为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

超疏水表面制备方法 超疏水超亲油多孔材料的制备及在油水分离中的应用

2017-11-10 12页 doc 33KB 61阅读

用户头像

is_562397

暂无简介

举报
超疏水表面制备方法 超疏水超亲油多孔材料的制备及在油水分离中的应用超疏水表面制备方法 超疏水超亲油多孔材料的制备及在油水分离中的应用 哈尔滨工业大学工学硕士学位论文 硕士学位论文 超疏水超亲油多孔材料的制备及在油水分 离中的应用 FABRICATION OF SUPERHYDROPHOBIC AND SUPEROLEOPHILIC POROUS MATERIALS AND ITS APPLICATION IN OIL/WATER SEPERATION 陈 宁 哈尔滨工业大学 2012年6月 1 哈尔滨工业大学工学硕士学位论文 国内图书分类号:TB34 学校代码:102...
超疏水表面制备方法 超疏水超亲油多孔材料的制备及在油水分离中的应用
超疏水面制备方法 超疏水超亲油多孔材料的制备及在油水分离中的应用 哈尔滨工业大学工学硕士学位 硕士学位论文 超疏水超亲油多孔材料的制备及在油水分 离中的应用 FABRICATION OF SUPERHYDROPHOBIC AND SUPEROLEOPHILIC POROUS MATERIALS AND ITS APPLICATION IN OIL/WATER SEPERATION 陈 宁 哈尔滨工业大学 2012年6月 1 哈尔滨工业大学工学硕士学位论文 国内图书分类号:TB34 学校代码:10213 国际图书分类号:66.03 密级:公开 工学硕士学位论文 超疏水超亲油多孔材料的制备及在油水分 离中的应用 硕士研究生 : 陈 宁 导 师 : 潘钦敏 教授 申 请 学 位 : 工学硕士 学 科 : 化学与技术 所 在 单 位 : 化工学院 答 辩 日 期 : 2012年6月 授予学位单位 : 哈尔滨工业大学 Classified Index: TB34 U.D.C: 66.03 2 哈尔滨工业大学工学硕士学位论文 Dissertation for the Master Degree in Engineering FABRICATION OF SUPERHYDROPHOBIC AND SUPEROLEOPHILIC POROUS MATERIALS AND ITS APPLICATION IN OIL/WATER SEPERATION Candidate: Chen Ning Prof. Pan Qin Min Supervisor: Speciality: Academic Degree Applied for: Master of Engineering Chemical Engineering And Technology School of Chemical Engineering and Technology June 2012 Affiliation: Date of Defence: Degree-Conferring-Institution: Harbin Institute of Technology 哈尔滨工业大学工学硕士学位论文 摘 要 近年来,发生多起原油和有机物泄漏事件,引起严重的环 境污染和生态破坏,迫切需要一种高效,低廉,对环境友好 的方法来处理泄漏原油和有机物。超疏水超亲油材料,由于 3 其独特的界面性质,可以进行高效的油水分离。 本论文制备了超疏水超亲油的泡沫镍,将其用于油水混合物分离,对于处理泄漏在水中的石油和有机物有潜在的应用价值。本课通过加热碱式碳酸铜的氨水溶液在泡沫镍表面覆盖一层具有绒毛状和球状结构的的氧化铜薄膜,然后在氧化铜表面自组装月桂酸单分子层降低表面能,制成超疏水超亲油泡沫镍。得到的泡沫镍能够吸取自身重量3~4倍的油,通过离心,泡沫镍吸取的油可以释放出,然后泡沫镍通过加热,浸泡月桂酸后可以重复吸油。将超疏水泡沫镍做成盒子,水面的油可以被吸进盒子里内,通过这种方法泡沫镍的油水分离能力得到很大的提高。 为了制备吸油能力更强的材料,本课题制备了超疏水超亲油的聚氨酯海绵,在海绵表面沉积四氧化三铁颗粒增加海绵的粗糙度,用十六烷基三甲氧基硅烷进行表面修饰以降低海绵表面能。为了增加四氧化三铁颗粒在海绵上的结合力,海绵表面通过敏化活化的方法预先沉积一层银,或通过接枝聚合的方法覆盖一层聚丙烯酸。制成的海绵可以吸收大约20倍自身重量的润滑油,通过挤压的方法,吸收的油可以释放出,海绵可以重复使用。 关键词:超疏水;超亲油;多孔材料;油水分离 哈尔滨工业大学工学硕士学位论文 4 Abstract Recently, the frequent oil spill accidents caused serious damage to environment, especially to aquatic ecosystems. Only a little portion of oil and organic liquid in the water was cleaned up because of the lack of facile and advanced method. A high efficiency, low-cost and environmentally friendly way to solve oil spill is urgently demanded. Superhydrophobic and superoleophilic materials, which have special surface properties, are considered as potential solutions to this problem. In this paper, superhydrophobic and superoleophilic nickle foam was fabricated and used for separation oil and water. Nano- and micro- scale morphology and low surface energy coatings are essential to fabricate superhydrophobic and superoleophilic surface. By boiling the basic cupric carbonate-ammonia solution, nickle foam is coated by a copper oxide film with fluffy and spherical morphology. After being coated with a single layer of n-dodecanoic acid molecule, superhydrophobic and superoleophilic nickle foam was prepared. The as-prepared nickle foam has an oil absorption capacity of 3~4g?g-1. The absorbed oil could be collected by centrifuging. The used nickle foam restored its 5 superhydrophobicity by heating at 300? and then dipping in n-dodecanoic acid solution. The restored nickle foam could be reused for oil absorption. A box made from superhydrophobic and superoleophilic nickle foam could uptake oil into its volume, in this way the water/oil separation capability of superhydrophobic and superoleophilic nickle foam enhanced dramatically. Superhydrophobic and superoleophilic polyurethane sponges with higher oil absorb capability were fabricated. Ferroferric oxide particals decorated on the sponges made the surface rough while hexadecyltrimethoxysilane supplied low surface energy. To enhance the adhesion between ferroferric oxide particals and sponges, a layer of silver was firstly deposited on sponge by sensitization and activation process or a layer of polyacrylic acid was firstly grafted on sponge by polymerization. The as-prepared sponges had a lubricating oil absorption capacity of 20g?g-1. The oil absorbed can be squeezed out, and the sponges recover their superhydrophobicity and then can be used recyclably after being washed with solvent. Keywords: Superhydrophobic, superoleophilic, porous 6 materials, oil and water seperation 哈尔滨工业大学工学硕士学位论文 目 录 摘 要 ...................................................................................................................... I Abstract .................................................................................................................. II 第1章 绪 论 ....................................................................................................... 1 1.1 引 言 .............................................................................................................. 1 1.2 材料表面浸润性概 述 ................................................................................... 1 1.3 利用材料的界面性能进行油水分离的研究进 展 ......................................... 3 1.3.1 超疏水超亲油材料在油水分离中的应 用 ............................................. 3 1.3.2 水下超疏油材料在油水分离中的应 用 ................................................. 8 7 1.4 本课题的主要研究内 容 ............................................................................... 9 第2章 实验材料和研究方 法 .............................................................................. 10 2.1 实验材料与仪器设 备 ................................................................................. 10 2.1.1 实验材 料 .............................................................................................. 10 2.1.2 仪器设 备 .............................................................................................. 10 2.2材料的制 备 ................................................................................................. 11 2.2.1超疏水超亲油的泡沫镍制 备 ................................................................ 11 2.2.2超疏水超亲油海绵的制 备 .................................................................... 11 2.3 材料的表征与测 试 ..................................................................................... 11 2.3.1 材料组成的测 8 试 .................................................................................. 11 2.3.2 材料表面形貌的测 试 .......................................................................... 12 2.3.3 材料表面浸润性的表 征 ...................................................................... 12 2.3.4 吸油率的测 定 ...................................................................................... 12 第3章 超疏水超亲油泡沫镍的制备及其在油水分离中的 应用 ........................ 13 3.1 引 言 ................................................................................................. ........... 13 3.2 超疏水超亲油泡沫镍的制 备 ..................................................................... 13 3.3 表面修饰对泡沫镍疏水性能的影 响 .......................................................... 15 3.3.1月桂酸浓度对泡沫镍润湿性的影 响 .................................................... 16 3.3.2不同月桂酸的浸泡时间对泡沫镍浸润性的影 响 ................................. 17 哈尔滨工业大学工学硕士学位论文 3.4 不同碱式碳酸铜浓度对表面形貌和表面浸润性的影 9 响 ........................... 17 3.5超疏水超亲油泡沫镍用作吸油材 料 ........................................................... 20 3.5.1超疏水超亲油泡沫镍吸油 率 ................................................................ 20 3.5.2超疏水超亲油泡沫镍的循环吸油性 能 ................................................ 21 3.6超疏水超亲油泡沫镍制成的油水分离装 置 ............................................... 23 3.7本章总 结 ................................................................................................. .... 24 第4章 超疏水超亲油海绵的制备及其在油水分离中的应 用 ............................ 26 4.1引 言 ................................................................................................. ............ 26 4.2 通过敏化活化对海绵进行预处 理 .............................................................. 26 4.2.1 敏化活化对海绵表面的影 响 ............................................................... 26 4.2.2海绵表面沉积 10 Fe3O4 ............................................................................. 28 4.2.3 海绵表面修饰对浸润性的影 响 ........................................................... 31 4.2.4海绵的油水分离实 验 ........................................................................... 34 4.3 海绵通过表面接枝聚丙烯酸进行预处 理 .................................................. 37 4.3.1在海绵表面接枝聚丙烯 酸 .................................................................... 37 4.3.2海绵表面沉积 Fe3O4 ............................................................................. 38 4.3.3海绵表面修饰对浸润性的影 响 ............................................................ 41 4.3.4海绵的油水分离实 验 ........................................................................... 43 4.4 本章小 结 .................................................................................................... 45 结 论 ..................................................................................................................... 47 参考文 11 献 ................................................................................................. .............. 48 哈尔滨工业大学硕士学位论文原创性声 明 ......................................................... 52 致 谢 ................................................................................................. .................. 53 哈尔滨工业大学工学硕士学位论文 第1章 绪 论 1.1 引言 近年来,频繁发生的原油和有机物泄漏,给环境和生态造成重大破坏。对于泄漏到水体的原油和其他有机物,传统的处理方法有用微生物分解,用稻草,毛发,活性炭等吸附,或用分散剂把油等有机物分散。用微生物处理速度慢,用稻草,毛发等吸附吸油率不高,吸油效率低,在吸油的同时吸水。活性炭需要在800?的高温下活化,操作不便,循环使用困难。用分散剂会对环境造成二次污染。 对于原油和有机物的泄漏的传统处理方法有很大的局限性,对于漏油及非极性有机物泄漏的处理迫切需要一种方便高效、对环境友好的方法来实现原油和水的分离及有机物和水的分离。工业生产中也需要一种能够将非极性有机液体和 12 水分开的方法。超疏水材料在水无法润湿的同时,油对其有很好的浸润性,水下超疏油材料具有很强的亲水性和很低的对油的粘附性,利用它们这种独特的界面性质,可以制成不同的材料以实现油水分离。 1.2 材料表面浸润性概述 表面浸润性是材料表面的重要性质,液体在表面的浸润性一般用接触角来表示,满足Young’s 方程: 13
/
本文档为【超疏水表面制备方法 超疏水超亲油多孔材料的制备及在油水分离中的应用】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索