为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

[宝书]最佳打鱼计划

2018-08-24 13页 doc 34KB 13阅读

用户头像

is_682974

暂无简介

举报
[宝书]最佳打鱼计划[宝书]最佳打鱼计划 论文题目:最佳捕鱼方案 摘要 在充分理解题意的基础上,我们提出了合理的假设。通过对问题的深入分析和对草鱼损失率的不同理解,我们建立了三个模型。 模型一中,损失率是基于水库草鱼的总量,草鱼的损失是一些定值的累加。在这种情况下,我们进行了粗略的估算,在日供应量方面,我们让每日草鱼的供应量达到售价方面的临界值。提出了四个可行的方案。通过比较认为方案四?能使总利润达到最大值404636元,共损失草鱼量为2625kg,当且仅当第1天至第15天,日供应量为1000kg,单价为25元,第16天至19天,日供应量为...
[宝书]最佳打鱼计划
[宝书]最佳打鱼 论文题目:最佳捕鱼 摘要 在充分理解题意的基础上,我们提出了合理的假设。通过对问题的深入和对草鱼损失率的不同理解,我们建立了三个模型。 模型一中,损失率是基于水库草鱼的总量,草鱼的损失是一些定值的累加。在这种情况下,我们进行了粗略的估算,在日供应量方面,我们让每日草鱼的供应量达到售价方面的临界值。提出了四个可行的方案。通过比较认为方案四?能使总利润达到最大值404636元,共损失草鱼量为2625kg,当且仅当第1天至第15天,日供应量为1000kg,单价为25元,第16天至19天,日供应量为1500kg,单价为20元。第20天售出1375kg,单价为20元。 在模型二、三中,为了更接近现实生活中的情况及人们的认知观,我们对第n天草鱼的损失率的理解是基于第n-1天剩下的草鱼而言。模型二,不考虑日供 373260.0应量在1500kg以上的情况,运用LINGO解出的结果为总利润的最大值为元,草鱼的损失为7113.960kg。第1天到第14天及第16天,每天售出草鱼1000kg,第19天售出886.04kg,其余每天售出500kg。 模型三在模型二的基础上做了一些改进(如考虑日供应量在1500kg以上的情况),建立了多目标的模型,求得总利润的最大值为332875元,草鱼的总死亡量为8828.493kg。第2天到第5天及第11天到16天,每天售出1000kg,其余每天售出500kg。 关键词: 0-1变量 规划问题多目标 LINGO 一、问题重述 该问题阐述的是一个水库的经营商为了提高经济效益,保证优质鱼类有良好的生活环境,必须对水库的杂鱼做一次彻底清理。因此经营商打算放水清库,同时为使捕捞鲜活草鱼投放市场时,获得最佳效益。现有如下条件:(1)水库现有水位平均为15米,自然放水每天水位降低0.5米,水库水位最低降至5米。(2)据估计水库内尚有草鱼25000余公斤。(3)若日供应量在500公斤以下,其价格为30元/公斤;日供应量在500—1000公斤,其价格降至25元/公斤,日供应量超过1000公斤时,价格降至20元/公斤以下,日供应量到1500公斤,已处于饱和。(4)关于放水清库的过程的成本计算大致如下:捕捞草鱼的成本水位于15米时,每公斤6元;当水位降至5米时,为3元/公斤。同时随着水位的下降草鱼死亡和捕捞造成损失增加,至最低水位5米时损失率为10%。 二、问题分析 通过简单的分析和思考,我们可以将获得最佳效益视为求解最优值的问题,即该问题可以归为一个数学规划问题。条件(1)(2)是针对目前状况的约束,条件(3)是通过卖鱼可以获得的利润,条件(4)是对成本的约束。在四个条件约束的情况下,我们可以建立模型。由于对损失率的理解不同,我们进行了不同的假设,并在这些假设下建立了模型一和模型二、三。模型一中,损失率是基于水库草鱼的总量,草鱼的损失是一些定值的累加。而在模型二、三中,为了更接近现实生活中的情况及人们的认知观,我们对第n天草鱼的损失率的理解是基于第n-1天剩下的草鱼而言。模型二将不考虑日供应量超过1500kg的情况,而模型三考虑。模型三的建立采用多目标的规划方法进行求解。 三、条件假设 1、在整个售鱼的过程中,顾客都只到该经营商处购鱼。 2、水位的变化除了每天的自然放水,不考虑蒸发等其他的情况。 3、每日售出的草鱼数量即为当天捕捞的草鱼,不出现有当天捕捞的鱼留到第二 天卖的情况。 4、假设在放水清库的过程中,随着水位的下降,捕捞成本成呈递减等差数列,而 草鱼的损失成递增等差数列。高放水的前一天为t=0,则水位降至5米时的那 一天为t=20。故每公斤草鱼的捕捞成本为bt=6-0.15t,草鱼的损失率 cn=0.5%t ( t ?20,t ?N) 5、在模型二、三中, (1)无论造成草鱼损失的原因是什么,我们假设每天草鱼损失的数量为前一天 的水库里草鱼的余量乘以当天的损失率。 (2)每日捕捞前均对已死亡的鱼进行处理,使捕捞出的草鱼皆为活鱼,且在运 输到售卖点的途中无死亡。即售出的鱼与当日捕捞的鱼的数量一致。 四、符号及变量说明 w——水库草鱼的总量(M=25000Kg) h——水库水位(5?h?15) C——草鱼的单价(C=30 25 20) bt——每公斤草鱼的捕捞成本(bn=6-0.15t) ct——第t天草鱼的损失率(cn=0.5%t) ——第t日草鱼的售出量(500??1500) xxtn ——表示第i天; ti w1——第n天的利润 Y——所有草鱼卖出后所得的钱; Z——捕捞所有草鱼的成本; ——第i天草鱼的捕捞量; xi ——第I 天每公斤草鱼的售价; yi ——第i天成本; zi ——第i天鱼的死亡量; mi ——第i天的鱼的死亡率; si ——第i天鱼的存活率; ni ——第i天的早上水库的鱼量; wi ——第i天晚上水库里排除当天的是捕捞量与死亡量剩下的鱼量;ki a b c d:表示0-1规划的变量; iiii P:i天内实际售出的总的草鱼量; i 五、模型的建立与求解 通过查找资料,我们得知草鱼的损失与水位并无直接的联系,通常是由于水 中的溶氧量,水温等因素造成的。 模型一: 我们令草鱼的损失与水位无关且在假设3的情况下,首先,我们先将条件(3) 用数学符号表示出来,则有: 30元xkg,500,t,C,25元每公斤草鱼售价: 5001000kgxkg,,,t,20元10001500kgxkg,,,t 在该假设下,损失鱼的总量容易求出,为2625公斤。 设第t天捕捞草鱼公斤,其价为y元/公斤,则该天的实际捕捞量为x(10.5%),nxtt 该天的利润w1为: wtxybttxyt1(10.5%)()(10.5%)(60.15),,,,,,,tt 2,,,,,,xtttyy(0.000750.180.0056)n 2若?500kg,则y=30元,则,对称轴为20。xwxtt1(0.000750.0324),,,,tt 2若500??1000kg,则y=25元,则,对称轴xwxtt1(0.000750.05519),,,,tt 大于20。 2若1000??1500kg,则y=20元,则,对称轴xwxtt1(0.000750.0814),,,,tt 大于20。 由此可知随着天数的增加,W1值递增。即当价格不变的情况下,第20天时,当天利润最大。 由上面的分析可知,在市场容量允许的范围内,草鱼捕捞时间越后,获利越大。但市场的容量是有限的,投放量不能超过1500公斤,且随着投放量的增加,价格随着下降。我们可以通过下表来反映出来。 价格/元 第1天的利润/元 第20天利润/元 捕捞量/kg W1’ 30 12015 12150 500 W2’ 25 19054 19800 1000 W3’ 20 21119 1500 在该模型下,我们可以采取以下的方案来捕捞鱼。由损失的鱼量(2625kg),计算出水库能够售出的鱼的数量为22375kg。 方案一,每天捕捞500kg。显然,若维持每天的捕捞量不变,1000kg的利润明显比500kg的利润多。故不计算了。 方案二,每天捕捞1000kg的捕捞量,总利润为38940元。 方案三,价格为20元的情况下,最多维持14天,还剩下的鱼有1375公斤,则第15天,采用25元的售价,售出1000kg,第16天用20元的价格,售出375kg。则在这种情况下的总利润为305460+19656+8898.8=343414元。 方案四,第20天售出1375kg的情况,另外让售价为25元维持15天(前15天),售价为20元的维持4天(第16天至第19天),这样取得的最大部利润为290670+ 91016+ 22950=404636元。 在这样的假设前提下,我们可以选择方案4,使利润最大。但是实际情况常常与此不是很符合。所以我们又对问题进行了进一步的分析,建立了模型二和模型三。 模型二: 虽然草鱼的损失与水位并无直接的联系,但是溶氧量,水温等因素可能也是 由于水位的降低造成的。所以,在模型二的假设前提条件下,我们假设损失率与水位成一次线性关系,且不存在草鱼日供应量大于1500kg的情况,则有: 当时, ;当 时 , ;当xkg,500y,305001000,,xy,25iiii :此时假设其货价与售量成一次线性关系过点(1000,20),(1500,10001500,,xi 6);; yx,,,028480.ii 第i天的售价为且 Yabxcx,,,,,[3025(0.02848)] iiiiii (1,,01)abcabc,,,,;或 ; iiiiii 20 所以总售价 且 Yabxcx,,,,,[3025(0.02848)] ,iiiii,i1 (1,,01)abcabc,,,,;或 ; iiiiii 成本: 此时假设其货价与水位成一次线性关系,因捕捞草鱼的成本水位于 公斤。故此时成本与水位的15米时,每公斤6元;当水位降至5米时,为3元/ Zh,,0.31.5515,,hht,,,0.515关系为();因为水位与时间的关系;第i天的成本为; Ztxtx,,,,,,,[0.3(0.515)1.5][0.156] iiiii 所以总成本与时间的关系: 2020 ; Zttx,,,,,,,[0.3(0.515)1.5[0.156] ,,iii,,ii11 存活量:此时假设其损失率与水位成一次线性关系由随着水位的下降草鱼死亡和捕捞造成损失增加,至最低水位5米时损失率为10%,且在水位为15米时损失率为0。故第i天的损失率与时间的关系 (120),,tShtt,,,,,,,,,1%15%0.01(0.515)0.150.005 且即第i天的存活iiii nSt,,,,110.005w,25000率与时间的关系;第一天早上的存活量;第i天iii1 早上的存活量为第i-1天早上的存活量与第i天的存活率之积即wwnwt,,, (10.005)kxt,,,(25000)(10.005) ;第一天晚上的存活量;iiiii,,11111 第 i天晚上的存活量为第i-1天晚上的存活量减去第i天的售量与第i天的存 kkxt,,,()(10.005) mxt,,(25000)0.005 活率之积即;第一天的死亡量;iiii,1111 第 i天晚上死亡量为第i-1天晚上的存活量减去第i天的售量与第i天的死亡 mkxt,,()0.005 率之积即; iiii,1 由上可知20天内实际售出鱼的总量为总草鱼量减去总死亡量即 2020 Pxmm,,,,25000,,ii201,,ii12 该模型的纯收入由LINGO编程求解得,最大利润为373260.0元,草鱼的死()YZ, 亡量为7113.960kg当且仅当水库放水售鱼的20天的具体情况如下表: 第1天 第6天 第11天 第16天 1000kg 1000kg 1000kg 1000kg 第2天 第7天 第12天 第17天 1000kg 1000kg 1000kg 500kg 第3天 第8天 第13天 第18天 1000kg 1000kg 1000kg 500kg 第4天 第9天 第14天 第19天 1000kg 1000kg 1000kg 886.04kg 第5天 第10天 第15天 第20天 1000kg 1000kg 500kg 500kg 模型三: 虽然草鱼的损失与水位并无直接的联系,但是溶氧量,水温等因素可能也是由于水位的降低造成的。所以,在模型二的假设前提条件下,我们假设损失率与水位成一次线性关系,则有: 当时, ;当 时 , ;当xkg,500y,305001000,,xy,25iiii :此时假设其货价与售量成一次线性关系过点(1000,20),(1500,10001500,,xi y,66);;当 时,; yx,,,028480.x,1500iiii 第i天的售价为Yabxcdx,,,,,,[3025(0.02848)6] 且 iiiiiii (1,,,01)abcdabcd,,,,,;或 ; iiiiiiii 20 所以总售价 且 Yabxcdx,,,,,,[3025(0.02848)6] ,iiiiii,i1 (1,,,01)abcdabcd,,,,,;或 ; iiiiiiii 成本: 此时假设其货价与水位成一次线性关系,因捕捞草鱼的成本水位于15米时,每公斤6元;当水位降至5米时,为3元/公斤。故此时成本与水位的 Zh,,0.31.5515,,hht,,,0.515关系为();因为水位与时间的关系;第i Ztxtx,,,,,,,[0.3(0.515)1.5][0.156] 天的成本为; iiiii 所以总成本与时间的关系: 2020 ; Zttx,,,,,,,[0.3(0.515)1.5[0.156] ,,iii,,ii11 存活量:此时假设其损失率与水位成一次线性关系由随着水位的下降草鱼死亡和捕捞造成损失增加,至最低水位5米时损失率为10%,且在水位为15米时损失率为0。故第i天的损失率与时间的关系 (120),,t 且即第i天的存活Shtt,,,,,,,,,1%15%0.01(0.515)0.150.005iiii nSt,,,,110.005率与时间的关系;第一天早上的存活量;第i天w,25000iii1 早上的存活量为第i-1天早上的存活量与第i天的存活率之积即 ;第一天晚上的存活量;wwnwt,,, (10.005)kxt,,,(25000)(10.005) iiiii,,11111 第 i天晚上的存活量为第i-1天晚上的存活量减去第i天的售量与第i天的存活率之积即;第一天的死亡量;kkxt,,,()(10.005) mxt,,(25000)0.005 iiii,1111 第 i天晚上死亡量为第i-1天晚上的存活量减去第i天的售量与第i天的死亡率之积即; mkxt,,()0.005 iiii,1 由上可知20天内草鱼量总死亡量为 20 Mmm,,,i1,i2 由此,我们建立多目标的规划模型,令M达到最小 和 总利润最大。 我们采用线性加权法,令总利润的权值为0.9,而的权值为0.1,通过LINGOS20 编程求解得:最大利润为332875元,草鱼的总死亡量为8828.493kg。当且仅当水库放水售鱼的20天的具体情况为: 第1天 第6天 第11天 第16天 500kg 500kg 1000kg 1000kg 第2天 第7天 第12天 第17天 1000kg 500kg 1000kg 500kg 第3天 第8天 第13天 第18天 1000kg 500kg 1000kg 500kg 第4天 第9天 第14天 第19天 1000kg 500kg 1000kg 500kg 第5天 第10天 第15天 第20天 1000kg 500kg 1000kg 500kg 六、模型的应用与推广 在模型二、三中,我们建立规划模型。该模型不仅仅适用于最佳捕鱼方案类问题,同时对于其他的规划模型也起到指导作用。 本文模型的建立是为了解决最佳效益问题。通过使受益最大化作为杠杆平衡它们之间的分配关系。决策者要通过概念抽象、关系分析可将各类影响因子放入规划模型中,可以通过相关的计算机软件得到兼顾全局的最优解。 本题的求解是一个典型的规划问题,我们模型的使用范围非常广泛,涉及到投资时,有限的资金如何分配到各种投资方式上;工厂选址时,要兼顾距离原料区和 服务区的路程……这一类问题均能得到较好的解决。规划模型在工业、商业、交通运输、工程技术、行政管理等领域有着广泛的应用。 七、模型的评价与改进 模型一粗略地估算了一下,可能获得的最高利润值。但是在实际情况下,模型一的精确度比较差,考虑的因素过于理想化,如日供应量的变化,日供应量在1000-1500kg的情况下,售价的波动情况等等均未考虑进去。但是由于其简易性和快速性,有利于水库经营者在简陋的情况下做出相应的比较好的对策。 模型二、三较模型一更为贴近现实。考虑了日供应量在1500kg以下的情况,售价波动的情况。模型三采用的多目标规划方法,让总利润最大,鱼的损失最少的这两个目标进行求解。三个模型中,损失率与水位关系还有可能是其他的情况,但在本文中并未展开讨论,另外,该模型还可以在销售量与供应量之间的关系上进行改进。 参考文献: 【1】 张朝阳,郭兴忠,《草鱼养殖技术》,宁夏农林科技:2001年第6期,第 57— 58页 【2】 谢金星 薛毅,《优化建模与LINDO/LINGO软件》,清华大学出版社,2005 年7月第1版 【3】 万保成 王田娥,《LINGO8.0 for Windows 软件及应用》,吉林农业大学 数学教研室,2004 年8 月 附录: 模型二的程序: model: sets: Profit/1..20/:x,y,t,a,b,c,w,k,m; endsets data: t=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20; enddata init: x=500,,,,,,,,,,,,,,,,,,,; endinit max=@sum(Profit(i):(y(i)-(-0.15*t(i)+6))*x(i)); @for(Profit(i):y(i)=30*a(i)+25*b(i)+(-0.028*x(i)+48)*c(i)); @for(Profit(i):@bin(a(i))); @for(Profit(i):@bin(b(i))); @for(Profit(i):@bin(c(i))); @for(Profit(i):a(i)+b(i)+c(i)=1); w(1)=25000; @for(Profit(i)|i#ne#1:w(i)=w(i-1)*(1-0.005*t(i))); @for(Profit(i)|i#eq#1:x(1)<=w(1)); @for(Profit(i)|i#ne#1:x(i)<=(w(i-1)-x(i-1))*(1-0.005*t(i))); @for(Profit(i)|i#eq#1:k(1)=(25000-x(1))*(1-0.005*t(1))); @for(Profit(i)|i#ne#1:k(i)=(k(i-1)-x(i))*(1-0.005*t(i))); @for(Profit(i)|i#eq#1:m(1)=(25000-x(1))*0.005*t(1)); @for(Profit(i)|i#ne#1:m(i)=(k(i-1)-x(i))*0.005*t(i)); @sum(Profit(i):x(i))=25000-(@sum(Profit(i)|i#ne#1:m(i))+m(1)); e=25000-(@sum(Profit(i)|i#ne#1:m(i))+m(1)); f=(@sum(Profit(i)|i#ne#1:m(i))+m(1)); @for(Profit(i):x(i)*a(i)<=500*a(i)); @for(Profit(i):x(i)*b(i)<=1000*b(i)); @for(Profit(i):500*b(i)=1500*d(i)); end
/
本文档为【[宝书]最佳打鱼计划】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索