为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

自适应巡航系统

2017-09-29 16页 doc 385KB 48阅读

用户头像

is_477730

暂无简介

举报
自适应巡航系统自适应巡航系统 本文谈论的是自适应巡航控制系统(ACC),它的第一部分讨论了 “环车感应系统”和作为全天候ACC系统基础的调频连续波(FMCM)雷达系统。 环车感应系统 几乎每分钟都有人在交通事故中丧失生命,受伤的人更不计其数。此外,交通事故带来的经济损失也成了天文数字。因此,汽车制造商和零件供应商一直致力于避免交通事故的发生,即便不能完全防止意外,至少也要减少因交通事故所造成的伤害。汽车安全性能得到改善很大一部分都归功于汽车电子的发展。 对车辆碰撞和驾驶员反应之间关联性的分析显示,大量的交通事故都可以通过驾驶员及时发...
自适应巡航系统
自适应巡航系统 本文谈论的是自适应巡航控制系统(ACC),它的第一部分讨论了 “环车感应系统”和作为全天候ACC系统基础的调频连续波(FMCM)雷达系统。 环车感应系统 几乎每分钟都有人在交通事故中丧失生命,受伤的人更不计其数。此外,交通事故带来的经济损失也成了天文数字。因此,汽车制造商和零件供应商一直致力于避免交通事故的发生,即便不能完全防止意外,至少也要减少因交通事故所造成的伤害。汽车安全性能得到改善很大一部分都归功于汽车电子的发展。 对车辆碰撞和驾驶员反应之间关联性的分析显示,大量的交通事故都可以通过驾驶员及时发现危险并做出适当机动操纵而得到避免。为达到这项要求,我们可以为驾驶员提供适当的警告信号或让车辆配备自动的纵向及横向控制功能(驾驶员辅助系统)。我们还需要适当的传感器来探测可能出现的危险,这类传感器网络必须覆盖车身四周,同时提供适当的人机界面。 电子环车感应系统形成了许多驾驶员辅助系统的基础,这些系统会发出警告或主动进行干预。驾驶员辅助系统的目标之一是避免车辆发生正面碰撞,危险警告系统及主动刹车控制系统可以大幅较少这类事故,自适应巡航控制系统(ACC)是达成此目标的第一步。 现有的ACC系统大都以毫米波雷达为基础,主要分为脉冲系统和连续波系统;而连续波系统又可分为调频连续波系统(FMCW)和扩频系统。77 GHz FMCW雷达可以探测1-150m以内的物体,并算出它们与汽车之间的相对距离和速度。这类雷达只要安装适当数量的天线,便能进一步分辨物体与车辆纵轴间的夹角。 环车感应系统——自适应巡航控制 环车感应系统(见下图)构成了许多驾驶员辅助系统的基础,它分为: —超声波、雷达、视觉识别和导航系统; —被动和主动系统; —安全系统和舒适系统; —根据它们在系统内的功能而分的驾驶支援、被动安全、碰撞缓冲或车辆控制系统; 自适应巡航控制系统是车辆控制功能的一部分,它主动干预车辆的纵向控制。如果车辆与前车之间的距离小于预设的最小距离,那么,它们会迫使车辆减速;如果前后两车之间的间隔距离足够远,它们就会把车辆加速到设定的速度。目前安装于车辆的自适应巡航控制系统都以行车舒适为考虑,它们对于煞车的干预程度最大仅有刹车力的30%,车辆控制最终掌握权在驾驶员手中。因此,现有的自适应巡航控制系统特别适合车流密度较小的道路,例如快速道路或高速公路。 未来的自适应巡航控制系统将会采用更多传感器,因此适合繁忙的都市道路。人们还能进一步发展出ACC Stop-And-Roll(S&R)和ACC Stop-And-Go(S&G)等功能,让车辆在行驶之间能够自动停止和重新前进,这样一来车道将变得更安全,交通流将更顺畅。这些驾驶辅助系统的最终目标是将车身的四周360度全都纳入监测范围,同时扩大自适应巡航控制系统功能以提供完整的纵向控制能力。 环车感应系统的传感器 如上图所示,监测车身四周需要有一系列不同的传感器。红外线(IR)和长距离雷达(LRR)这两种传感器都很适合于ACC系统。红外线传感器可用于LIDAR(光探测和测距)系统中,其探测距离最远可达120米;77 GHz长距离雷达传感器的监测距离可以延长到150米。与LRR传感器相比,IR传感器具有一个价格上的优势,但也有个明显的缺点,即在恶劣气候下(如大雨、下雪、起雾或沙尘暴等),监测距离会大幅缩短。另一方面,雷达传感器却几乎不受天气的影响。雷达传感器的另一个优点是它们能被隐蔽地安装于汽车前端,例如77 GHz雷达天线就很小,几乎能安装于车身的任何位置。因此,目前大多数的自适应巡航控制系统都采用77 GHz长距离雷达。 ACC系统的主要任务是在前车距离过近时将车辆减速,距离足够远时加速。完成此任务所需的控制参数——车速和反应时间(见下控制回路图)是由司机通过人机界面(HMI)来设定的(见下图2(方块图))。整个控制功能是由传感器控制单元(SCU)来提供。SCU的主要功能是控制ACC系统的传感器和目标识别,其控制参数计算和相关系统启动则是由ACC系统的电子控制单元(EUU)负责执行。 ACC系统传感器的接收信号需要进一步处理。在目标识别时,系统会根据信号所含的信息来计算出潜在对象的距离和相对速度。车距控制需要从ACC雷达系统所探测的所有目标中精确地锁定其中一个;锁定目标时会用上车辆移动方面的信息,如加速度、车轮转速、转向角和偏航率。根据驾驶本身的车速和所要求的反应时间,ACC系统还可计算出所需的最小车距。 若在现行车速下计算出的车距过近,ACC系统就给适当的系统(如引擎管理,刹车系统)送出减速命令,从而调整车距。若调整后的车距已经足够,车速就会被调至所需的速度。要做到这点,ACC系统须向相关驱动发出加速命令。若车辆无法保持最小车距,系统便会在人机界面上显示所设定的反应时间和警告信号。下图是自适应系统的各个元器件以及它们在车身的相对位置。 注:前轮驱动的汽车 ASR=加速滑移控制(牵引控制) ESP=电子稳定系统(电子稳定控制) 调频连续波雷达系统 现有的自适应巡航控制系统大多采用毫米波雷达系统,其中又以调频连续波技术(FMCW)应用最为广泛。FMCW雷达系统能同时探测出目标相对于车辆的距离和速度。若安装适当数量的天线,它们还能计算出目标与车辆的纵轴夹角。 在调制周期内(tm),调频连续波雷达的发射频率会以线性方式在频率偏移范围内(调制范围,fh)不断改变。下图A是包含三段斜波的发射信号频率曲线。在发射机和目标都未移动的静态系统中(见图B),接收信号的频率会落后于发射信号,其频率差与发射机和物体之间的距离成正比。将发射信号和接收信号混频会产生频率较低的中频信号,该中频的最大值就叫做差拍频率(fb)。 图A、图B 如果物体相对于发射机在移动,接收信号的频率就会因为多卜勒效应而改变。物体接近时,接收信号的频率会升高,物体远离时则降低。若忽略发射机与物体的距离,以相对速度vrel接近就会产生如下图C中的接收信号,此时中频fd保持不变。将图B与图C中的频率曲线相加在一起即可得到一个完整接收信号,它的中频信号包含发射机与目标之间的距离和相对速度等信息(见图D)。 图C、图D 下图E和图F为发射机与物体以相对速度vrel远离时的频路曲线。 图E、图F 中频可由调频连续波雷达方程式表示成距离r和相对速度vrel的函数,其中相加代表发射机与目标逐渐接近,相减则代表逐渐远离。 当c=光速 本文谈论的是ACC系统的硬件和软件实现,以及雷达功能和算法。它的第一部分讨论了 “环车感应系统”和作为全天候ACC系统基础的调频连续波(FMCM)雷达系统。 ACC系统如何运作——硬件系统 耿氏压控振荡器(Gunn VCO)常被用来产生非常高频率的发射信号。如果将发射天线与接收天线结合在一起,发射信号就会通过环行器(见图1)与接收信号一起被多路复用。接收信号会与当前发射信号结合在一起产生中频信号。由于中频信号频率比发射信号和接收信号频率低得多,因此它的取样值非常适合传给数字处理器作进一步的处理。 ACC雷达传感器虽然是在高频范围(射频,RF)内操作,其计算距离和相对速度的信号处理却是在低频(LF)中进行。图2为ACC系统的功能方块图。RF部分(左)由耿氏控制电路、耿氏振荡器、混频器和前置放大器组成;LF部分则包含模拟数字转换器、信号处理和系统控制组件,以及电源供应和汽车网络接口。 微控制器(德州仪器的TMS470R1VF76B)内含两个中央处理器,分别为ARM7 RISC(微型处理器,MCU)和16位C54 x定点数字处理器(DSP),因此最适合需要同时执行控制任务和高效能数字信号运算的应用。用直接内存存取(DMA)可以加快两个处理器、各种外围接口和内存之间的数据传输速度。TMS470R1VF76B完全符合汽车应用需求,是适应ACC系统最理想的微控制器。图3是微控制器在ACC系统应用中的典型功能方块图。 ACC系统软件 除普通的诊断任务之外,ACC系统还会执行许多系统工作,其顺序如功能方块图所示。 1. 读取通过人机接口进入的控制参数默认值(速度、时间间隔)以及传感器根据目前车况所探测到的参数(转向角、轮速和偏航率等); 2. a)设定发射频率的斜波参数(开始频率,停止频率和斜波时间); b)设定模拟数字转换器(转换速率,样本数目); 3. 设定发射频率,启动耿氏振荡器; 4. 产生发射信号; 5. a)将发射信号透过所有天线同时发射出去,并将发射信号与接收信号混频产生中频信号; B)用于耿氏控制的控制回路; 6.中频信号的滤波与放大; 7.中频信号取样; 8.透过DMA将取样值传给DSP; 9.执行数字信号处理(调频连续波(FMCW)雷达任务的第一部分) 10.交换DSP计算数据; 11.执行数字信号处理(FMCW雷达任务的第二部分) 12.通过汽车网络(如CAN总线)与电子控制单元(ECU)的通信来调整速度或距离。 图1 图2 图3 功能方块图 FMCW雷达能探测出可能对车速和车距造成影响的目标。如下图所示,这些雷达任务可分为两大类,第一类的频谱分析、峰值探测和角度测量的运算量都非常大,较适合由DSP执行;另一类的频率调制、位置预测、频率匹配、位置追踪和群滤波都是较为简单的运算或控制功能,因此通常是由微控制处理器负责。此处为优化数据流,所以处理器工作的分配略有不同。 如图所示,Robert Bosch的ACC系统目前是利用调频方式来产生三种线性频率斜波,其斜波时间各不相同。 发射信号会透过四组天线(A, B, C, 和D)同时发射出去。下图是对应的天线图。 每个天线的接收信号都会与目前的发射信号混频,以产生中频信号。在这个例子里,系统总共会产生12个中频信号(A1、A2、A3、B1„D3),并对这些信号进行分析以决定目标的位置。下图是中频信号频谱的范例。为了消除频谱中的噪声,系统在执行信号处理之前会先替中频信号设定一个自适应临界值(Adaptive Threshold),凡是信号强度低于临界值的频率都会被视为噪声,要加以滤除。在上图的范例中,所有可能目标的旁边都有红色的x做标识。由于与零频接近的峰值是由天线镜面的反射所产生,因此会被排除。其它频率值被用做进一步的处理。 系统将12个中频信号的噪声消除后,就会用快速傅立叶转换(FFT)从这些中频信号的取样值计算出12组频谱;频谱的每个频率都代表系统所探测的一个目标,它也对应于中频信号频谱经过噪声滤波后剩下的峰值信号。我们可以根据调频连续波雷达方程式, 在速度/距离图中为频谱的每个频率指定一条直线。下图又一次表示出了它们的关联性。 要确认系统是否探测到任何目标,我们必须以天线频谱做为参考比较。如果3个频率斜波所得到的直线都相交于速度/距离图(见下图)上的同一点,我们就可以认定目标已被系统所探测,然而这种方法有时会得到俗称“鬼影信号”的虚假目标。 我们可以根据先前计算结果和移动连续性来预测目标的可能位置,然后利用这项信息检查频率匹配的真实性,再将虚假目标排除。最后,我们要将已探测目标的参数储存起来,提供给下次计算使用。 发射信号通常会被目标上的多个点反射回来(例如后车窗、行李箱和车轮等)。这一现象尤其会体现在卡车之类结构非常明显的目标上,它们会在速度/距离图上产生多个很靠近的交叉点(如图所示)。 若使用多组接收天线,除了距离和相对速度之外,我们还能计算出目标与车辆纵轴之间的夹角,从而确认目标与汽车间的相对位置。下图为采用4组重叠电波接收天线的自适应巡航控制系统的探测区。 采用多组接收天线会使每个目标在速度/距离图上出现多个交叉点,这与目标有多个反射点是类似的。下面是使用两组接收天线所得到的详细速度/距离图。为了在预测位置时,将所需的运算和记忆空间减至最少,我们必须把这些探测点对应到同一个目标。 ACC系统——Bosch LRR2 许多高级汽车早已提供自适应巡航控制系统,或至少将其作为选购配备。随着技术的进步,性价比越来越具有吸引力,运算性能大幅提升,实际器件的体积越来越少。 德州仪器的TMS470R1VF76B微控制器内含两个中央处理器,使单芯片组件具有高效的运算功能。因此,信号处理的零件数目得到大幅减少,整个系统的体积也更为精巧。这样一来,我们只需两张小型电路板就能组成完整系统:其中之一是射频单元(雷达传感器、耿氏压控振荡器和前置放大器);另一是低频单元(电源、DSP和汽车网络接口)。Robert Bosch公司的LRR2自适应巡航控制系统将体积缩小为73×70×60mm(内部2.9×2.8×2.4英寸),使其能安装于车辆前端任何位置。 未来的自适应巡航控制系统将提供更理想的性价比,同时增加更多新功能(如Stop&Go和盲点探测等),并采用其它类型的传感器,使中价位的汽车或小型车都能享受这项先进科技带来的诸多好处。 Rainer Troppmann Texas Instruments公司
/
本文档为【自适应巡航系统】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索