倍那么大。 除了用于普通用途的奔腾?之外,Intel还推出了用于服务器和高端工作站的Xeon系列处理器采用了Slot 2插口技术,32KB 一级高速缓存,512KB及1MB的二级高速缓存,双重独立总线结构,100MHz系统总线,支持多达8个CPU。 Intel奔腾? Xeon处理器 为了对抗不可一世的奔腾 ?,在1998年中,AMD推出了K6-2处理器,它的核心电压是2.2伏特,所以发热量比较低,一级缓存是64KB,更为重要的是,为了抗衡Intel 的MMX指令集,AMD也开发了自己的多媒体指令集,命名为3DNow!。3DNow!是一组共21条新指 令,可提高三维图形、多媒体、以及浮点运算 南京机电职业技术学院信息工程系2011级毕业论文 密集的个人电脑应用程序的运算能力,使三维图形加速器全面地发挥性能。K6-2的所有型号都内置了3DNow! 指令集, 使AMD公司的产品首次在某些程序应用中,在整数性能以及浮点运算性能都同时超越INTEL,让INTEL感觉到了危机。不过和奔腾 ?相比,K6-2仍然没有集成二级缓存,因此尽管广受好评,但始终没有能在市场占有率上战胜奔腾?。 4、廉价高性能CPU的开端——Celeron: 在以往,个人电脑都是一件相对奢侈的产品,作为电脑核心部件的CPU,价格几乎都以千元来计算,不过随着时代的发展,大批用户急需廉价而使用的家庭电脑,连带对廉价CPU的需求也急剧增长了。 在奔腾 ?又再次获得成功之际,INTEL的头脑开始有点发热,飘飘然了起来,将全部力量都集中在高端市场上,从而给AMD,CYRIX等等公司造成了不少 乘虚而入的机会,眼看着性能价格比不如对手的产品,而且低端市场一再被蚕食,INTEL不能眼看着自己的发家之地就这样落入他人手中,又与1998年全新 推出了面向低端市场,性能价格比相当厉害的CPU——Celeron,赛扬处理器。 Celeron可以说是Intel为抢占低端市场而专门推出的,当时1000美元以下PC的热销,令AMD等中小公司在与Intel的抗争中 打了个漂亮的翻身仗,也令Intel如芒刺在背。于是,Intel把奔腾 II的二级缓存和相关电路抽离出来,再把塑料盒子也去掉,再改一个名字,这就是Celeron。中文名称为赛扬处理器。 最初的Celeron采用0.35微米工艺制造,外频为66MHz,主频有266与300两款。接着又出现了0.25微米制造工艺的 Celeron333。 不过在开始阶段,Celeron并不很受欢迎,最为人所诟病的是其抽掉了芯片上的L2 Cache,自从在奔腾 ?尝到甜头以后,大家都知道了二级缓存的重要性,因而想到赛扬其实是一个被阉割了的产品,性能肯定不怎么样。实际应用中也证实了这种想法, Celeron266装在技嘉BX主板上,性能比PII266下降超过25%~而相差最大的就是经常须要用到二级缓存的程序。 Intel也很快了解到这个情况,于是随机应变,推出了集成128KB二级缓存的Celeron,起始频率为300Mhz,为了和没有集成二 级缓存的同频Celeron区分,它被命名为Celeron 300A。有一定使用电脑历史的朋友可能都会对这款CPU记忆犹新,它集成的二级缓存容量只有128KB,但它和CPU频率同步,而奔腾 ?只是CPU频率一半,因此Celeron 300A的性能和同频奔腾 ?非常接近。更诱人的是,这款CPU的超频性能奇好,大部分都可以轻松达到450Mhz的频率,要知道当时频率最高的奔腾 ?也只是这个频率,而价格是Celeron 300A的好几倍。这个系列的Celeron出了很多款,最高频率一直到566MHz,才被采用奔腾?结构的第二代Celeron所代替。 为了降低成本,从Celeron 300A开始,Celeron又重投Socket插座的怀抱,但它不是采用奔腾MMX的Socket7,而是采用了Socket370插座方式,通过 370个针脚与主板相连。从此,Socket370成为Celeron的标准插座结构,直到现在频率1.2Ghz的Celeron CPU也仍 南京机电职业技术学院信息工程系2011级毕业论文 然采用这种插座。 5、世纪末的辉煌——奔腾III: 在99年初,Intel发布了第三代的奔腾处理器——奔腾III,第一批的奔腾III 处理器采用了Katmai内核,主频有450和500Mhz两种,这个内核最大的特点是更新了名为SSE的多媒体指令集,这个指令集在MMX的基础上添加 了70条新指令,以增强三维和浮点应用,并且可以兼容以前的所有MMX程序。 不过平心而论,Katmai内核的奔腾III除了上述的SSE指令集以外,吸引人的地方并不多,它仍然基本保留了奔腾II的架构,采用 0.25微米工艺,100Mhz的外频,Slot1的架构,512KB的二级缓存(以CPU的半速运行)因而性能提高的幅度并不大。不过在奔腾III刚上 市时却掀起了很大的热潮,曾经有人以上万元的高价去买第一批的奔腾III。 可以大幅提升,从500Mhz开始,一直到1.13Ghz,还有就是超频性能大幅提高,幅度可以达到50%以上。此外它的二级缓存也改为和CPU主频同步,但容量缩小为256KB。 除了制程带来的改进以外,部分Coppermine 奔腾III还具备了133Mhz的总线频率和Socket370的插座,为了区分它们,Intel在133Mhz总线的奔腾III型号后面加了个“B”, Socket370插座后面加了个“E”,例如频率为550Mhz,外频为133Mhz的Socket370 奔腾III就被称为550EB。 看到Coppermine核心的奔腾III大受欢迎,Intel开始着手把Celeron处理器也转用了这个核心,在2000年中,推出了 Coppermine128核心的Celeron处理器,俗称Celeron2,由于转用了0.18的工艺,Celeron的超频性能又得到了一次飞跃, 超频幅度可以达到100%。 6、AMD的绝地反击——Athlon 在AMD公司方面,刚开始时为了对抗奔腾III,曾经推出了K6-3处理器。K6-3处理器是三层高速缓存(TriLevel)结构设计,内建有 64K的第一级高速缓存(Level 1)及256K的第二层高速缓存(Level 2),主板上则配置第三级高速缓存(Level 3)。K6-3处理器还支持增强型的3D Now~指令集。由于成本上和成品率方面的问题,K6-3处理器在台式机市场上并不是很成功,因此它逐渐从台式机市场消失,转进笔记本市场。 真正让AMD扬眉吐气的是原来代号K7的Athlon处理器。Athlon具备超标量、超管线、多流水线的Risc核心(3Way SuperScalar Risc core),采用0.25微米工艺,集成2,200万个晶体管,Athlon包含了三个解码器,三个整数执行单元(IEU),三个地址生成单元 (AGU),三个多媒体单元(就是浮点运算单元),Athlon可以在同一个时钟周期同时执行三条浮点指令,每个浮点单元都是一个完全的管道。K7包含3 个解码器,由解码器将解码后的macroOPS指令(K7把X86指令解码成macroOPS指令,把长短不一的X86指令转换成长短一致的 macroOPS指令,可以充分发挥RISC核心的威力)送给指令控制单元,指令控制单元能同时控制(保存)72条指令。再把指令送给整数单元或多媒 南京机电职业技术学院信息工程系2011级毕业论文 体单 元。整数单元可以同时调度18条指令。每个整数单元都是一个独立的管道,调度单元可以对指令进行分支预测,可以乱序执行。K7的多媒体单元(也叫浮点单 元)有可以重命名的堆栈寄存器,浮点调度单元同时可以调度36条指令,浮点寄存器可以保存88条指令。在三个浮点单元中,有一个加法器,一个乘法器,这两 个单元可以执行MMX指令和3DNow指令。还有一个浮点单元负责数据的装载和保存。由于K7强大的浮点单元,使AMD处理器在浮点上首次超过了 Intel当时的处理器。 Athlon内建128KB全速高速缓存(L1 Cache),芯片外部则是1,2时频率、512KB容量的二级高速缓存(L2 Cache),最多可支持到8MB的L2 Cache,大的缓存可进一步提高服务器系统所需要的庞大数据吞吐量。 Athlon的封装和外观跟Pentium ?相似,但Athlon采用的是Slot A接口规格。Slot A接口源于Alpha EV6总线,时钟频率高达200MHz,使峰值带宽达到1.6GB/S,在内存总线上仍然兼容传统的100MHz总线,现这样就保护了用户的投资,也降低 了成本。后来还采用性能更高的DDR SDRAM,这和Intel力推的800MHz RAMBUS的数据吞吐量差不多。EV6总线最高可以支持到400MHz,可以完善的支持多处理器。所以具有天生的优势,要知道Slot1只支持双处理器 而SlotA可支持4处理器。SlotA外观看起来跟传统的Slot1插槽很像,就像Slot1插槽倒转180度一样,但两者在电气规格、总线协议是完全 不兼容的。Slot 1,Socket370的CPU,是无法安装到Slot A插槽的Athlon主板上,反之亦然。 三、踏入新世纪的CPU 进入新世纪以来,CPU进入了更高速发展的时代,以往可望而不可及的1Ghz大关被轻松突破了,在市场分布方面,仍然是Intel跟AMD公司在 两雄争霸,它们分别推出了Pentium4、Tualatin核心Pentium ?和Celeron、Tunderbird核心Athlon、AthlonXP和Duron等处理器,竞争日益激烈。 1、在Intel方面,在上个世纪末的2000年11月,Intel发布了旗下第四代的Pentium处理器,也就是我们天天都能接触到的 Pentium 4。Pentium 4没有沿用PIII的架构,而是采用了全新的设计,包括等效于的400MHz前端总线(100 x 4), SSE2指令集,256K-512KB的二级缓存,全新的超管线技术及NetBurst架构,起步频率为1.3GHz。 第一个Pentium4核心为Willamette,全新的Socket 423插座,集成256KB的二级缓存,支持更为强大的SSE2指令集,多达20级的超标量流水线,搭配i850/i845系列芯片组,随后Intel陆 续推出了1.4GHz-2.0GHz的Willamette P4处理器,而后期的P4处理器均转到了针角更多的Socket 478插座。 和奔腾III一样,第一个Pentium4核心并不受到太多的好评,主要原因是新的CPU架构还不能受到程序软件的充分支持,因此 Pentium4经常大幅落后于同频的Athlon,甚至还如Intel自己的奔腾III。但在一年以后,Intel发布了第二个Pentium4核心, 代号为Northwood,改用了更为精细的0.13微米制程,集成了更大的512KB二级缓存,性能有了 南京机电职业技术学院信息工程系2011级毕业论文 大幅的提高,加上Intel孜孜不倦的推广和主 板芯片厂家的支持,目前Pentium4已经成为最受欢迎的中高端处理器。 在低端CPU方面,Intel发布了第三代的Celeron核心,代号为Tualatin,这个核心也转用了0.13微米的工艺,与此同时二 级缓存的容量提高到256KB,外频也提高到100Mhz 2、在AMD方面,在2000年中发布了第二个Athlon核心——Tunderbird,这个核心的Athlon有以下的改进,首先是制造工 艺改进为0.18微米,其次是安装界面改为了SocketA,这是一种类似于Socket370,但针脚数为462的安装接口。最后是二级缓存改为 256KB,但速度和CPU同步,与Coppermine核心的奔腾III一样。 Tunderbird核心的Athlon不但在性能上要稍微领先于奔腾III,而且其最高的主频也一直比奔腾III高,1Ghz频率的里程碑 就是由这款CPU首先达到的。不过随着Pentium4的发布,Tunderbird开始在频率上落后于对手,为此,AMD又发布了第三个Athlon 心——Palomino,并且采用了新的频率标称制度,从此Athlon型号上的数字并不代表核 实际频率,而是根据一个公式换算相当于竞争对手(也就是 Intel)产品性能的频率,名字也改为AthlonXP。最 后,AthlonXP还兼容Intel的SSE指令集,在专门为SSE指令集优化的软件中也能充分发挥性能。在低端CPU方面,AMD推出了Duron CPU,它的基本架构和Athlon一样,只是二级缓存只有64KB。Duron从发布开始,就能远远抛离同样主攻低端市场的Celeron,而且价格更 低廉,一时间Duron成为低价DIY兼容机的第一选择,但Duron也有它致命的弱点,首先是继承了Athlon发热量大的特点,其次是它的核心非常脆弱,在安装CPU散热器时很容易损坏。 2.7CPU的发展趋势 CPU自打电脑诞生以来就一直平稳的升级、换代、过度,充当着计算机大脑的角色。可是CPU它走到了生命的十字路口,它站在路中央面临着3种选择:向前、向左、向右。 向前:CPU从诞生开始沿着频率之路走了很久。直到有一天,频率之路变得崎岖泥泞。CPU见势不妙,拐到了多核大街。目前他正沿着多核大街继续前行。时下,双核CPU已然成为主流。平台成熟度应很高,双核CPU及其配套的主板价格已经降到了普通消费者也能承受的地步。两大巨头AMD和Intel正在酝酿着推出更高规格的4核桌面处理,预计明年就可以推出。沿着双核大街走下去,也许后年就成了8核,再往后16核、32核„„。但是双核大街并不平坦,制造技术问题困扰着生产商。更重要的是消费者到底需要多少核, 向左:干掉内存。今年九月底在IDF论坛上面,英特尔已经向大家展示了一款集成了内存的80核处理器:说明CPU集成内存的TSV(Through Silicon Vias)技术已经完成。TERAFLOP处理器每个核心都独立集成了256MB的内存,预计这款产品将在2010年上市。 南京机电职业技术学院信息工程系2011级毕业论文 而AMD处理器中集成内存控制器的设计为处理器与内存开始整合吹响了冲锋号,自此CPU有可能把内存吃掉,在电脑中更加扎实自己的霸主地位。 向右:被显卡整合。自从AMD和ATI双A合璧以来,AMD与NVIDIA的合作依然进行,但是后者的却处在一个很尴尬的地位。于是,屡屡有NVIDIA的新闻传出,有说NVIDIA要投入Intel的怀抱;也有说NVIDIA即将一蹶不振;同样我们可以猜想NVIDIA是否会将CPU整合到其GPU?中,因为NVIDIA有这个实力。在CPU与GPU结合中,有了ATI的AMD要走的更前一步,已经放出其在2008年推出整合了显卡功能的处理器,这种芯片采用45nm工艺制造。甚至已经有人将CPU和GPU的联合体命名为IPU(Intergrated Processing Unit 整合处理单元)。 前、左、右三个方向都有很大的可能,也许CPU阵营会一分为三,分别朝着三个方向发展。我们只能拭目以待。 参考文献 本论文通过网上搜索CPU功能,向有关人士了解CPU性能的方法来完成,并借阅了有关书籍和文章。 致谢词 本设计是在南京机电职业技术学院信息工程系老师的悉心指导下完成的。在此,对他们的辛勤付出表示由衷的感谢。此外,对本设计过程中给予我帮助的同学和同事也表示最诚挚的谢意。
/
本文档为【毕业设计论文—浅谈中央处理器(CPU)的功能与发展】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索