为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

初中数学校本教材

2017-10-23 16页 doc 201KB 37阅读

用户头像

is_215732

暂无简介

举报
初中数学校本教材初中数学校本教材 ——《校本课程》序言 一、把握数学的生活性——“使教学有生活味” 《数学课程标准》中指出:“数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择和判断,进而解决问题,直接为社会创造价值”。这说明数学来源于社会,同事也反作用于社会,社会生活与数学关系密切,他已经渗透到生活的每个方面,我们的衣食住行都离不开它。现代数学论认为:数学源于生活,又运用于生活,生活中充满数学,数学教育寓于生活实际。有意识地引导学生沟通生活中的具体问题与有关数学问题的联系,借助学生熟悉的生活实际中的...
初中数学校本教材
初中数学校本教材 ——《校本课程》序言 一、把握数学的生活性——“使教学有生活味” 《数学课程标准》中指出:“数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择和判断,进而解决问,直接为社会创造价值”。这说明数学来源于社会,同事也反作用于社会,社会生活与数学关系密切,他已经渗透到生活的每个方面,我们的衣食住行都离不开它。现代数学论认为:数学源于生活,又运用于生活,生活中充满数学,数学教育寓于生活实际。有意识地引导学生沟通生活中的具体问题与有关数学问题的联系,借助学生熟悉的生活实际中的具体事例,激发学生学习数学的求知欲,帮助学生更好的理解和掌握数学基础知识,并运用学到的数学知识去解决实际生活中的数学问题。 二、把握数学的美育性——“使教学有韵味” 数学家克莱因认为:“数学是人类最高超的智力成就,也是人类心灵最独特的创作。音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。”美作为现实的事物和现象,物质产品和精神产品、艺术作品等属性总和,具有:匀称性、比例性、和谐性、色彩变幻、鲜明性和新颖性。作为精神产品的数学就具有上述美的特点。 简练、精确是数学的美。数学的基本定理说法简约,却又涵盖真理,让人阅读简便又印象深刻。数学语言是如此慎重的、有意的而且经常是精心的,凭借数学语言的严密性和简洁性,我们就可以表达和研究数学思想,这样简洁性有助于思维的效率。 数学很讲究它的逻辑美。数学的应用是被人们广泛认同的,可学习数学还能训练人的逻辑思维能力。尤其是几何的证明讲究前因后果,每一步都要前后呼应,抽象的数学也显示它模糊的美。抽象给我们想象的余地,让我们思维海阔天空,给学生留有了思索和创新的空间。抽象的数学不正展示它的魅力吗, 数学上有很多知识是和对称有关的。对称给人协调,平稳的感觉,象圆,正方体等,它们的形式是如此的匀称优美。正是由于几何图形中有这些点对称、线对称、面对称,才构成了美丽的图案,精美的建筑,巧夺天工的生活世界,也才给我们带来丰富的自然美,多彩的生活美。 中学数学的美育性,除了上述一些方面,还有其它美妙的地方,只有我们用心挖掘和捕捉,就会发现数学蕴涵着如此丰富的美的因素,教师要善于挖掘 美的素材,在学生感受美的同时既提高教学质量,又是教学韵味深厚。 第一章 兴趣数学 1 Konigsberg 七桥问题(一笔画问题) 18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡, 那里有七座桥。如图1所示:河中的小岛A与河的 左岸B、右岸C各有两座桥相连结,河中两支流间 的陆地D与A、B、C各有一座桥相连结。当时哥尼 斯堡的居民中流传着一道难题:一个人怎样才能一次 走遍七座桥,每座桥只走过一次,最后回到出发点, 大家都试图找出问题的答案,但是谁也解决不了这个 问题。 七桥问题引起了著名数学家欧拉(1707—1783)的关注。 他把具体七桥布局化归为图所示的简单图形,于是, 七桥问题就变成一个一笔画问题:怎样才能从A、B、 C、D中的某一点出发,一笔画出这个简单图形 (即笔不离开纸,而且a、b、c、d、e、f、g各条线 只画一次不准重复),并且最后返回起点, 欧拉经过研究得出的结论是:图是不能一笔画出的图形。这就是说,七桥问题是无解的。这个结论是如何产生呢, 如果我们从某点出发,一笔画出了某个图形,到某一点终止,那么除起点和终点外,画笔每经过一个点一次,总有画进该点的一条线和画出该点的一条线,因此就有两条线与该点相连结。如果画笔经过一个n次,那么就有2n条线与该点相连结。因此,这个图形中除起点与终点外的各点,都与偶数条线相连。 如果起点和终点重合,那么这个点也与偶数条线相连;如果起点和终点是不同的两个点,那么这两个点部是与奇数条线相连的点。 综上所述,一笔画出的图形中的各点或者都是与偶数条线相连的点,或者其中只有两个点与奇数条线相连。 图2中的A点与5条线相连结,B、C、D各点各与3条线相连结,图中有4个与奇数条线相连的点,所以不论是否要求起点与终点重合,都不能一笔画出这个图形。 欧拉定理 如果一个图是连通的并且奇顶点的个数等于0或2,那么它可以一笔画出;否则它不可以一笔画出。 练习:[你能笔尖不离纸,一笔画出下面的每个图形吗,试试看。(不走重复线路) 图例1 图例2 图例3 图例4 2 四色问题 人人都熟悉地图,可是绘制一张普通的政区图,至少需要几种颜色,才能把相邻的政区或区域通过不同的颜色区分开来,就未必是一个简单的问题了。 这个地图着色问题,是一个著名的数学难题。大家不妨用一张中国政区图来试一试,无论从哪里开始着色,至少都要用上四种颜色,才能把所有省份都区别开来。所以,很早的时候就有数学家猜想:“任何地图的着色,只需四种颜色就足够了。”这就是“四色问题”这个名称的由来。 四色问题又称四色猜想,是世界近代三大数学难题之一。 四色问题的内容是:“任何一张地图只用四种颜色就能 使具有共同边界的国家着上不同的颜色。”用数学语言表示, 即“将平面任意地细分为不相重迭的区域,每一个区域总可 以用1,2,3,4这四个数字之一来标记,而不会使相邻 的两个区域得到相同的数字。”(右图) 这里所指的相邻区域,是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点,就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。 数学史上正式提出“四色问题”的时间是在1852年。当时伦敦的大学的一名学生法朗西斯向他的老师、著名数学家、伦敦大学数学教授莫根提出了这个问题,可是莫根无法解答,求助于其它数学家,也没有得到答案。于是从那时起,这个问题便成为数学界的一个“悬案”。 一直到二十年前的1976年9月,《美国数学会通告》正式宣布了一件震撼全球数学界的消息:美国伊利诺斯大学的两位教授阿贝尔和哈根,利用电子计算机证明了“四色问题”这个猜想是完全正确的~他们将普通地图的四色问题转化为2000个特殊图的四色问题,然后在电子计算机上计算了足足1200个小时,作了100亿判断,最后成功地证明了四色问题,轰动了世界。 这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时候,当地的邮局在当天发出的所有邮件上都加盖了“四色足够”的特制邮戳,以庆祝这一难题获得解决。 3 麦比乌斯带 每一张纸均有两个面和封闭曲线状的棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就可从纸上的任何一点到达其他任何一点,这有可能吗?事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了。这是德国数学家麦比乌斯(Möbius.A.F 1790-1868)在1858年发现的,自此以後那种带就以他的名字命名,称为麦比乌斯带。有了这种玩具使得一支数学的分支拓朴学得以蓬勃发展。 4 分割图形 分割图形是使我们的头脑灵活,增强观察能力的一种有趣的游戏。 我们先来看一个简单的分割图形的题目??分割正方形。 在正方形内用4条线段作“井”字形分割,可以把正方形分 成大小相等的9块,这种图形我们常称为九宫格。 用4条线段还可以把一个正方形分成10块,只是和九宫格不同的是,每块的大小不一定都相等。那么,怎样才能用4条线段把正方形分成10块呢,请你先动脑筋想想,在动脑的同时还要动手画一画 其实,正方形是不难分割成10块的,下面就是其中两种分割方法。 想一想,用4条线段能将正方形分成11块吗,应该怎样分, 5数学故事 (1)奇特的墓志铭 在大数学家阿基米德的墓碑上,镌刻着一个有趣的几 何图形:一个圆球镶嵌在一个圆柱内。相传,它是阿基米 德生前最为欣赏的一个定理。 在数学家鲁道夫的墓碑上,则镌刻着圆周率π的35位 数值。这个数值被叫做。”鲁道夫数”。它是鲁道夫毕生心血 的结晶。 大数学家高斯曾经表示,在他去世以后,希望人们在他 的墓碑上刻上一个正17边形。因为他是在完成了正17边形 的尺规作图后,才决定献身于数学研究的…… 不过,最奇特的墓志铭,却是属于古希腊数学家丢番 图的。他的墓碑上刻着一道谜语般的数学题: “过路人,这座石墓里安葬着丢番图。他生命的1,6 是幸福的童年,生命的1,12是青少年时期。又过了生命 的 1, 7他才结婚。婚后 5年有了一个孩子,孩子活到他 父亲一半的年纪便死去了。孩子死后,丢番图在深深的悲 哀中又活了4年,也结束了尘世生涯。过路人,你知道丢 番图的年纪吗,” 丢番图的年纪究竟有多大呢, 设他活了X岁,依题意可列出方程。这样,要知道丢番图的年纪,只要解出这个方程就行了。 这段墓志铭写得太妙了。谁想知道丢番图的年纪,谁 就得解一个一元一次方程;而这又正好提醒前来瞻仰的人 们,不要忘记了丢番图献身的事业。 在丢番图之前,古希腊数学家习惯用几何的观点看待 遇到的所有数学问题,而丢番图则不然,他是古希腊第一 个大代数学家,喜欢用代数的方法来解决问题。现代解方程的基本步骤,如移项、合并同类项、,方程两边乘以同一因子等等,丢番图都已知道了。他尤其擅长解答不定方 程,发明了许多巧妙的方法,被西方数学家誉为这门数学 分支的开山鼻祖。 丢番图也是古希腊最后一个大数学家。遗憾的是,关 于他的生平。后人几乎一无所知,既不知道他生于何地, 也不知道他卒于何时。幸亏有了这段奇特的墓志铭,才知 道他曾享有84岁的高龄。 (2)希腊十字架问题 图上那只巨大的复活节彩蛋上有一个希腊十字架, 从它引发出许多切割问题,下面是其中的三个。 (a)将十字架图形分成四块,用它们拼成一个正方形; 有无限多种办法把一个希腊十字架分成四块,再把它们 拼成一个正方形,下图给出了其中的一个解法。 奇妙的 是,任何两条切割直线,只要与图上的直线分别平行, 也可取得同样的结果,分成的四块东西总是能拼出一个 正方形。 (b)将十字架图形分成三块,用它们拼成一个菱形; (c)将十字架图形分成三块,用它们拼成一个矩形,要求其 长是宽的两倍。 第二章 归纳与发现 归纳的方法是认识事物内在联系和规律性的一种重要思考方法,也是数学中发现命题与发现解题思路的一种重要手段(这里的归纳指的是常用的经验归纳,也就是在求解数学问题时,首先从简单的特殊情况的观察入手,取得一些局部的经验结果,然后以这些经验作基础,分析概括这些经验的共同特征,从而发现解题的一般途径或新的命题的思考方法(下面举几个例题,以见一般( 例1 如图2-99,有一个六边形点阵,它的中心是一个点,算作第一层;第二层每边有两个点(相邻两边公用一个点);第三层每边有三个点,„这个六边形点阵共有n层,试问第n层有多少个点,这个点阵共有多少个点, 分析与解 我们来观察点阵中各层点数的规律,然后归纳出点阵共有的点数( 第一层有点数:1; 第二层有点数:1×6; 第三层有点数:2×6; 第四层有点数:3×6; „„ 第n层有点数:(n-1)×6. 因此,这个点阵的第n层有点(n-1)×6个(n层共有点数为 例2 在平面上有过同一点P,并且半径相等的n个圆,其中任何两个圆都有两个交点,任何三个圆除P点外无其他公共点,那么试问: (1)这n个圆把平面划分成多少个平面区域, (2)这n个圆共有多少个交点, 分析与解 (1)在图2-100中,设以P点为公共点的圆有1,2,3,4,5个(取这n 个特定的圆),观察平面被它们所分割成的平面区域有多少个,为此,我们列出表 18(1( 由表18(1易知 S-S=2, 21 S-S,3, 32 S-S,4, 43 S-S,5, 54 „„ 由此,不难推测 S-S,n( nn-1 把上面(n-1)个等式左、右两边分别相加,就得到 S-S,2,3,4,„,n, n1 因为S=2,所以 1 下面对S-S=n,即S=S,n的正确性略作说明( nn-1nn-1 因为S为n-1个圆把平面划分的区域数,当再加上一个圆,即当n个圆过定点n-1 P时,这个加上去的圆必与前n-1个圆相交,所以这个圆就被前n-1个圆分成n部分,加在S上,所以有S=S,n( n-1nn-1 (2)与(1)一样,同样用观察、归纳、发现的方法来解决(为此,可列出表18(2( 由表18(2容易发现 a,1, 1 a-a,1, 21 a-a,2, 32 a-a,3, 43 a-a,4, 54 „„ a-a,n-2, n-1n-2 a-a,n-1( nn-1 n个式子相加 注意 请读者说明a=a,(n-1)的正确性( nn-1 例3 设a,b,c表示三角形三边的长,它们都是自然数,其中a?b?c,如果 b=n(n 是自然数),试问这样的三角形有多少个, 分析与解 我们先来研究一些特殊情况: (1)设b=n=1,这时b=1,因为a?b?c,所以a=1,c可取1,2,3,„(若c=1,则得到一个三边都为1的等边三角形;若c?2,由于a,b=2,那么a,b不大于第三边c,这时不可能由a,b,c构成三角形,可见,当b=n=1时,满足条件的三角形只有一个( (2)设b=n=2,类似地可以列举各种情况如表18(3( 这时满足条件的三角形总数为:1+2=3( (3)设b=n=3,类似地可得表18(4( 这时满足条件的三角形总数为:1,2,3=6( 通过上面这些特例不难发现,当b=n时,满足条件的三角形总数为: 这个猜想是正确的(因为当b=n时,a可取n个值(1,2,3,„,n),对应于a的每个值,不妨设a=k(1?k?n)(由于b?c,a,b,即n?c,n,k,所以c可能取的值恰好有k个(n,n,1,n,2,„,n,k-1)(所以,当b=n时,满足条件的三角形总数为: 例4 设1×2×3ׄ×n缩写为n~(称作n的阶乘),试化简:1~×1,2~×2,3~×3,„,n~×n. 分析与解 先观察特殊情况: (1)当n=1时,原式=1=(1,1)~-1; (2)当n=2时,原式=5=(2,1)~-1; (3)当n=3时,原式=23=(3,1)~-1; (4)当n=4时,原式=119=(4,1)~-1( 由此做出一般归纳猜想:原式=(n+1)~-1. 下面我们证明这个猜想的正确性( 1+原式=1+(1~×1,2~×2,3~×3+„+n~×n) =1~×2,2~×2,3~×3+„+n~×n =2~+2~×2,3~×3,„+n~×n =2~×3+3~×3+„,n~×n =3~+3~×3+„+n~×n,„ =n~+n~×n=(n,1)~, 所以原式=(n+1)~-1. 32 例5 设x,0,试比较代数式x和x+x+2的值的大小( 分析与解 本题直接观察,不好做出归纳猜想,因此可设x等于某些特殊值,代入两式中做试验比较,或许能启发我们发现解题思路(为此,设x=0,显然有 32x,x+x+2(? 32 设x=10,则有x=1000,x+x,2=112,所以 32x,x+x+2(? 32 设x=100,则有x,x+x+2( 32 观察、比较?,?两式的条件和结论,可以发现:当x值较小时,x,x+x+2; 32当x值较大时,x,x+x+2( 32 那么自然会想到:当x=,时,x=x+x+2呢,如果这个方程得解,则它很可能就 32是本题得解的“临界点”(为此,设x=x,x,2,则 32x-x-x-2,0, 32(x-x-2x),(x-2)=0, 2(x-2)(x+x+1)=0( 2 因为x,0,所以x+x+1,0,所以x-2=0,所以x=2(这样 32 (1)当x=2时,x=x+x+2; (2)当0,x,2时,因为 2x-2,0,x+x+2,0, 2 所以 (x-2)(x,x+2),0, 即 32x-(x,x+2),0, 32 所以 x,x,x,2. (3)当x,2时,因为 2x-2,0,x+x+2,0, 2 所以 (x-2)(x+x+2),0, 即 32x-(x,x,2),0, 32 所以 x,x,x,2( 综合归纳(1),(2),(3),就得到本题的解答( 练习七 1(试证明例7中: 2(平面上有n条直线,其中没有两条直线互相平行(即每两条直线都相交),也没有三条或三条以上的直线通过同一点(试求: (1)这n条直线共有多少个交点, (2)这n条直线把平面分割为多少块区域, 然后做出证明.) 5 3(求适合x=656356768的整数x( 55 (提示:显然x不易直接求出,但可注意其取值范围:50,656356768,60,所 22以50,x,60()
/
本文档为【初中数学校本教材】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索