为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > 汽车改装知识

汽车改装知识

2018-04-30 50页 doc 152KB 9阅读

用户头像

is_977556

暂无简介

举报
汽车改装知识汽车改装知识 马力与扭力 越来越多车迷了解如何改装爱车,可以提高动力的输出,但仍有许多车友并不了解引擎输出的动力到底如何转化成推动汽车行进的力量。对于加速能力与极速而言,到底是扭力与马力到底何者比较重要,本文将给大家一个圆满的解答。 汽车驱动理论 马力与扭力哪一项最能具体代表车辆性能,有人说「起步靠扭力,加 速靠马力」,也有人说「马力大代表极速高,扭力大代表加速好」,其实这些都是片段的错误解释,其实车辆的前进一定是靠引擎所发挥 的扭力,所谓的「扭力」在物理学上应称为「扭矩」,因为以讹传讹的结果,大家都说成「扭力」,也就从此流...
汽车改装知识
汽车改装知识 马力与扭力 越来越多车迷了解如何改装爱车,可以提高动力的输出,但仍有许多车友并不了解引擎输出的动力到底如何转化成推动汽车行进的力量。对于加速能力与极速而言,到底是扭力与马力到底何者比较重要,本文将给大家一个圆满的解答。 汽车驱动理论 马力与扭力哪一项最能具体代车辆性能,有人说「起步靠扭力,加 速靠马力」,也有人说「马力大代表极速高,扭力大代表加速好」,其实这些都是片段的错误解释,其实车辆的前进一定是靠引擎所发挥 的扭力,所谓的「扭力」在物理学上应称为「扭矩」,因为以讹传讹的结果,大家都说成「扭力」,也就从此流传下来,为导正视听, 本文以下皆称为「扭矩」。 扭矩的观念从小学时候的「杠杆原理」就说明过了,定义是「垂直方向的力乘上与旋转中心的距离」,公制单位为牛顿-米(N-m),除以重力加速度 9.8m/sec2之后,单位可换算成国人熟悉的公斤-米(kg-m)。英制单位则 为磅-呎(lb-ft),在美国车的型录上较为常见,若要转换成公制,只要将lb-ft的数字除以7.22即可。 汽车驱动力的计算方式: 将扭矩除以车轮半径即可由引擎马力,扭力输出曲线图可发现,在每一个转速下都有一个相对的 扭矩数值,这些数值要如何转换成实际推动汽车的力量呢,答案很简单,就是「除以一个长度」,便可获得「力」的数据。举例而言,一 部1.6升的引擎大约可发挥15.0kg-m的最大扭力,此时若直接连上185/ 60R14尺寸的轮胎,半径约为41公分,则经由车轮所发挥的推进力量为15/0.41=36.6公斤的力量(事实上公斤并不是力量的单位,而是重量的单位,须乘以重力加速度9.8m/sec2才是力的标准单位「牛顿」)。 36公斤的力量怎么推动一公吨的车重呢,而且动辄数千转的引擎转速更不可能恰好成为轮胎转速,否则车子不就飞起来了,幸好聪明的人类发明了「齿轮」,利用不同大小的齿轮相连搭配,可以将旋转的速度降低,同时将扭矩放大。由于齿轮的圆周比就是半径比,因此从小齿轮传递动力至大齿轮时,转动的速度降低的比率以及扭矩放大的倍数,都恰好等于两齿轮的齿数比例,这个比例就是所谓的「齿轮比」。 举例说明,以小齿轮带动大齿轮,假设小齿轮的齿数为15齿,大齿轮的齿数为45齿。 当小齿轮以3000rpm的转速旋转,而扭矩为20kg-m时,传递至大齿轮的转速便降低了1/3,变成1000rpm;但是扭矩反而放大三倍,成为60kg-m。这就是引擎扭矩经由变速箱可降低转速并放大扭矩的基本原理。 在汽车上,引擎输出至轮胎为止共经过两次扭矩的放大,第一次由变 速箱的檔位作用而产生,第二次则导因于最终齿轮比(或称最终传动 比)。扭矩的总放大倍率就是变速箱齿比与最终齿轮比的相乘倍数。举例来说,手排六代喜美的一档齿轮比为3.250,最终齿轮比为4.058,而引擎的最大扭矩为14.6kgm/5500rpm,于是我们可以算出第一档的最 大扭矩经过放大后为14.6×3.250×4.058=192.55kgm,比原引擎放大了13倍。此时再除以轮胎半径约0.41m,即可获得推力约为470公斤。然而上述的数值并不是实际的推力,毕竟机械传输的过程中必定有磨 耗损失,因此必须将机械效率的因素考虑在内。 论及机械效率,每经过一个齿轮传输,都会产生一次动力损耗,手排变速箱的机械效率约在95%左右,自排变速箱较惨,约剩88%左右,而传动轴的万向接头 效率约为98%,各位自己乘乘看就知道实际的推力还剩多少。整体而 言,汽车的驱动力可由下列公式计算: 扭矩×变速箱齿比×最终齿轮比×机械效率 驱动力= ———————————————————— 轮胎半径(单位为公尺) 马力亦非「力」乃「功率」的一种 了解如何将扭矩经由变速箱的齿比放大成为实际推力之后,接着可以研究什么叫做「马力」。 马力其实也不是一种「力」,而是一种功率 (Power)的单位,定义为单位时间内所能做「功」的大小。尽管如此,我们不得不继续使用「马力」这个名字,毕竟已经用太久了,讲「功率」恐怕没几个消费者听得懂, 功率是由扭矩计算出来的,而计算的公式相当简单:功率(W),2π× 扭矩(N-m)×转速(rpm)/60,简化计算后成为:功率(kW)=扭矩(N-m) ×转速(rpm)/9549,详细的推导请参看方块文章。然而功率kW要如何 转换成大家常见的「马力」呢,这又有一段故事得讲。 英制或公制, 1PS=735W;1hp=746W 马力定义竟然不一样~ 谈到引擎的马力,相信不少人会直觉地想到什么DIN、SAE、EEC、JIS等等不同测试标准,到底这些标准的差异在哪儿,以后有空再研究;有点夸张的是由于英制与公制的不同,对「马力」的定义基本上就不一样。英制的马力(hp)定义为:一匹马于一分钟内将200磅(lb)重的物体拉动165英呎(ft),相乘之后等于33,000ft-lb/min;而公制的马力(PS)定义则为一匹马于一分钟内将75公斤的物体拉动60公尺,相乘之后等于4500kg-m/min。经过单位换算,(1lb=0.454kg;1ft=30.48cm)竟然发现1hp=4566kg-m/min,与公制的1PS=4500kg-m有些许差异,而如果以功率W(1W=1Nm/sec= 9.8kgm/sec)来换算的话,可得1hp=746W;1PS=735W两项不一样的结果。 同样是「马力」,英制马 力与公制马力的定义竟然不一样~难道英国马比较「有力」吗, 到底世界上为什么会有英制与公制的分别,就好像为什么有的汽车是右驾,有的却是左驾一样,是人类永远难以协调的差异点。若以大家 比较熟悉的几个测试标准来看,德国的DIN与欧洲共同体的新标准 EEC还有日本的JIS是以公制的PS为马力单位,而SAE使用的是英制的 hp为单位,但为了避免复杂,本刊一率将马力的单位标示为hp。近来,越来越多的原厂数据已改提供绝对无争议的KW作为引擎输出的功率数值。 不过话说回来,1PS与1hp之间的差异仅1.5%,每一百匹马力差1.5匹,差异并不大。一般房车的马力多半仅在200匹马力以下,两者由于定义的差异也仅3匹马力左右,因此如果您真要「马马计较」,就把SAE 标准的数据多个1.5%吧~不过SAE、JIS、DIN、EEC各种测试标准之 间亦有些许差异,这个老问题已经争论过很多次了,单位之间不能真正划上等号,然而在差别不怎么多的情况之下,就当作相同吧~因此 管他是PS或hp,都差不多可以视为相等。 终于可以做结论了~将上述获得的马力与功率换算方式代入功率与扭矩的换算公式,并且将扭矩的单位换算为大家熟悉的kg-m之后,可得下列结果: 英制马力hp=扭力(kg-m)×引擎转速(rpm),727 公制马力PS =扭力(kg-m)×引擎转速(rpm),716 知道这些公式之后有什么用呢,从「马力hp=扭力×转速/727」看来, 如果能增加引擎转速,扭力不变的情况下,便能增加马力。例如若能 将转速从6000rpm增加到8000rpm,等于增加了33%,但因为凸轮轴的 限制使得8000rpm时的扭力下降了10%,则仍能使马力增加19.7%,这 说明了时下改装计算机的为何能在解除断油后大幅增加马力。 所以不要被「增加,,匹马力」的广告所著魔。 让我们从另外一个角度来想:如果在同样的转速下,增加20匹马力,代表能增加多少推力呢,以最大扭力点发挥于5000rpm的情况下,将公式稍微变换一下,可发现增加的扭力=20hp×727, 5000rpm=2.9kgm。再将这个结果代入汽车驱动力的公式,同样以喜美 的一档计算, 2.9×3.250×4.058/0.41=93公斤。对于一吨重的车身而言,影响似乎也不怎么大;再者如果相差5匹马力的话,推力更仅增加23公斤,可见相差5匹马力,根本也没差多少,所以能「增加5匹马力」的产品,到底应该花多少钱去改装,您自个儿会拿捏了吧, 大马力决定真性能~ 到底大马力的车子跑得快,还是大扭力的车子跑得快,从公式可以知 道大马力的原因是「高转速的时候仍保有高扭力数值」,也就是说要 有大马力,不只是低转速的扭力要好,连高转速的扭力都得继续维持 ,这表示扭力与马力的争论根本是多余的,只要能做到高马力,除了表示各转速区域的扭力都很大之外,更代表材料技术的优越性,将活塞、进排气阀门的材质与重量予以强化与轻量化,才能将引擎转速提高。 扭矩与功率的换算公式推导 假设一圆的半径为r(单位为m),扭矩为T(单位为N-m),则圆周上切线 方向的力F=T/r,由于功率的定义为「每秒钟所作的功」,对于圆周?动而言,每旋转一圈所作的功为:F×圆周总长2πr 将F=T/r代入计算,每一圈所作的功Work=F×2πr=(T/r)×2πr=2πT 再乘上引擎转速rpm就是每分钟所作的功,但功率P的单位是N-m/sec ,所以需除以60,转换成每秒所作的功。代入公式:P=T2πrpm/60,将常数整理后,则可得P(kW)=Trpm/9545。 由上文可见,一台车的动力由发动机传输到车轮,需要经过多组齿轮因此有所损耗,如果德制马力测的是传递到车轮上的动力,那么同样发 和bmw530做比较,其功率动机用在不同车型上的动力输出应该不同,试拿bmw330 均是225hp/5900rpm;结论,要么bmw在数据上造假,要么它测的是发动机输出净值。 换火花塞的朋友一定要注意热值的匹配。 应该先弄清楚原车火花塞的热值,有三个方法: 1,说明里应该有写(但我听说好像gol的就没写) 2,拆下来看,陶瓷上印着(当然你的保证能看懂) 3,问维修站的师傅(这个最 ,3000简单,也最容易搞定) 然后根据你的驾驶方式,选择合适的热值 1转以内换档,用原来的热值 2,经常5000转换挡,油门经常到地上,最好用冷一度的(具体在后面说明) 3,介于1和2之间,也推荐用原来的热值 说明:关于火花塞的冷热 其实就是火花塞吸热的能力,众所周知,火花塞是一直处于2200度的缸内高温下,一般火花塞的散热(*连在缸壁上的部分热传导)能力都差不多,吸热能力就决定了他的温度(吸热能力则是由设计形状和材料决定的)。 如果用了吸热能力过高的火花塞(我们称之为过热——可以理解为缸里天气太热,火花塞有点中暑,热着了),则高转速大负荷下容易烧熔,可以想象,火花塞负极这么大的一块金属断在缸里是什么效果........即便没到烧熔的境地,火花塞温度也高于正常温度很多,这样在跳火之间就会点燃缸内还没完全形成的混合气,我们称之为早燃,现象跟叫杆(爆震)差不多,会严重损失动力,燃烧不充分造成积碳,对曲轴连杆等机件造成冲击,减少寿命.........拿出火花塞来看看,会发现已经烧成惨白色 相反如果用了吸热能力过低的火花塞(我们称之为过冷——同样可以理解为天气太冷,火花塞有点感冒,冻着了),则在一般驾驶的情况下(转速3000以内)会出现积炭,这是因为火花塞温度达不到正常温度,没办法自清除(说白了就是烧掉)上面不可避免的微量积碳,日积月累,火花塞就无法正常跳火了,就会出现缺缸的现象,严重影响动力和平稳性。把火花塞拿出来就会看到一片漆黑——全都是积的碳啊 说了这么多吓人的话,再说说热值正常的火花塞拿出来应该是什么样子。正常的现象应该是火花塞拿出来后是红褐色或黄褐色(就是铁锈色啦)。当然如果机器存在着其他问题,也会从火花塞的颜色和样子上看出来,今日不谈,改日再表。 希望对想更换火花塞的朋友们有所帮助,则万死矣。 对了,再补充一下三大厂家对热值的标示方法:bosch 和 ngk 都用正向(....4,5,6,7,8,9....),从低往高依次变热,比如我们民用车一般都是7-8度,也有6-7度的。 而denso则是 反向(....24,22,20,16....),由高往低依次变热,而且数值还经常不是连续的,天知道他们根据什么规律编的。另外,denso的数值也都不正好分别对应bosch和ngk的,比如16对应7-8之间,20对应6-7之间,22对应5-6之间等等。 关于bosch super4——可以说是垃圾产品(虽然我上一套火花塞就是这个) 首先,super4因为是普通金属的,因此寿命仅仅在2万公里以内。而且在bosch的产品目录里,它属于性能型的。但是其性能远比白金火花塞差的远,这是由材料和形状所决定的无法改变的事实,虽然它脸上写着性能型。 多负极的设计主要是为了增加寿命,因此它比一般的普通金属火花塞长寿了大概5000公里(普通的是1万5)。但白金火花塞的寿命一律在10万公里以上,这是普通金属永远无法跨越的鸿沟。 另外,普通金属火花塞的放电效果也远不能跟贵金属火花塞相比,虽然博世单极白金bosch platinum在产品目录里是寿命型,但他的放电性能也远强于普通金属的。就跟说rivaldo的左脚天下无敌,但他的右脚同样是世界一流水准,只不过左脚更出色罢了。 说了这么多,最能说明super4是垃圾的一条理由,就是:bosch platinum无论从放电强度还是寿命都数倍于它,而价格之高出1/3。 注:我配买的super4是30/支,同样地点的platinum是40/支。 说实在的,我本来是打算换platinum的,不过上全城断货,所以我才选择了性能更强但寿命短些的denso iw16。不知道现在博世白金到货了没有。 结论 对性能有特殊要求的dx,当以铱金火花塞为首选。另外我估计这类dx通常开车都比较猛,地板油,红线转速出现得都会比较频繁,因此也推荐使用冷一度的火花塞。(至于我自己仍然用了原厂的度数,主要是因为我的alto我老妈开得比较多的缘故) 依金火花塞一般寿命是5万公里。 有一种denso vk/vw系列(名字叫denso iridium tough)是目前全世界民用车火花塞里寿命最长的(当然同时也是性能最高的),因为它负极也采用了白金材料(其他贵金属火花塞也只有正极是稀有材料,负极都是普通材料),因此寿命达到10公里以上(denso吹说能用到13万英里,我觉得有点悬,但至少用10万多是完全不成问题的)。不过这种火花塞也是能买到的产品里最贵的了(2-3百一支吧)。 对于追求性价比,平时也不是很飚的dx来说,白金火花塞绝对是首选。性能也不错(比原车的普通火花塞强得多),寿命还很长(基本都能达到10万公里),而且都不贵。 如果不换铱金和白金,那还不如不换。 至于牌子,现在市场上比较好的基本上就是三个:denso bosch ngk 各有所长,我就不引导大家倾向于哪一个牌子了。 不过有两个特别出色的产品还是要说一下的: 一个就是刚才我说过的民用车火花塞之最:denso vk/vw铱白金,另一个就是同样享有盛名的bosch platinum4(简单介绍一下:采用了仿沿面设计,点火能量高,寿命同样超长)。 对了,denso 还有一种比上面说的vk/vw系列还厉害的(性能超高,但寿命很短)的铱金火花塞,叫做denso iridium racing,编号是denso ik01/vk01。这种火花塞也是访沿面设计的。不过应该不是给我们汽车用的,至少民用车肯定不能用,因为它的系列里热值最热的也超过民用车最冷的极限了(可能适用于高性能摩托或超跑)。 在两款高性能火花塞上大家都看到了一个新词:访沿面。也就是说,沿面技术是超高性能火花塞的标准。 防倾杆的工作原理与改装 对很多人来说防倾杆只是一支不起眼的铁杆子,但这铁杆子将对车产生重大的影响。 Anti-Roll Bar通常翻译成防倾杆,若要通俗一点则可叫它『下拉杆』(上拉杆是指「引擎室拉杆」,又有人称为「平衡杆」)。改装前后两支防倾杆虽然要花上您超过万元的预算(这里指的是台币),但是它所获得对操 控改善的经济效益可说是所有改装项目中最高的。一般的量产车都会装上防倾杆但大多只限于前轮,目的是用来达成操控与舒适的妥协。防倾杆通常是固定在左右悬吊的下臂,车子在过弯时离心力会作用在车的滚动中心造成车身的侧倾,导致弯内轮和弯外轮的悬吊拉伸和压缩,造成防倾杆的杆伸扭转,利用杆身被扭转产生的反弹力来抑制车身侧倾。这里所说的『侧倾』和我们以前所提的『车身滚动』(Roll)是相同的;所谓『滚动』从车头方向看去就如同把车子架在一根纵向从车头穿过车尾的轴,然后做旋转。当然这种旋转是小幅度的,若旋转的角度太大就会翻车,那就是真的滚动了。 防倾杆的作用 当左右两轮行经相同的路面凸起或窟窿时,防倾杆并不会产生作用。但是如果左右轮分别通过不同路面凸起或窟窿时,也就是左右两轮的水平高度不同时,会造成杆身的扭转,产生防倾阻力(Roll Resistance)抑制车身滚动。也就是说当左右两边的悬吊上下同步动作时防倾杆就不会发生作用,只有在左右两边悬吊因为路面起伏或转向过弯造成的不同步动作时防倾杆才产生作用。防倾杆只有在作用时才会使行路性变硬,不像硬的弹簧会全面的使行路性变硬。如果要完全*弹簧来减少车身的侧倾那可能需要非常硬的弹簧,更要用阻尼系数很高的避震器来抑制弹簧的弹跳,这样一来我们就必须去承受硬的弹簧和避震器所造成诸如行路性、行经不平路面时循迹性不良的后遗症。但是如果配合适当的防倾杆不但可以减少侧倾,更不必牺牲应有的舒适性和循迹性。因此,防倾杆和弹簧的搭配是达成行路性和操控性妥协的最可行方法。 防倾杆的特性 防倾杆和弹簧所提供的的防倾阻力是相辅相成的,而且防倾阻力是成对发生的,也就是说车头的防倾阻力是和车尾的防倾阻力伴随发生,但是由于车身配重比例以及其它外力的作用的关系会使得前后的防倾阻力并不平衡,如此一来便会直接影响车身重量的转移和操控的平衡。假如后轮的防倾阻力太大会造成转向过度(Oversteer),反之如果前轮的防倾阻力太大会造成转向不足(Understeer)。为了改善操控我们不但可利用防倾杆来控制车身的滚动更可以用来控制车身防倾阻力的前后比例分配。 防倾杆最重要的功能就是达成操控的平衡和限制过弯时的车身侧倾以改善轮胎的贴地性。过弯时弯内轮的悬吊伸长而弯外轮的悬吊被压缩,这时防倾杆就会产生扭转抑制这种情况。它会对弯外轮的悬吊施一个向下压的力量,而对弯内轮的悬吊施一个抬起的力量,施予左右悬吊的作用力是大小相等方向相反相互牵制的。太软的防倾杆在独立悬吊的车会造成过弯时过多的外倾角,减少轮胎的接地面积,太硬则是会造成轮胎无法紧贴地面,影响操控性。对弯内轮来说,防倾杆对车轮施的力和弹簧对车轮施的力是方向相反的,弹簧产生的力可把车轮压回地面,而防倾杆却会使它离开地面。假如防倾杆太硬会减少把车轮压回地面的力,如果这种情况发生在驱动轮,可能会使得出弯加油时弯内轮的抓地力变小,造成轮胎的空转。这对拥有大马力却没有LSD的车来说是相当危险的,最理想的状态是把防倾杆所提供的防倾阻力控制在占总防倾阻力的20%~50%之间。假如总防倾阻力太强的话可能会造成过弯时弯内轮的离地,如此会造成100%的重量转移,这种情况通常发生在弯内的非驱动轮。我们常可看到Porsche 911过弯时前弯内轮离地的情况,同样的情况也会发生在?扒 档暮笸淠诼帧,德掷氲夭?皇呛孟窒螅 惺蔽 苏 逍 跎瓒ㄉ系男枰 匆参薹ū苊猓ㄈ鏛upo的「举脚」就很厉害)。 车身的滚动会降低循迹性或转向的灵敏度。一部有最佳悬吊几何设定的车就是有低的滚动中心、同时由弹簧所提供的防倾阻力可将车身的滚动限制在合理的范围内。弹簧会影响轮胎的贴地性,同样的弹簧所提供的防 倾阻力对轮胎的贴地性也有很大的影响。对一部有既定的悬吊几何、重心高度和车重的车来说,改变防倾阻力会改变极限过弯时车身的侧倾程度。 防倾杆的设定 假如一部车过弯时最极限的车身滚动会导致悬吊系统产生超过2度以上的外倾角(Camber)变化,那么表示部车需要较多的防倾阻力。车身滚动时有超过2度的外倾角变化,就表示至少需要增加负2度的外倾角,以便使轮胎在极限过弯时维持充分的轮胎贴地性。但是超过2度以上的外倾角设定会减少车子直进时轮胎的接地面积(Tire Contact Patch),并且会破坏所谓『瞬间循迹性』(Transient Traction),也就是从车子直线到弯道或从平路到倾斜路面的瞬间的循迹性。这对操控平衡、过弯速度、进弯和出弯的的转向灵敏度都会有负面的影响,更会影响弯中的剎车和加速表现。 限制车身滚动的另一个理由是要限制滚动中心(Roll Center)的纵向和侧向的位移变化,这对任何型式的悬吊系统都是很重要的,尤其是对麦花臣支柱氏悬吊系统而言更是如此。滚动中心的位移会导致突然的车身重量转移变化,造成车身操控平衡的破坏。对赛车来说把车身滚动限制在1.5到2度内就可以把滚动中心的位移 度以内就变化限制在可控制的范围内,但是对一般道路用车来说把车身滚动限制在4算是非常理想的。 对防倾杆的设定来说调整车身滚动的前后比例分配是很重要的,假如我们要完全*弹簧来抑制车身滚动,那么必须使用很硬的弹簧,如此一来便会减低行经不平路面的循迹性,如果使用防倾杆则可轻易的调整车身的操控平衡而不影响循迹性。因此在赛车所用的前后防倾杆通常都是可调式的,以便调校出最佳操控平衡,而一般道路用的往往是不可调的。 一般后驱车都将防倾杆装在前悬吊,如此可增加前悬吊的抗侧倾能力,减少过弯时后悬吊的车身重量转移,这会延缓或消除过弯时驱动轮(弯内轮)的离地现象并增加转向弯外轮的负荷,增强转向不足的趋势。而加粗后防倾杆会增强转向过度的趋势,对前驱车来说因为驱动轮在前轮所以需要增加后防倾杆的硬度,如此一来可增加驱动轮的循迹性并减少前驱车固有的转向不足特性。但如果后轮过弯时会离地或是车身的侧倾太严重,就应该考虑在前驱车的前轮加粗防倾杆以避免这种现象。但是对一部严重转向不足的车来说,通常只要加粗前防倾杆就可大幅改善转向不足的现象。 防倾杆的改装 防倾杆的硬度是由制作的材质、杆身、杆径、杆臂的长度以及和杆身所成的角度所决定。杆身的长度越长则硬度越软,反之杆臂的长度越长却会增加其硬度。受限于车宽所以杆身的长度几乎不太能改变,但杆径和杆臂的长度却是比较容易调整。一般来说防倾杆的材质都大同小异,所以要改变防倾杆的硬度都是由改变杆径来达成。此外由于杠杆原理的作用,改变悬吊臂与防倾杆臂的的连接点就可改变杆臂的力矩,而可调式防倾杆就是由这里着手。 此外,把固定防倾杆的橡皮榇垫换成硬的材质会有您意想不到的效果,在实际的测试中,使用一支直径0.8英吋的防倾杆配上硬质的衬垫和使用直径1.0英吋的防倾杆配上橡皮衬垫具有同的效果。 防倾杆的效果就表现在过弯时的侧倾,要了解侧倾的程度最好的方法就是利用照相机拍下极限过弯时的照片,然后在照片上量出侧倾角度,更换较硬的防倾杆后在依同样的方式再拍一次,比较两次的角度就可判断出不同。要去计算所需防倾杆的硬度是很复杂的,不但要考虑自身的硬度更要考虑和弹簧的搭配,因此唯有不断的测试再测试,这是底盘设定上的不二法门。当你决定改装你的底盘时,除了弹簧和避震器的搭配外,你更应该要好好考虑你的防倾杆,这种学问是建立在科学理论基础、丰富的经验和不断的尝试上,而改装(失血)的真正乐趣就在这里。 发动机动力改装是一项真正的改装 大手术,下面我们来谈谈这个问题。(本文章内数据摘自《改装与四驱》) 在众多的改装项目中,发动机的动力改装是工艺最复杂同时也是最昂贵的一项改装,而且也是唯一能使车子有脱胎换骨般动力提升效果的改装项目,以一台VW的STN为例,如果改装得宜的话,这台老款发动机的动力可以从原装的86hp(1.6L)提升到134hp以上(扩大排量,改配高压缩活塞和高角度凸轮轴等)如果动用到增压进气系统更可以有超过原装一倍以上的功率增长,由此可见,改装发动机可能不是性价比最高的改装项目,但绝对是最有效的动力改装。 发动机是整台车子的心脏,有一个非常复杂的工作环境——既有超高温的燃烧室(温度接近1000?C)也有运转速度非常高的精密机械结构(原装STN发动机可达到每分钟6500rpm,改装后更可超过8000rpm),因此改装发动机要求相关仪器与人员经验上要能配合,并要求有较高的工艺和理论水平,因为除了技术上的复杂性外,发动机内部更换了一些高性能部件后原厂的数据便全不合用,而改装品制造商提供的数据并不一定能配合其他部件,因此在装配的过程中一些设定数据要求技师自行计算,稍有不慎便会导致爆缸等严重损毁后果,因此一定要确定人员的技术水平后才可以动手。 接下去就是如何提升发动机功率了,简单来说,一台发动机在同一时间内能燃烧越多的汽油,它便能发出越大的马力,但和所有的燃烧现象一样,被注入汽缸内的汽油是需要有氧气才能燃烧的,所以发动机必须同时吸入大量的空气才能有效地发挥功能。事实上发动机在产生动力的过程中燃烧的每一份汽油都必须有12—15份空气来助燃(在更改ECU的时候出现的空燃比AFR就是指这个),而这些空气在大部分情形下都是被汽缸内的多个活塞在上下运动时所产生负压吸进汽缸,由于整个过程并没有外力帮助,所以称之为“自然进气—Normally Aspirated)简称NA。 说到这里大家应该都清楚了吧,如果要燃烧更多的汽油”(来产生更多的马力),那发动机便要吸入更多的空气,当NA无法满足人们的需要时,增压进气方式就出现了,即用涡轮增压(Turbo charge)和机械增压(Super charge)等装置来增加进入汽缸的空气量。有了更多的空气便可以有效地燃烧更多的燃油,相当于有了更多的马力。 另一方面,相对进气量在很大程度上受制于发动机排量大小的这一情况来说,供油部分是比较简单的,因为:一、油的需求量只是空气的十多份之一,二、供油系统的控制权在我们手上(可通过改变ECU的供油指令来完成,当原油咀不够用的时候还可以换装更大油咀或汽油泵来解决问题)因此针对发动机的动力性能的高深的改装如加大缸径与冲程,更换高角度凸轮轴、大口径节气门甚至加装TURBO的目的与作用,都是要令更多的空气进入汽缸内帮助燃烧更多的燃油,从而产生更大的动力。 引擎内部组件的改装主要是利用轻量化、高强度的材料制成的高精密度组件以减少内部动力的损耗,除了达到动力提升的目的更要兼顾可*度及平衡性提升。要兼顾轻量化和高强度则有赖材料科技的进步,由于高科技合金或复合材料的应用配合上精密加工技术,使得现代的高性能引擎不但单位容积所能产生的马力大幅提升,可*度及经济性也能同时获得改善。 笔者在此必须再次强调:引擎内部组件改装并不全然是为了马力的提升,更重要的是为了引擎的可*度及平衡性。因为拥有强大爆发力的高性能引擎和炸掉的引擎只在一线之隔,差别就只是在精密度要求的不同,„洋枪?与„土炮?最大的不同就在此而已,或许两者之间仅是千分之几吋的差异,但在引擎的改装规则里是没有妥协的,„失之毫釐差之千里?、„吹毛求疵?用在这里是最适当不过了。 汽门的改装 汽门的科技在过去几年有很大的进步, 主要的改变在于材质的进步及精密度的提高。高效率的进、排气,环保法规的要求,均有赖材质精良的汽门。而汽门改装的原则是:在不影响强度的情况下尽可能的减轻汽门的重量。 动作精确的汽门是高性能引擎的基本要件,专业改装厂通常会提供不同的汽门组合供消费者选择,引擎的装项目越多汽门机构的精确度的要求就越吹毛求疵,所以设定汽门时必须要同时考虑与凸轮轴及汽门摇臂的配合。原厂的汽门通常都有适当的材质和大小,但是如果有需要的话可适度的换上较大或较小尺寸的。汽门的材质是很重要的,目前的改装用汽门通常用钛合金作为材料以求强度的提升及轻量化的要求,但是一套钛合金的汽门价格并不低。而有的是将汽门的背部切削或用中空的设计以达到轻量化的目的,又有时会把汽门表面做成漩涡状,以利在汽门开启时能气体的流动。汽门的热度可经由与汽门座接触时经由汽门座传出达到散热的目的,是汽门最重要的散热途径。因此,汽门座的配置必须非常谨慎,假如太*近汽门的边缘或是汽门边缘太薄了就可能造成密合度不良。此外汽门套筒和汽门间的精密度及表面平滑度,汽门摇臂与汽门固定座(Keeper)间的表面精度都必须严格要求否则在高转速时将会导致严重的损害。 汽门弹簧的强度设定必须恰到好处,要兼顾汽门的密合度又不能造成开启时的困难,如果弹簧强度大过以致凸轮轴开启汽门时负荷过重对马力输出是非常不利的。汽门的固定座也是个潜在的问题,这个装置是用夹子把弹簧固定在汽门杆上,这在急加速及扬程大的的引擎上会造成扭曲或断裂,因此也必须配合做?谋洹?原厂的汽门摇臂在引擎转速上限提高及气门正时改变时就会变得不敷需求,对改装过的引擎来说强化的汽门摇臂是必须的,扬程太大的凸轮轴会造成汽门摇臂的扭曲,因此强度的提升及轻量化都是必须的。对一般的汽门来说,滚筒式的摇臂能减少与汽门座接触表面的压力,也能承受较高来自推杆的压力。通常汽门摇臂若有圆滑的表面和滚动的轴承,会使运转时得摩擦阻力变小,摩擦阻力越小所消耗的动力就越少。 活塞、活塞环 活塞顶面与汽缸头之间形成燃烧室,因此活塞必须承受来自引擎燃烧后产生的热和爆发力。油气燃烧所产生的热由活塞的顶部所吸收,并传至汽缸壁,而燃烧后气体膨胀所产生的力量也必须经由活塞来吸收,活塞会把燃烧气体压力及惯性力经由连杆传到曲轴上,利用连杆的作用将活塞的线性往复运动转换曲轴的旋转运动。在转换的过程中除了在上死点与下死点之外,活塞会对对汽缸滑移产生一个侧推力。 活塞环是曲轴箱和汽缸间的屏障。以机能来分,活塞环分为气环和油环两种,普通引擎每个活塞各有1~2个气环及油环。活塞环能维持汽缸内的气密性,使汽缸与曲轴箱隔绝开来,让燃烧室的气体压力不致流失,并能避免未完全燃烧的油气对曲轴箱内的机油造成污染及劣化。它能经由与汽缸壁的接触把活塞所受的热传至汽缸壁、水套,更重要的是它能防止过多的机油进入燃烧室,并让机油均匀的涂满汽缸壁。 引擎运转时产生的热越多表示所爆发的力量也越大,这些热量也对高性能引擎造成问题。现代的活塞设计主要有铸造和锻造两种,而铸造又比锻造来得简单便宜,但却无法如锻造活塞承受较大的热度和压力。通常改装厂在设计锻造活塞时,都会同时利用改变活塞顶部的形状来达到提高压缩比的目的,但问题是选择锻造活塞时多少的压缩比才是适当的。以汽油引擎来说,压缩比超过12.5:1时燃烧效率就不容易再提升。 利用活塞顶部的形状改变来提高压缩比时,随著压缩比的提高会使汽缸顶部燃烧室的空间变小,活塞顶部的锐角和凸出都可能导致爆震的发生。对高压缩比活塞来说,由于必须保留汽门做动所需的空间,因此会在活塞顶部切出汽门边缘形状的凹槽,如果没有这个 凹槽,当活塞到达上死点时可能就会打到汽门,因此改装了高压缩比活塞后对汽门动作精确度的要求就必须非常严格。这凹槽的大小也必须配合凸轮轴及汽门摇臂的改装而改变。不锈钢及特殊合金的活塞环已广泛应用在赛车及改装套件市场,这些特殊设计的合金活塞环可以在活塞往上行时释放压力,但在往下爆发行程时却能保持密闭的状态以维持压力,这种活塞环虽然贵但是却能有效的提高引擎效率。由于活塞与活塞环都必须在高温、高压、高速及临界润滑的状态下工作,因此长久以来改装厂都为了提供最佳设计而努力,但引擎的性能是所有机件整合的结果,因此选择活塞套件时必须考量凸轮轴的正时角度、供由系统的配合才能找出最佳搭配组合。 活塞连杆 活塞连杆最基本的功能是连结活塞和曲轴,把直线的活塞运动转换成曲轴的旋转运动。在引擎转时连杆会承受油气燃烧产生的爆发力,这个爆发力会使连杆有扭曲的趋势,连杆也是所有引擎组件中承受负荷最大的组件。 由于连杆是把活塞的直线运动转换成曲轴的旋转运动,因此在活塞上下运转时连杆会不断的加速及减速,尤其在活塞抵达上死点时连杆的动方向会由往上突然减速至停止,并立刻改变运动方向,这是最容易造成连杆损害的。在爆发行程时,燃烧产生的高压气体可变成连杆运动的缓冲,插销、波斯(Bolts)所承受的负荷也会减轻。但是在排气行程的时候活塞、活塞环、插销及连杆本身的部份重量所造成的惯性力都会加诸在插销及波斯之上,如果这时连杆出了问题那下场就是你的引擎要进厂大修了。 现在的赛车引擎大多使用锻造的合金连杆,连杆的品质关系著引擎的可*度,但是却无法以肉眼检视连杆的品质或瑕疵,必须以特殊的非破坏检验或X光做检测,这是选购及改装连杆时最大隐忧。连杆各项尺寸精密度的要求会随著压缩比及运转转速的提高而提高,即使仅是千分之几吋的尺寸误差在高转速时都会造成活塞间隙明显的变化。如果用了强度不足的铝合金连杆,在高转速时由于惯性作用会使连杆长度变长,造成引擎的损害或是压缩比的增加。 在活塞连杆的组件中对于尺寸要求最严格的当属连杆轴承(也就是俗称的波斯),这也是最可能导致连杆损害的组件。所以对赛车或高性能引擎来说,应该尽可能的使用最高品质的轴承,以确保引擎的可*度。 曲轴 曲轴可是为引擎的心脏,如果它的功能无法准确的执行,那么引擎的马力就无法正常的发挥。曲轴的各相对角度必须正确,否则点火正时和汽门正时就无法精确有序的一个汽缸接著一个汽缸的运作。如果这顺序出了问题,可以想见这结果就是爆震连连。 曲轴轴承的间隙也是另一个重点,主轴承和连杆轴承都必须有适当的间隙以使机油能够流动产生润滑和冷却效果。如果太小汽缸壁、活塞、汽门机构....等就无法获得充分的润滑,会造成机件的磨损。如果太大抛出的机油量增加会使活塞和活塞环的工作加重,造成燃烧室过多的机油残留,导致积碳及相关后遗症。 曲轴的平衡是最常被大家所提起的,曲轴的先天平衡性在引擎设计的时候就已决定,实际的平衡度则会由于材质及制作精度的不同而有所差异,以市售车引擎来说,4000rpm以下尚称平衡,超过以后则会随著rpm的提高而使情况加剧,这种情况又以国产引擎最严重,如果你常以高转速行车,或是你的以解除了转速限制,为了引擎的长治久安,你必须好好考虑曲轴平衡。 压缩比 压缩比是活塞在下死点和上死点时汽缸容积的比值。改变压缩比可提高引擎的效率但是在制作过程必须要求严谨,因为压缩比会直接影响汽油的燃烧效率并且和点火正时的设定有密切的关连。在很多高性能引擎都有著很高的压缩比,在赛车引擎更是如此,但是一般经济取向的引擎却会适度的降低压缩比。随著压缩比的提高对汽油品质及辛烷值 的要求也就越来越高,这也是很多高压缩比引擎所遇到的难题,可喜的是中油将在今年推出98无铅汽油。汽油引擎的压缩比应该超过8.5:1,但是当压缩比超过12.5:1时对性能的提升的效益就变得很小,而且伴随而来的汽门和活塞相对距离不足、爆震、预燃及其他伴随而来的后遗症会使问题变得很复杂。因此在进行提高压缩比之前必须先知道汽门的扬程和凸轮轴所设定的气门开启时间、正确的进汽门和排汽门的尺寸甚至燃烧室的形状及尺寸。此外如果汽缸头曾经研磨过或是使用了薄的汽缸垫片,其相关的数据也必须一并考虑。 引擎内部组件改装时,必须特别注意材料的选择、制作精度及平衡度的要求,更不能忽略各组件间的搭配,从上文可知引擎的改装往往是牵一发而动全身,单对某一部份进行改装通常会破坏引擎的平衡性,而且效果不彰,因此如果你考虑对引擎进行改装时,,请务必选择专业改装厂所出产的产品,并尊重专业的搭配,千万不可土法炼钢,否则因小失大就得不偿失。 此外安装的手工也是一大难题,常常可看到国外改装厂的改装套件广告,宣称装了以后马力可达几匹,0~100可在几秒内完成。但是你真的相信这些套件到了国内后经由本地的技师安装后,能够达到和国外相同的数据吗,~也能但不容易,这其中的差异就在于安装的手工。 举例来说,连杆在安装时必须特别注意螺丝的锁法及紧度,锁螺丝时应该先充分的清洁并涂上一层薄机油,避免螺牙间产生异常的应力造成螺丝虽按照规定的力量锁紧但却无法达到应有的紧度,否则引擎运转后由于紧度的不足会造成轴承立即且严重的损害。在事事吹毛求疵的引擎改装领域里绝不可大而化之。 `` 以前谈到供油系统时还分为化油器和燃油喷射系统两种,但是就马力输出、燃油效率、废气污染、可靠度……各方面来说,化油器比起燃油喷射系统可说是一无是处,所以我们可以说:化油器的时代已经过去,它已成为历史名词,无讨论的价值。所以,以后谈到引擎供油系统就是单指燃油喷射系统。喷油系统是由燃油输送系统、感应器系统、电脑控制系统所组成。它的工作原理简单来说就是利用汽油帮浦将汽油加压以后,从油箱送进高压油路,经过压力调整器的调节作用,使系统中的供油压力维持在2.0~2.5 Kg/c?,也就是将送到喷油嘴的汽油压力保持在2.0~2.5Kg/c?(30~38psi)。同时由各感应器将引擎的进气量及运转状态以电压讯号的形式传送到供油电脑(ECU:Electronic Control Unit),ECU根据这些电压讯号加以分析,算出所需的喷油量,也就是算出喷油嘴的喷油时间,然后再将喷油讯号传送到喷油嘴的线圈,喷油嘴接受喷油讯号后,将喷油阀打开,汽油便喷到进汽门前方的进气岐管内,再随著进汽门的打开进入汽缸内。 喷射系统的分类 一、依喷射(喷油嘴)位置分类:,、节气阀体喷射式(Throttle Body Injection)又称为单点喷射(SPI:Single Point Injection),只使用一或二支喷油嘴,装在节气阀上方,以较低的压力喷出汽油,汽油与流经节气阀的空气形成混合气后,必须先通过进气歧管再由进汽门进入汽缸。但是油气流经进气歧管时,部份油气会在歧管壁附著,并且会因进气歧管的形状、长度不同而造成各缸混合气分配不均。因为油气从节气阀到汽缸必然会有的时间延迟,因此引擎加速时的反应会较慢。,、进气口喷射式(Port Injection)又称为多点喷射(MPI:Multi-PointInjection),每一缸的进汽门口之前各有一支喷油嘴,对准进汽门,以2~5Kg/c?的高压将汽油喷出,而与进气歧管中的空气一起进入汽缸,形成混合气。如此一来进入各汽缸油气?幕旌媳鹊靡云骄 ~ ? 二、依喷油方式分类:,、连续喷射式(Continuous Injection),又称机械喷射式,喷油嘴在引擎运转时不断的喷油,而喷油量的控制是经由改变供 油压力来达成。,、程序喷射式(Timed-Manifold Injection),使用电子式喷油嘴,需要喷油时将喷油嘴的线圈通电,使柱塞因为磁力的作用而往上提升,喷油嘴便可喷油。喷油量是由喷油时间的长短来控制,单位是微秒(ms)。由于机械喷射已经是过时的设计,因此目前市面上的车种几乎都采用效率及经济性较佳的程序式喷射。而单点喷射除了价格较低、结构简单外,也无任何可和多点喷射媲美之处,况且它还有许多和化油器相同的缺点(效率低、各缸油气分配不均),因此多点喷射(MPI)可说是现代喷射供油系统的主流。举例来说:OPEL CORSA手排和自排车型,同样1.4升的引擎,就只因为多点和单点这一字之差,马力相差了22匹。要知道,若想经由事后改装让引擎马力提高22匹,花费可能不小于六位数,读者不可不慎。由此可知多点、程序式喷射系统将是现代引擎的唯一选择。此外,结合了电脑喷射供油控制系统和自动变速箱控制系统的„集中式引擎管理系统?更是目前汽车设计的趋势。它将两者的工作特性充份协调、整合,让引擎与传动系统的效率得以充份发挥。 三、依空气流量检测方式分类:进气量的检测方式分为直接和间接两大类,一种是以进气歧管绝对压力感应器(MAP Sensor:ManifoldAbsolute Pressure Sensor)测出的进气歧管压力和引擎转速间接计算求得。另一种则是以空气流量计直接测得。较常见的空气流量计有三种:翼板式、热线式、卡鲁曼涡流式。目前市场上的车种是以MAP及热线式空气流量计为大宗。 供油量的计算 供油量的多寡是以喷油嘴燃料喷射时间的长短来计算,供油电脑(ECU)根据空气流量、引擎转速、及各个感应器所提供的补偿讯号,利用原先设定的供油程式算出所需的供油时间,这个供油程式我们可以用图形的方式来表现。 ECU所算出的燃料喷射时间是“基本喷射时间”、“补偿喷射时间”和“无效喷射时间”的总和,单位是微秒(ms),1ms,0.001秒。其中喷油嘴在单位时间内所喷出的汽油量是由喷油嘴本身口径的大小及喷油压力大小所决定。一、基本喷射时间基本喷射时间是由进气量(此处是指重量)和引擎转速所决定。当你踩下油门踏板时,控制的是节气阀的开启角度,开度越大进气量越大,供油电脑根据空气流量计测出的进气量及当时的引擎转速来和预先所设定的供油程式比较后,算出所需供油量和相对的喷射时间。 二、补偿喷射时间补偿喷射也就是一般人所称的„提速?,它是由各种感应器侦测出引擎当时的工作状况及负荷,将讯号传给电脑 (ECU)以后,算出所需额外的供油量,用以维持引擎稳定、顺畅的运转。补偿喷射程式的设定是一复杂的工作,也因车而异。 一般来说的补偿喷射程式大致有下列几项:,、冷车启动补偿,、暖车补偿,、怠速后启动补偿,、高温时补偿,、加速补偿,、高转速、高负荷补偿,、理论空然比回馈补偿,、断油控制 三、无效喷射时间喷油嘴从线圈通电到全量喷油之间会有一段延迟时间,称为„开启延迟?,而线圈断电后到完全停止喷油也有一段延迟时间,称为„关闭延迟?。 由于开启延迟时间大于关闭延迟时间,所以实际的供油量将少于所需,而开启延迟时间减掉关闭延迟时间就称为„无效喷射时间?。为了得到正确的供油量,必须把无效喷射时间算进去,也就是说在算出供油量以后要再加上无效喷射时间喷出的油量才会和所想要的相同。因此,无效喷射时间也可视为补偿喷射的一项。供油系统的改装 引擎的最佳空燃比为14.7:1,但若在高转速、高负荷时若想要求得较高的引擎出力,通常要将空燃比提高到 12:1~13:1。供油系统的改装就是要„在适当的时候适量的提高供油量?,让空燃比适度变大,这„适时?与„适量?也是判断供油系统的优劣,够不够聪明的依据。 喷射供油系统的改装可分为改硬体和改软体两 大类,改硬体的目是要提高单位时间的供油量。改软体主要是改变它的供油程式,由于原车的供油程式是考虑了废气控制、油耗经济性、运转稳性定、引擎材料耐用性所得的设定,所以在马力的输出表现上,往往无法达到注重性能的使用者的需求,例如大家最殷切需求的高转速、高负荷时的表现,往往呈现供油量不足的窘况,这时就有赖改装软体来达成。以下我们就针对供油系统的改装项目,一一说明。一、调压阀在多点喷射油路系统中的压力调整器,它负责对喷油嘴提供一固定的压力,压力越大那么相同的喷射时间喷出的汽油量越多。调压阀是装置在压力调整器之后的回油管,经由调整可将喷油嘴的喷油压力提高(一般约可提高20%),进而达到不更动供油模式的情况下增加喷油量(约可增加5%~10%)。加装调压阀可说是供油系统的改装中最花费最便宜的,其安装也相当容易,只不过在调整压力时,需借助汽油压力表才能量测调出的压力。目前市场上,对换排气管、改进气装置、换高压缩比汽缸垫片、装 MSD 点火系统,这类小幅改装的车,通常用加装条压阀来弥补其高转速时喷油量的不足,效果不错而且经济。事实上,调压阀就是 MSD点火系统的附属配件之一。在此要告诉大家一个小常识,若你的车在静止起步油门踩下的瞬间会出现短暂的爆震现象,装个调压阀也许就可改善。二、喷油嘴喷油嘴的大小决定了单位时间的喷油量,改用口径较大的喷油嘴是提高喷油量的最直接方法,要换到多大则需视引擎的改装程度而定。改喷油嘴最大的困难是可相容喷油嘴的取得,通常同车系或同系列引擎的喷油嘴才可相容,最常见的就是喜美可换用雅哥的喷油嘴,可增加约25%的喷油量。改调喷油嘴所获得喷油量的增加是全面性的,也就是从低转速到高转速喷油量都会增加,这可能会造成中、低转速时的供油过浓,导致耗油量增加和运转不顺。通常"动过大手术"的引擎才会需要大幅的增加供油量,一般车主所需要的通常是高转速和重负荷时适度的增加喷油量,这就有赖软体的改装才能达成。但有个情况就是引擎大幅改装后,也许高转速时所需的喷油时间比引擎运转一个行程的进气时间还长,造成喷油嘴持续的喷油都无法提供足够的油量,这时加大喷油嘴已是必然的选择。三、供油电脑晶片车厂在设计一具引擎时便已将原先设定好的供油程式烧录在 ROM 上,这个程式通常是油耗、污染、运转平顺度等条件妥协下的产物,而且是不可更动的。就因为不可更动,所以若想改变供油程式就必须换用另一种模式的 ROM。通常专业改装厂都会供应种车型的改装用电脑晶片,改装时要先把原电脑的晶片取下(通常原厂供油电脑的 ROM都直接焊在电路板上),焊上一个IC座(如此一来可方便日后再更换),再插上改装用的晶片。如此所得的供油程式仍是固定的,它只是对原车的程式做修正,其中很重要的一项是可将补偿喷射程式中的断油控制时间延后甚至取消不再有断油之限制。要注意的是每一种改装用晶片都有它设定的适用条件(也就是改装的程度),改装时必须选用和您爱车改装状况相近的晶片,才能得到最佳的效果,否则可能适得其反。晶片的选用唯有寻求经验丰富的改装厂咨询。一个晶片一种供油程式,聪明的读者一定会想到:如果装上两个、三个,结果又如何呢,没错,国内以前就有改装厂将两个或三个不同供油模式的晶片,同时装在同一片电路板上,驾驶人可由一个外接到车内切换开关,随意选择所需的供油模式,就有如切换自动变速箱的,档、,档、,档一般,以应付不同车主的需求。四、可变程式供油电脑这是供油系统改装中最贵也最有效的一项,在国内改装界最为大家所熟悉的就是HALTEC电脑。经由这个电脑车主可依照爱车引擎的改装程度,配合空燃比计的测量,设定出最佳 的供油程式,也就是前文所提的基本喷射程式以及各个补偿喷射程式都可利用外接手提电脑任意更改。它与改晶片最大的不同,也是它最大的优点是日后引擎再作更动、改装时,若出现原有供油程式不合用情况,可经由程式的修正立刻获得解决。改装可变程式电脑后,原车的供由电脑便废弃不用,但较高等级的电脑能将原车的所有感应器功能悉数保留,也就是说各种供油补偿程式都可正常运作,也可更改,不因获得高性能而将运转顺畅度与实用性牺牲。改装可变程式供油电脑的最大困难并不在于安装,而是供油程式的设定与最佳化修正。这往往需要借助经验和仪器,经由不断的测试才能达成。目前改装厂的作法是先选定一个基本模式为基础,再经由实际的运转和测试逐步的修正,直到满意为止。 供油系统的改装最大的 Know-How 在于软体的设定,但随著电脑科技的进步,体积越来越小、记忆体容量越来越大、功能越来越强,未来的引擎供油系统也许已经没有改装的必要,因为具备多重模式和自我学习功能的供油系统在不久的将来将会出现。也许以后你车上的供油系统,行驶在市区、山路、高速公路、乡间小路将各有不同的供油模式。到那时谈供油系统的改装就没有意义了~ 你会发现越来越多的轿车,在其尾部行李箱盖外端都装有一块像是倒装的尾翼,使原本就拥有华丽迷人外观的轿车又平添许多妩媚和生气。 许多人都以为这新颖美丽的汽车尾翼是厂家为了好看才给轿车安装的装饰件,其实它的主要作用是可以有效地减少轿车在高速行驶时的空气阻力和节省燃料。 根据气体动力学原理分析,我门知道汽车在行驶过程中会遇到空气阻力,这种阻力可分为纵向、侧向和垂直上三个方面的作用力,并且车速与空气阻力平方成正比,所以车速越快,空气阻力?驮酱蟆? 一般情况,当车速超过60km/h,空气阻力对汽车的影响表现得就非常明显了。为了有效地减少并克服汽车高速行驶时空气阻力的影响,人们设计了汽车尾翼,其作用就是使空气对汽车产生第四种作用力。即对地面的附着力,它能抵消一部份升力,控制汽车上浮,减小风阻影响,使汽车能紧贴着道路行驶,从而提高行驶的稳定性。 目前大多数汽车尾翼都是用铝合金、玻璃纤维或碳素纤维制成的,既轻巧又坚韧,并且它的形状尺寸是经过设计师精确计算而确定的,不宜过大也不宜过小,不然反而会增加轿车的行车阻力或起不到应有的作用。 除了减少高速行驶中的阻力,加装尾翼对於节省燃油也有一定帮助。以排气量为1.6公升的轿车为例,如果装上尾翼,空气阻力系数降低20,,在一般道路上行驶,耗油量减少或许不明显。如果在高速公路上行驶,则能省油大约10,。 按照汽车引擎的四个往复动作一吸气、压缩、爆炸、排气来看,如果排气管无法迅速排光燃烧后的废气,则接下来的进气行程必定也没办法快速、完全地吸入新鲜空气;尤其此刻残留在燃烧室内的废排气,还会影响到下一次的燃烧效益,这样一来,马力表现自然不会理想,这便是为何要改装排气管的目的。 排气性能关键在於速度回压 虽然四行程引击原本就是可完全燃烧的设计,但由于汽车的缸数多、各缸没有独排气管,同时还有噪音、空间、整体配置与量产成本等的考量,相形排气管只是单纯的消音及冷却排废气之用,于是就会有不够顺畅的问题产生,进而降低引擎的应有性能。所以与其形容改装排气管是在于增加马力,倒不如说是为了找回马力、发挥原本轮出较为适当。 排气管的通畅程度,也即是大家所熟知的「回压」一词一或可称背压、反压一简言之它就是排气管内部的阻力,此和芭蕉头设计、中段管径粗细、触媒、总体长度,弯角、消音筒大小都有关联,同时直接反映在排气效能上。改装排气管的主要 用意便是在于减低回压让吸排气的交换更畅快,而这亦属于变相的延长气门重叠时间来增进肺活量,因此可以改变引擎的特性,从而提升高转域的反应和威力。 不过,减低回压这回事并不是说越低越好,因为假使排气过份无阻碍的话,中低转时混合气根本未燃烧完便被排出,扭力势必会桉牺牲掉,甚至当回油时管内压力变低,还有废气逆流回燃烧室的可能,所以一定的背压仍然是需要的。 管径扩大率以10—15%为恰当 一股来说,排气管的改装大多是从中、尾段做起,常见的方法不外乎是加粗管径、缩小消音器等,强调竞技类的裂晶更会—朝直线化努力。提到直线型排气管的特点上(碍於底盘干扰,做到真正的笔直有困难),路径缩短且弯角平滑减少阻碍的关系,颢阳性一定很不错,不过大家要知道的是,相短的排气管乃诉求於高转马力(回压低),细长型擅长的是低转扭力 (回型高压槽有这类的差别,道理就是后者管内的压力高,中低转速废气会很迅速地排出,但高转时则会面临阻塞的弱点,而相形前qO便有中低转流速慢的问题,可是到了高转嗫排气即能通畅无比。以道路使用为前提的排气管,其实应先选择全长较长的式样,作为蓄气增速的条件,然後才是在管径上变化比较能兼顾到全转速域的表现依照大多数人的经验来看,中段管径的增加,差不多是比原厂多10-15%为最佳(引擎无改装),也就是自然吸气引擎在55—60左右,涡轮引擎约为65—70上下;当然,阁下的爱车若排氯量够大,又经过一番重度升级具备合400hp Over的实力,那么亦有必要用到80以上的管径。 关於管径的配置上,由粗变细或从头至尾一样口径,对重视扭力的人而言比较恰当,但假使你是马力派的追求者,则适合渐次放大的型式,这种[ 喇 叭 口 ]型的设计,是慢慢扩大管径的方式,驱使越往後方越急速膨胀的构废氯增速气流,特别是在持续高转速的情形下益发有威力,这亦为目前日系改装排气管的一项趋势。 触媒中淆部分请注意共震现象 正中段排气管的改装中,还有一重要元件是触媒和中消,虽然触媒的基本功用是在於净化排气,可是它和中消一样,还附有消除共鸣謦传至驾驶舱的作用,由许多种贵金金属密密麻麻构成的髑煤,依照改装的眼光来看,确实是阻碍排气通畅的一大元凶,而且又是个讨厌的聚热点,所以许多人会更换炮弹型的代替管(直管易引起共振),往往只是这一小截的直通化,便能感觉到排气畅顺许多,声音不会闷在里面。 触媒段、中消的外型,看起来很像是个膨胀室,因此能减缓废气流动定上,就成了可灵活运用的地方,改装排气管的中消、触媒代管,大致会做的较短、较小型,来增进排气的顺畅度,不过有些管径偏粗的型式,这部份便不会减缩的过於激烈,以确保中低转的力量;像日本一些大口径的Front Pipe,还会在前端设置一膨胀室,目的就是在增加马力之余,也能兼颤到反应。另外,当你感觉到排气太通、扭力牺牲过多时,其实不妨晓上一截所谓的「炮弹」,便能改善不少这种现象。 尾消内部构造分隔板与直线式两种 身负主要消音工作的尾段排气管,自然是一个发生阻力的所在,这便牵涉到消音筒内部的设计。尾消的构成大髅上可分成两类,第一种是利用交错隔板造成反射波的方式减低音量,原厂晶几乎都是此种型式:第二种则为改装晶常见的直线型吸音绵式,由流体力学的立场观之,隔板式的排气阻力一定较大,马力提升也就不如直线型来得占优势了。 要想降低尾消的排气阻碍,不单单是需通路直线化以及内管口径扩大,整个消音器小型化同时是必要的(N一类排气管的筒身仅二O,;O曰而已),而且这里还可以加入些巧思,如在进入尾消前安装一活动阀门;integr-r嚣有这项装置),或者是如无限设置双回路加速气流(TwinLoop),让背压视 转速提高而递减等,旨是不错的变通方法。 直线构这的改装排气管尾财,噪音的吸收需要藉消音绵达成,在此之中,大部份厂家都是单纯采玻璃绵对 应(细玻璃纤维绵加少量石绵I中消、代触媒亦然),但是时间久了以後,长时间处於高热环境的玻璃绵,必定 会囚劣化而出现共振、謦音变大的问题,故现在也有些制晶会标榜内岂提高耐久性的不锈钢丝,此种设计的变 更点,差别是先用不锈钢丝包覆内管的打孔外套,然後才是玻璃绵的填入,其用慧即是以不锈钢丝防止热传 导到玻璃绵上,进而延长总体寿命。这里附带一提的是,为了防止临检、验车等不必要的麻烦,现在也有厂一样,但它的性能仍是相当不错,主要的原因就是其乃利用大简身、加多吸音绵来彻底抑制噪音,内部的构造则依旧以直线型为主,然後在消音筒的头尾端加入隔板,如果你有自行订做尾消打算的话,不妨参考一下找们的附田,较容易取得出力兴譬浪的平衡,另外,最近颇流行的ECV调音阀,建义大家最好要装在进尾段前,如此才会有最大的静音效果。 芭蕉头段改装主要在於等长化 在排气管的改造中,最重要的部份要算星芭蕉头了,由於原厂头段百分之八十都是大量开模的铸铁制品,内管粗糙不说,各歧管长度也不相同,加上接合的方式、距离、形状同样不够周全,因此非常容易产生排气干涉 现象,使得各缸排出的废气相互冲突而阻滞:尤其是此处又最*近汽缸头,可想而知对进气、燃烧有多么不利了。 通常由改装厂所制作的芭蕉头,绝大多数会使用内壁平滑的不锈钢材质,讲究的厂商则还在歧管连底座和接角的部位,实施无段差的熔接研磨并尽量缓和銮角,藉此取得减少阻力、加速气流的功效。接著他们会尽可能的 将歧管长度统一,讲究的当然是 致化且彻底消除各歧管的压力差,这样一来,不仅是利於後段排气管的回压 设定,整体吸排气的效率也能大幅提升。最後,关於集合部位的型式上,最普遍的四缸引擎一股公认四合一为 强调高转马力的式样(不易干涉),四合二合一是童视中低转扭力的型式(易千涉),不过这主要还是取决於 原厂引擎的轮出特性与设计者个人喜好,很难真正判断出两者的优缺点。 等长头段非但是NA车的一大利果,*芭蕉头导引废气驱动叶片的涡轮,等长的优点在於各缸排废气质量相等後,叫Turbine便能遭受到定量、顺畅而持续的冲击,这样增压的界限、效率、稳定度都会提高,特别在工HI-boost设定时更是明显。等长之外,歧管总长度的决定(含DownPipe),亦为叫Turbo芭蕉头制作时需考量的地方,大体上来看,歧管长度短的话,叫Turbine运转的反应就会随之加快,但相对後续的流量就不如长歧管饱和,这也依然是要视涡轮的容量与引擎排气量而定。 涡轮引擎用的芭蕉头,另一个设计上的重点是叫Turbine入口处排压的降低,减低这里的排压也才能让涡轮运 转更为快速,同时增加田oost的最大且长的形状,用意即在此,同样的道理,Turbine出口相连的FrontPipe,换装大口径式样将二次排压减低亦有其必要性,毕竟涡轮是藉废气推动,排气顺畅增压速率自然会提升,因此若以追求性能为出发点。车的全段排气管皆是需要粗径化的。 道路用适合材质推不锈钢制品 随著材料技术的发达,排气管的用料也不再局限於以往的钢、生铁类材质,轻薄漂亮的Stainless、鈇合金亦渐渐占有一席之地,不过售价偏高的关系,反而使得「半不锈钢」晶成为主流(看得到的出口或尾筒是Stainless,其余为普通钢铁)。先天就便宜的钢、生铁,由於厚度、管径种类极多,再加上弯管、烧焊容易的缘故,使得其制造成本低廉而能以售价吸引大众,可是粗鞑、重量高、易锈蚀等缺点则避免不了,尤其是此等素材的熔点较低,耐热性更是不理想,拿来做涡轮车的芭蕉、前喉可说不太合适。 与生铁、钢相比较,具备细致、轻量、耐热、耐腐蚀等特性的不锈钢(SuS304),算是很适合当排气管的素材,管壁极薄的它(NA车1(6-2(Omm;Turbo车2(5 -3(Omm,用於芭蕉还需更厚,因为要悬挂涡轮并承受高温),单单中尾段就能轻上5公斤左右,而且声浪极为清脆(头段则尖锐、高亢),谈到Stainless排气管的耐热性,在芭一蕉头包披覆带的状态下最能证明其优越性,一股我们加诸披覆带的目的,不外乎是为了隔绝引擎室热源(Turbo车还有一个用意是维持撞击Turbine的热效率,所以原厂即装置有隔板),如此管内的温度便会提高很多,若是钢铁质的歧管一定发生裂损的情形,就算厚度很厚也一样,但不锈钢制品就不致受到影响(仅表面泛黄),除非是焊接不良。 尽管Stainless排气管有这么多优点,不过材料本身价格较高(口径愈粗愈贵,有些特殊规格更要由卷曲钢板 制作起)、加工较困难造成的高价位比普通晶高约一倍),还是无法让其真正普及化,但因为现在 不少厂家都投入此类型排『气管的制作,售价已有慢慢下降的趋势,最近引起性能迷注目的排气管,要属从窦车衍生而 来的钴合金制品了,来自於航太科技的高价金属—鈇合金,最大的特徵是薄(厚度约1mm),极度轻量化、质 地坚硬,用於排气管上除了声音清澈徵,也更加深与众不同的分格。然而钛合金本身不能弯折(据说日本已发 展出专门的弯管技术)、不容於其它金属的特性,相对亦大幅增加制作时的难度与成本,它不但需一截一截的焊接,连消音内室都要使用到同等材质,故全鈇排气管可是非常昂贵的。考量到接受度的问题,现在市售的鈇合金排气管多半只贩售消音筒的部份,有些甚至只是在尾管、筒身铆上一层鈇皮,可是价钱依旧古同出Stainless品许多。 改装前要确认喜好特性 看完了以上的说明後,大家一定要在改装排气管之前,确认你自己所想要的特性,好比自排车就不能更换太 通的排气管,否则丧失低转扭力不谈,只怕连高转马力都累积不上去。此外,判别一支排气管的效能优良与 否,其实从謦音下手是一个不错的办法,排气顺不顺畅的条件,首要自然是声音不能闷在里面,可是这也不代 表大声就是好现象。假使声音大却很空、不扎实,必然是其回压过小,而声浪饱满浑厚的排气管,亦间接表示 了它能将废气快速地排乾净,所以背压应是适当且正确的。 最後值得大家注意的是,当你更换时,产生的共振有可能会偏大,让排气管发生左摇右晃的情形,这时候 最好顺带换上加硬型的吊耳橡皮(过重时也需要),才不致使接合处龟裂。能够把握住这些原则,你也一定能享受改装排气管带来的乐趣。 点火系统之改装 在谈点火系统的改装之前,你必须先了解你的车点火系统是否仍维持原设计的性能,确认之后再谈改装的需求。 火花塞是否定期更换,火花塞的寿命约为一万公里。冷热值是否正确,这可由拆下的火花塞电极状况判断,太冷的(散热能力太好的)电极会出现黑色积碳,太热的电极则会呈现白色、电极熔蚀、陶瓷裂开等状态。高压导线是否破损漏电,电瓶的电压是否充足,(装了高功率的音响扩大机后,是否配合换用安培数较大的电瓶,)点火正时是否作了正确的调整, 点火系统的改装是为补原有点火系统之不足,改装的目标在于缩短充磁所需时间,提高二次电压,降低跳火电压,增长火花时期,减少传输损耗。其方法可由以下几个方向着手: 1.高压线 高压导线顾名思义就是肩负着传输由高压线圈所发出的高压电流到火花塞的任务。一组优良的高压导线必须具备最少的电流损耗及避免高压电传输过程产生的电磁干扰。 一般车上的高压导线由于包覆材质所限,因此设计成约有,, 的电阻值,以防止电磁干扰,但这电阻值确会降低导线的传输效率, 造成电流的损耗。若将导线包覆的材料改为硅树脂,则干扰的问题可获得解决,电阻值也可大幅降低,高压电流因传输而造成的损耗也可降低,这也就是改用『硅导线』的目的。改用硅导线绝不可能让你的点火系统脱胎换骨,但能收强化体质之效,也可为后续的点火系统改装铺路。 2.火花塞:铱合金或钛合金系列火花塞具有高点火性与防污功能,不论是加速性或长时间的速塞车行使,都能兼顾得当。极细中心电极采用最新、铱合金或钛合金材料,可产生极大火花放电,电镀高温座耐腐蚀,具有2450?超高耐温度。铱金属或钛金属都具有良好的散热与抗高温特性。点火系统的改装是为补原有点火系统之不足,改装的目标在于缩短充磁所需时间,提高二次电压,降低跳火电压,增长火花时期,减少传输损耗。 3.负极接的系统: 负极接地系统有多条电线,将连接端接在电瓶的负极,其余的接在电气设备的接地端即可。由于强化了电器的电能传输效果,发电机的负载从而减轻,因此加速更灵敏,旧车或系统负载较重的车安装后更能体会到动力无?旱,男Ч ? 4.电容放电系统 电容放电点火系统就是大家熟知的,,,(,,,,;,,, ,,,;,,,,, ,,,,,,,,),它是利用每次的点火间隔,将点火能量储存于电容器的电场中,点火时再一次释出,因此比起传统的点火系统能产生更大的点火能量。 ,,,的产品中知名度较高的有,,,,,、,,,、其中特殊的要算是,,,(,,,,, ,,,,, ,,,;,,,,,),字面意义是:多重火花放电。它在一次点火放电的过程中可产生多次连续的高压放电,具有极高的点火能量(可达一般点火系统的十倍)。如此高的点火能量可大幅延长火花时期,也由于点火能量(电流)的大幅增加,因此必须配合将火星赛的电极间隙适度的加大,让点火能量能(电流)在一次的点火时期正好消耗完,否则未能消耗的能量可能会寻找其它的方式消耗,其中可能的是在点火系统的其它电路中取一最短的路径,如此一来点火系统将有烧毁之虞,不可不慎。 供油系统的改装 供油系统的工作原理 以前谈到供油系统时还分为化油器和燃油喷射系统两种,但是就马力输出、燃油效率、废气污染、可靠度((((各方面来说,化油器比起燃油喷射系统可说是一无是处,所以我们可以说:化油器的时代已经过去,它已成为历史名词,无讨论的价值。所以,以后谈到引擎供油系统就是单指燃油喷射系统。 喷油系统是由燃油输送系统、感应器系统、电脑控制系统所组成。 它的工作原理简单来说就是利用汽油帮浦将汽油加压以后,从油箱送进高压油路,经过压力调整器的调节作用,使系统中的供油压力维持在2.0~2.5 Kg/c ,也就是将送到喷油嘴的汽油压力保持在2.0~2.5Kg/c (30~38psi)。 同时由各感应器将引擎的进气量及运转状态以电压讯号的形式传送到供油电脑(ECU:Electronic Control Unit),ECU根据这些电压讯号加以分析,算出所需的喷油量,也就是算出喷油嘴的喷油时间,然后再将喷油讯号传送到喷油嘴的线圈,喷油嘴接受喷油讯号后,将喷油阀打开,汽油便喷到进汽门前方的进气岐管内,再随着进汽门的打开进入汽缸内。 喷射系统的分类 一、依喷射(喷油嘴)位置分类: ,、节气阀体喷射式(Throttle Body Injection)又称为单点喷射(SPIingle Point Injection),只使用一或二支喷油嘴,装在节气阀上方,以较低的压力喷出汽油,汽油与流经节气阀的空气形成混合气后,必须先通过进气歧管再由进汽门进入汽缸。但是油气流经进气歧管时,部份油气会在歧管壁附着,并且会因进气歧管的形状、长度不同而造成各缸混合气分配不均。因为油气从节气阀到汽缸必然会有的时间延迟,因此引擎加 速时的反应会较慢。 ,、进气口喷射式(Port Injection)又称为多点喷射(MPI:Multi-PointInjection),每一缸的进汽门口之前各有一支喷油嘴,对准进汽门,以2~5Kg/c 的高压将汽油喷出,而与进气歧管中的空气一起进入汽缸,形成混合气。如此一来进入各汽缸油气的混合比得以平均。 二、依喷油方式分类: ,、连续喷射式(Continuous Injection),又称机械喷射式,喷油嘴在引擎运转时不断的喷油,而喷油量的控制是经由改变供油压力来达成。 ,、程序喷射式(Timed-Manifold Injection),使用电子式喷油嘴,需要喷油时将喷油嘴的线圈通电,使柱塞因为磁力的作用而往上提升,喷油嘴便可喷油。喷油量是由喷油时间的长短来控制,单位是微秒(ms)。 由于机械喷射已经是过时的设计,因此目前市面上的车种几乎都采用效率及经济性较佳的程序式喷射。而单点喷射除了价格较低、结构简单外,也无任何可和多点喷射媲美之处,况且它还有许多和化油器相同的缺点(效率低、各缸油气分配不均),因此多点喷射 (MPI)可说是现代喷射供油系统的主流。举例来说:OPEL CORSA手排和自排车型,同样,(,升的引擎,就只因为多点和单点这一字之差,马力相差了,,匹。要知道,若想经由事后改装让引擎马力提高,,匹,花费可能不小于六位数,读者不可不慎。 由此可知多点、程序式喷射系统将是现代引擎的唯一选择。此外,结合了电脑喷射供油控制系统和自动变速箱控制系统的『集中式引擎管理系统』更是目前汽车设计的趋势。它将两者的工作特性充份协调、整合,让引擎与传动系统的效率得以充份发挥。 叁、依空气流量检测方式分类: 进气量的检测方式分为直接和间接两大类,一种是以进气歧管绝对压力感应器(MAP Sensor:ManifoldAbsolute Pressure Sensor)测出的进气歧管压力和引擎转速间接计算求得。另一种则是以空气流量计直接测得。较常见的空气流量计有叁种:翼板式、热线式、卡鲁曼涡流式。目前市场上的车种是以MAP及热线式空气流量计为大宗。 供油量的计算 供油量的多寡是以喷油嘴燃料喷射时间的长短来计算,供油电脑 (ECU)根据空气流量、引擎转速、及各个感应器所提供的补偿讯号,利用原先设定的供油程式算出所需的供油时间,这个供油程式我们可以用图形的方式来表现。 ECU所算出的燃料喷射时间是『基本喷射时间』、『补偿喷射时间』和『无效喷射时间』的总和,单位是微秒(ms),1ms,0.001秒。其中喷油嘴在单位时间内所喷出的汽油量是由喷油嘴本身口径的大小及喷油压力大小所决定。 一、基本喷射时间 基本喷射时间是由进气量(此处是指重量)和引擎转速所决定。当你踩下油门踏板时,控制的是节气阀的开启角度,开度越大进气量越大,供油电脑根据空气流量计测出的进气量及当时的引擎转速来和预先所设定的供油程式比较后,算出所需供油量和相对的喷射时间。 二、补偿喷射时间 补偿喷射也就是一般人所称的『提速』,它是由各种感应器侦测出引擎当时的工作状况及负荷,将讯号传给电脑 (ECU)以后,算出所需额外的供油量,用以维持引擎稳定、顺畅的运转。补偿喷射程式的设定是一复杂的工作,也因车而异。 一般来说的补偿喷射程式大致有下列几项: ,、冷车启动补偿 ,、暖车补偿 ,、怠速后启动补偿 ,、高温时补偿 ,、加速补偿 ,、高转速、高负荷补偿 ,、理论空然比回馈补偿 ,、断油控制 叁、无效喷射时间 喷油嘴从线圈通电到全量喷油之间会有一段延迟时间,称为『开启延迟』,而线圈断电后到完全停止喷油也有一段延迟时间,称为『关闭延迟』。 由于开启延迟时间大于关闭延迟时间,所 以实际的供油量将少于所需,而开启延迟时间减掉关闭延迟时间就称为『无效喷射时间』。为了得到正确的供油量,必须把无效喷射时间算进去,也就是说在算出供油量以后要再加上无效喷射时间喷出的油量才会和所想要的相同。因此,无效喷射时间也可视为补偿喷射的一项。 供油系统的改装 引擎的最佳空燃比为14.7:1,但若在高转速、高负荷时若想要求得较高的引擎出力,通常要将空燃比提高到 12:1~13:1。供油系统的改装就是要『在适当的时候适量的提高供油量』,让空燃比适度变大,这『适时』与『适量』也是判断供油系统的优劣,够不够聪明的依据。 喷射供油系统的改装可分为改硬体和改软体两大类,改硬体的目是要提高单位时间的供油量。改软体主要是改变它的供油程式,由于原车的供油程式是考虑了废气控制、油耗经济性、运转稳性定、引擎材料耐用性所得的设定,所以在马力的输出表现上,往往无法达到注重性能的使用者的需求,例如大家最殷切需求的高转速、高负荷时的表现,往往呈现供油量不足的窘况,这时就有赖改装软体来达成。以下我们就针对供油系统的改装项目,一一说明。 一、调压阀 在多点喷射油路系统中的压力调整器,它负责对喷油嘴提供一固定的压力,压力越大那麽相同的喷射时间喷出的汽油量越多。调压阀是装置在压力调整器之后的回油管,经由调整可将喷油嘴的喷油压力提高(一般约可提高 20%),进而达到不更动供油模式的情况下增加喷油量(约可增加5%~10%)。加装调压阀可说是供油系统的改装中最花费最便宜的,其安装也相当容易,只不过在调整压力时,需借助汽油 目前市场上,对换排气管、改进气装置、换压力表才能量测调出的压力。 高压缩比汽缸垫片、装 MSD点火系统,这类小幅改装的车,通常用加装条压阀来弥补其高转速时喷油量的不足,效果不错而且经济。事实上,调压阀就是 MSD点火系统的附属配件之一。在此要告诉大家一个小常识,若你的车在静止起步油门踩下的瞬间会出现短暂的爆震现象,装个调压阀也许就可改善。 二、喷油嘴 喷油嘴的大小决定了单位时间的喷油量,改用口径较大的喷油嘴是提高喷油量的最直接方法,要换到多大则需视引擎的改装程度而定。改喷油嘴最大的困难是可相容喷油嘴的取得,通常同车系或同系列引擎的喷油嘴才可相容,最常见的就是喜美可换用雅哥的喷油嘴,可增加约25%的喷油量。 改调喷油嘴所获得喷油量的增加是全面性的,也就是从低转速到高转速喷油量都会增加,这可能会造成中、低转速时的供油过浓,导致耗油量增加和运转不顺。通常”动过大手术”的引擎才会需要大幅的增加供油量,一般车主所需要的通常是高转速和重负荷时适度的增加喷油量,这就有赖软体的改装才能达成。但有个情况就是引擎大幅改装后,也许高转速时所需的喷油时间比引擎运转一个行程的进气时间还长,造成喷油嘴持续的喷油都无法提供足够的油量,这时加大喷油嘴已是必然的选择。 叁、供油电脑晶片 车厂在设计一具引擎时便已将原先设定好的供油程式烧录在 ROM上,这个程式通常是油耗、污染、运转平顺度等条件妥协下的产物,而且是不可更动的。就因为不可更动,所以若想改变供油程式就必须换用另一种模式的 ROM。通常专业改装厂都会供应种车型的改装用电脑晶片,改装时要先把原电脑的晶片取下(通常原厂供油电脑的 ROM都直接焊在电路板上),焊上一个IC座(如此一来可方便日后再更换),再插上改装用的晶片。如此所得的供油程式仍是固定的,它只是对原车的程式做修正,其中很重要的一项是可将补偿喷射程式中的断油控制时间延后甚至取消不再有断油之限制。 要注意的是每一种改装用晶片都有它设定的适用条件 (也就是改装的程度),改装时必须选用和您爱车改装状况相近的晶片,才能得到最佳的效果,否则可能适得其反。晶片的选用唯有寻求经验丰富的改装厂咨询。一个晶片一种供油程式,聪明的读者一定会想到:如果装上两个、叁个,结果又如何呢,没错,国内以前就有改装厂将两个或叁个不同供油模式的晶片,同时装在同一片电路板上,驾驶人可由一个外接到车内切换开关,随意选择所需的供油模式,就有如切换自动变速箱的,档、,档、,档一般,以应付不同车主的需求。 四、可变程式供油电脑 这是供油系统改装中最贵也最有效的一项,在国内改装界最为大家所熟悉的就是HALTEC电脑。经由这个电脑车主可依照爱车引擎的改装程度,配合空燃比计的测量,设定出最佳的供油程式,也就是前文所提的基本喷射程式以及各个补偿喷射程式都可利用外接手提电脑任意更改。它与改晶片最大的不同,也是它最大的优点是日后引擎再作更动、改装时,若出现原有供油程式不合用情况,可经由程式的修正立刻获得解决。改装可变程式电脑后,原车的供由电脑便废弃不用,但较高等级的电脑能将原车的所有感应器功能悉数保留,也就是说各种供油补偿程式都可正常运作,也可更改,不因获得高性能而将运转顺畅度与实用性牺牲。 改装可变程式供油电脑的最大困难并不在于安装,而是供油程式的设定与最佳化修正。这往往需要借助经验和仪器,经由不断的测试才能达成。目前改装厂的作法是先选定一个基本模式为基础,再经由实际的运转和测试逐步的修正,直到满意为止。 供油系统的改装最大的Know-How在于软体的设定,但随着电脑科技的进步,体积越来越小、记忆体容量越来越大、功能越来越强,未来的引擎供油系统也许已经没有改装的必要,因为具备多重模式和自我学习功能的供油系统在不久的将来将会出现。也许以后你车上的供油系统,行驶在市区、山路、高速公路、乡间小路将各有不同的供油模式。到那时谈供油系统的改装就没有意义了~ 汽门的改装 汽门机构的构成 最基本的汽门机构是由凸轮轴、汽门摇臂、汽门弹簧、汽门导管、汽门本体及汽门座所组成。 汽门机构与曲轴的关系 汽门机构运作的动力来源是来自引擎的曲轴,由连接于汽缸曲轴上的时规齿盘以时规 条来带动连接于凸轮轴末端的另一个时规齿盘,两个齿盘的齿比是1:2,也就是说经过四个行程后曲轴转了720 ,而凸轮轴只转了360 。有了这些驱动装置,凸轮轴便能随着引擎运转而转动,平时因为汽门弹簧的弹力作用而关着的汽门,当凸轮轴上的凸轮转到凸面时,由凸轮推动汽门摇臂,汽门便被打开,之后再随着凸面的离开及汽门弹簧的作用而关闭。凸轮轴转速是引擎转速的1/2,而进排气门也就因固定的凸轮角度而呆板的工作着。 引擎运转的基础典型 在谈汽门机构的工作特性之前,我们必须再确认一次四行程引擎的四个行程:进气、压缩、爆发、排气周而复始。 进气时进汽门打开,活塞由上往下,有如针筒作用一般将空气吸入气缸。压缩时进汽门关闭,此时汽缸形成一密闭的空间,活塞由下往上压缩油气,而压缩比就是活塞在下死点和上死点时汽缸容积比例。 油气压缩后,火星塞点火引燃油气产生爆发,由爆发后产生的大量气体将活塞往下推到下死点。爆发也是引擎四个行程中唯一的动力产生行程,其他叁个行程都是需要消耗动力的,这也就是为什麽四行程引擎比二行程引擎”反应慢”的原因,因为二行程引擎每两个行程就有一次是动力产生行程,而四行程则四次才有一次。爆发过后,排汽门打开,活塞由下往上推将汽缸内燃烧后的 气排出,活塞到上死点后关闭排气门,并打开进气门,准备下一次的进气。 汽门正时 引擎运转时活塞与汽门运动之间相 对关系的基础典型在现实的引擎运转时却会遇到几个问题:首先进汽门从打开到进气之前会有延迟,因为进汽是由于活塞向下先形成真空,进而由于汽缸内外压力不同才使油气被吸入汽缸内。(各位若有使用针筒吸过墨水,你便可清楚这一过程。)此汽门从开始动作到完全打开也需要时间,而基于上述原因,若能让进气门在活塞向?轮 跋却蚩 蚪 沙浞掷 谜庹 龅慕 谐獭?如果排汽门在排气行程尚未开始时先打开,可以减少活塞上升时的阻力,此外活塞由下而上到达上死点时,汽缸内的 气并未能完全的排出,这时若将排气门关闭的时间延后,便可利用由进汽门引入的新鲜油气,将残馀的 气”挤”出去,尽量减少 气的残留影响引擎的动力输出。以上汽门与活塞间的相对关系若以具体的图形来表示,就称为『汽门正时图』。而早开的进汽门和晚关的排汽门会造成有进排汽门同时打开的重叠情况,称为『汽门重叠(Valve overlap)。引擎高转速运转时若能增加汽门重叠角度,将可抵消因高速运转而凸显的进气延迟现象(其实高、低转速时进汽延迟的时间是大约相同的,只不过高转速时进气时间缩短,则进汽延迟所占的时间比例便相对提高)。但汽门重叠角度大的『高转速型凸轮』,虽然具有较佳的高转速动力表现,但在低转速运转时,将因为汽缸真空度不足及吸入油气的流失而造成容积效率降低,导致低转速动力不足、怠速运转不稳的后遗症。 凸轮的特性 汽门机构的设计目标就是要让进气愈多,排气愈干净。除了汽门正时外,汽门尺寸、扬程、加速曲线都会影响进排汽效率。这些因素乃是由凸轮轴(Cam Shift)的凸轮形状及凸轮轴与曲轴的相对位置所控制。凸轮的形状是以一圆为基础,称为『基圆』,并由汽门的开启角度及关闭角度的1/2决定开启点及关闭点(凸轮的转速是引擎曲轴转速的1/2),在决定扬程之后,凸轮的基本雏形就已出现,最后还要根据汽门加速曲线的需求修正凸轮的轮廓。汽门全开时与关闭时的高度差就称为『扬程』(Lift),也可说是凸轮的基圆的中心到凸峰的距离减掉基圆的半径所得的值。而汽门开始动作到完全打开或关闭所需的时间长短与凸轮轴角度的关系称为『汽门启闭加速度』,以图形表现就成为『汽门启闭加速曲线』。而引擎的容积效率正可由汽门扬程与凸轮角度所构成的曲线图形来判断。曲线下所围成的面积越大则容积效率越高。 当汽门尺寸及汽门正时不变时,汽门急开急闭可得到最佳的容积效率(也就是提高汽门加速度),当然最好是瞬间打开或关闭,但这在考虑对汽门座的冲击力及受到传统凸轮系统的先天限制(必须以圆弧面接触以维持机构运转之顺畅),并不可能达成。此外适度的提高汽门扬程也可提高容积效率。 汽门机构的改装: ,(进、排气道的抛光 进排气道的抛光可减少气道表面之粗糙度,其效果可分为二方面: 一是抛光后,平滑的表面可有效降低进排气阻力、减少空气流经气道时在气道表面产生停滞的现象;一是抛光后可适度的加大气道口径,这加大的幅度并不算很大,可视为抛光后所带来的附加效益,因为强度的考量无法大幅的加大。 抛光后可加快进气或排气的流速,也就是加快进气时的填充速度,在有限的气开启时间内,进量及迅速排气将残馀 气排得更干净,提高引擎的进气效率及减少残留 气所带来的冲淡效果。 ,(汽门打磨 汽门的打磨可分为两个部分,一是进汽门头的打磨;一是排汽门头背面的打磨。进汽门头的打磨使汽门头的部份,凹的弧度更大,让进汽门打开空气进入汽缸时,由于汽门头的弧度使其产生涡流,加速油汽的混合。而汽门头背面的适度打磨则可造成在排汽时在排汽门附近产生涡流,造成排汽的回压,如此一来就可再进一步加大排气管的口径,因为一部份回压的问题已交由汽门负责。 ,(凸轮轴 凸轮轴可视为汽门机构的灵魂,因为汽门运作的一切性能举凡:启闭的正时角度、汽门重叠、扬程都是由凸轮的形状所决定。为了方便说明我们就以两支不同角度的Lancer 1.6的4G92 SOHC引擎改装用凸轮轴的数据来比较。首先是『扬程』:A凸轮是进气0.373寸、排气0.377寸,B凸轮则进、排气都是0.432寸。开启时间(Duration):A凸轮是进气258 、排气262 ,B凸轮则是进气275 、排气270 。而最重要的开启时机(Timing):A凸轮是进气提前20 开、延后58 关,排气提前62 开、延后20 关,B凸轮则是进气提前32 开、延后63 关,排气提前63 开、延后27 关。把这提前和延后的角度再加上一个行程固定的180 ,就会得到前面所提的开启时间。而汽门重叠角度则可由进气提前和排气延后的角度相加得到:A凸轮40 ,B凸轮:59 。由这些数据再与原厂的凸轮角度数据相比较,就可大致判断出一支CAM的基本性能。 另一项关系汽门工作特性的因素是:汽门启闭加速曲线。虽然一般的CAM制造厂并不会提供此一资料,但我们仍可以从凸轮的外形轮廓来做个概略的判断。依其外形及性能特性大致上可分为下列几种典型:A:基圆大、扬程短的,其特性是低速扭力良好,出力平顺,但高速运转则较差,适合需要平顺扭力的RALLY赛车。B:基圆小、扬程长的,其特性是高转速表现良好? 妥 倨湓蛉砣跷蘖Γ ο谓有圆涣迹 绕涞?倏赡芏抖 现兀 σ 礁咦 俨呕帷和蝗弧挥肯帧,话憷此党〉爻等 蓟岵捎么酥諧AM,尤其是在大型跑道上比赛的赛车,力道在5000rpm后才出现的设计是常有的。C:基圆大、扬程长和基圆小、扬程短的设计,一般量产型车量大多属于这一种,性能表现是较中庸的。这时你或许会问:道路用的改装CAM是属于那一种,我们给你的答案是:中庸但『稍微』偏高转速型的。至于偏多少则视原车供油电脑及汽门弹簧的设计馀欲及匹配程度而定。当然车主能忍受的抖动程度也是必须考虑的。 ,(汽门、弹簧及其它配件 汽门的重量及启闭时加速度对汽门弹簧及整个汽门机构所造成的负荷,对动力表现及稳定度、耐用度有极大的影响,若能换上轻量化的汽门,则对汽门机构运转的反应将有相当大的助益。 汽门弹簧之所以要改装,最主要目的是为了配合改了CAM后所造成的扬程及汽门加速曲线的改变,如此才能充份发挥其所欲达到的性能要求。若是CAM改变不大或弹簧仍足敷所需,则改弹簧的这笔预算就可省了。 有一项不能省的就是可微调的汽门时规齿盘,如此才可做到准确的汽门正时调整(归零)。普通的时规齿盘一齿是7 ~10 ,调整时只能以一齿为单位,无法做更精确的微调,造成汽门无法在最适当的时机启闭,如此一来将失去改装CAM的原意。 其它如摇臂,汽门套筒等配件若有需要则也要配合改用强度高、轻量化的改装部品,应付高转速之所需和减轻机构之负荷。 最后,如果你对汽门机构做了大幅度的改装,你得去考虑供油系统配合的问题,必要的话也得一并改装,但如此一来花费将是可观的~ 传统的汽门机构的运作是呆板的,无法同时满足高、低转速之需求,可变汽门正时系统便因应而生,如HONDA的VTEC,NISSAN的NVCS,BMW的VACC都是这一类的设计,其中NVCS及VCSS系统改变的是凸轮轴的相位(正时),VTEC则是同时有高、低两种凸轮供切换,尤其到了,代Civic更已发展到有,种凸轮在切换,充份应付高、中、低不同转速之需求。也许在不久的未来,你我将不用再为改装CAM而烦恼,因为汽车工程师已经为这个问题做了妥善的解决。 引擎的改装 前言 引擎内部组件的改装主要是利用轻量化、高强度的材料制成的高精密度组件以减少内部动力的损耗,除了达到动力提升的目的更要兼顾可靠度及平 衡性提升。要兼顾轻量化和高强度则有赖材料科技的进步,由于高科技合金或复合材料的应用配合上精密加工技术,使得现代的高性能引擎不但单位容积所能产生的马力大幅提升,可靠度及经济性也能同时获得改善。 笔者在此必须再次强调:引擎内部组件改装并不全然是为了马力的提升,更重要的是为了引擎的可靠度及平衡性。因为拥有强大爆发力的高性能引擎和炸掉的引擎只在一线之隔,差别就只是在精密度要求的不同,『洋枪』与『土炮』最大的不同就在此而已,或许两者之间仅是千分之几寸的差异,但在引擎的改装规则里是没有妥协的,『失之毫 差之千里』、『吹毛求疵』用在这里是最适当不过了。 汽门的改装 汽门的科技在过去几年有很大的进步,主要的改变在于材质的进步及精密度的提高。高效率的进、排气,环保法规的要求,均有赖材质精良的汽门。而汽门改装的原则是:在不影响强度的情况下尽可能的减轻汽门的重量。 动作精确的汽门是高性能引擎的基本要件,专业改装厂通常会提供不同的汽门组合供消费者选择,引擎的装项目越多汽门机构的精确度的要求就越吹毛求疵,所以设定汽门时必须要同时考虑与凸轮轴及汽门摇臂的配合。 原厂的汽门通常都有适当的材质和大小,但是如果有需要的话可适度的换上较大或较小尺寸的。汽门的材质是很重要的,目前的改装用汽门通常用钛合金作为材料以求强度的提升及轻量化的要求,但是一套钛合金的汽门价格并不低。而有的是将汽门的背部切削或用中空的设计以达到轻量化的目的,又有时会把汽门表面做成漩涡状,以利在汽门开启时能气体的流动。 汽门的热度可经由与汽门座接触时经由汽门座传出达到散热的目的,是汽门最重要的散热途径。因此,汽门座的配置必须非常谨慎,假如太靠近汽门的边缘或是汽门边缘太薄了就可能造成密合度不良。此外汽门套筒和汽门间的精密度及表面平滑度,汽门摇臂与汽门固定座(Keeper)间的表面精度都必须严格要求否则在高转速时将会导致严重的损害。 汽门弹簧的强度设定必须恰到好处,要兼顾汽门的密合度又不能造成开启时的困难,如果弹簧强度大过以致凸轮轴开启汽门时负荷过重对马力输出是非常不利的。汽门的固定座也是个潜在的问题,这个装置是用夹子把弹簧固定在汽门 上,这在急加速及扬程大的的引擎上会造成扭曲或断裂,因此也必须配合做改变。 原厂的汽门摇臂在引擎转速上?尢岣呒捌 耪 备谋涫本突岜涞貌环笮枨螅 愿淖肮 囊 胬此登炕 钠 乓”凼潜匦氲模 锍烫 蟮耐孤种峄嵩斐善 乓”鄣呐で 虼饲慷鹊奶嵘 扒崃炕 际潜匦氲摹,砸话愕钠 爬此担 鐾彩降囊”勰芗跎儆肫 抛 哟ケ砻娴难沽Γ 材艹惺芙细呃醋酝?的压力。通常汽门摇臂若有圆滑的表面和滚动的轴承,会使运转时得摩擦阻力变小,摩擦阻力越小所消耗的动力就越少。 活塞、活塞环 活塞顶面与汽缸头之间形成燃烧室,因此活塞必须承受来自引擎燃烧后产生的热和爆发力。油气燃烧所产生的热由活塞的顶部所吸收,并传至汽缸壁,而燃烧后气体膨胀所产生的力量也必须经由活塞来吸收,活塞会把燃烧气体压力及惯性力经由连 传到曲轴上,利用连 的作用将活塞的线性往复运动转换曲轴的旋转运动。在转换的过程中除了在上死点与下死点之外,活塞会对对汽缸滑移产生一个侧推力。 活塞环是曲轴箱和汽缸间的屏障。以机能来分,活塞环分为气环和油环两种,普通引擎每个活塞各有1~2个气环及油环。活塞环能维持汽缸内的气密性,使汽缸与曲轴箱隔绝开来,让燃烧室的气体压力不致流失,并能避免未完全燃烧的油气对曲轴箱内的机油造成污染及劣化。它能经由与汽缸壁的接触把活塞所受的热传至汽缸壁、水套,更重要的是它能防止过多的机油进入燃烧室,并让机油均匀的涂满汽缸壁。 引擎运 转时产生的热越多表示所爆发的力量也越大,这些热量也对高性能引擎造成问题。现代的活塞设计主要有铸造和锻造两种,而铸造又比锻造来得简单便宜,但却无法如锻造活塞承受较大的热度和压力。通常改装厂在设计锻造活塞时,都会同时利用改变活塞顶部的形状来达到提高压缩比的目的,但问题是选择锻造活塞时多少的压缩比才是适当的。以汽油引擎来说,压缩比超过12.5:1时燃烧效率就不容易再提升。 利用活塞顶部的形状改变来提高压缩比时,随着压缩比的提高会使汽缸顶部燃烧室的空间变小,活塞顶部的锐角和凸出都可能导致爆震的发生。对高压缩比活塞来说,由于必须保留汽门做动所需的空间,因此会在活塞顶部切出汽门边缘形状的凹槽,如果没有这个凹槽,当活塞到达上死点时可能就会打到汽门,因此改装了高压缩比活塞后对汽门动作精确度的要求就必须非常严格。这凹槽的大小也必须配合凸轮轴及汽门摇臂的改装而改变。 不 钢及特殊合金的活塞环已广泛应用在赛车及改装套件市场,这些特殊设计的合金活塞环可以在活塞往上行时释放压力,但在往下爆发行程时却能保持密闭的状态以维持压力,这种活塞环虽然贵但是却能有效的提高引擎效率。 由于活塞与活塞环都必须在高温、高压、高速及临界润滑的状态下工作,因此长久以来改装厂都为了提供最佳设计而努力,但引擎的性能是所有机件整合的结果,因此选择活塞套件时必须考量凸轮轴的正时角度、供由系统的配合才能找出最佳搭配组合。 活塞连 活塞连 最基本的功能是连结活塞和曲轴,把直线的活塞运动转换成曲轴的旋转运动。在引擎转时连 会承受油气燃烧产生的爆发力,这个爆发力会使连 有扭曲的趋势,连 也是所有引擎组件中承受负荷最大的组件。 由于连 是把活塞的直线运动转换成曲轴的旋转运动,因此在活塞上下运转时连 会不断的加速及减速,尤其在活塞抵达上死点时连 的动方向会由往上突然减速至停止,并立刻改变运动方向,这是最容易造成连 损害的。在爆发行程时,燃烧产生的高压气体可变成连 运动的缓冲,插销、波斯(Bolts)所承受的负荷也会减轻。但是在排气行程的时候活塞、活塞环、插销及连 本身的部份重量所造成的惯性力都会加诸在插销及波斯之上,如果这时连 出了问题那下场就是你的引擎要进厂大修了。 现在的赛车引擎大多使用锻造的合金连 ,连 的品质关系着引擎的可靠度,但是却无法以肉眼检视连 的品质或瑕疵,必须以特殊的非破坏检验或X光做检测,这是选购及改装连 时最大隐忧。连 各项尺寸精密度的要求会随着压缩比及运转转速的提高而提高,即使仅是千分之几寸的尺寸误差在高转速时都会造成活塞间隙明显的变化。如果用了强度不足的铝合金连 ,在高转速时由于惯性作用会使连 长度变长,造成引擎的损害或是压缩比的增加。 在活塞连 的组件中对于尺寸要求最严格的当属连 轴承(也就是俗称的波斯),这也是最可能导致连 损害的组件。所以对赛车或高性能引擎来说,应该尽可能的使用最高品质的轴承,以确保引擎的可靠度。 曲轴 曲轴可是为引擎的心脏,如果它的功能无法准确的执行,那麽引擎的马力就无法正常的发挥。曲轴的各相对角度必须正确,否则点火正时和汽门正时就无法精确有序的一个汽缸接着一个汽缸的运作。如果这顺序出了问题,可以想见这结果就是爆震连连。 曲轴轴承的间隙也是另一个重点,主轴承和连 轴承都必须有适当的间隙以使机油能够流动产生润滑和冷却效果。如果太小汽缸壁、活塞、汽门机构....等就无法获得充分的润滑,会造成机件的磨损。如果太大抛出的机油量增加会使活塞和活塞环的工作加重,造成燃烧室过多的机油残留,导致积碳及相关后遗症。 曲轴的平衡是最常被大家所提起的,曲轴的先天平衡性在引擎设计的 时候就已决定,实际的平衡度则会由于材质及制作精度的不同而有所差异,以市售车引擎来说,4000rpm以下尚称平衡,超过以后则会随着rpm的提高而使情况加剧,这种情况又以国产引擎最严重,如果你常以高转速行车,或是你的以解除了转速限制,为了引擎的长治久安,你必须好好考虑曲轴平衡。 压缩比 压缩比是活塞在下死点和上死点时汽缸容积的比值。改变压缩比可提高引擎的效率但是在制作过程必须要求严谨,因为压缩比会直接影响汽油的燃烧效率并且和点火正时的设定有密切的关连。在很多高性能引擎都有着很高的压缩比,在赛车引擎更是如此,但是一般经济取向的引擎却会适度的降低压缩比。随着压缩比的提高对汽油品质及辛烷值的要求也就越来越高,这也是很多高压缩比引擎所遇到的难题,可喜的是中油将在今年推出98无铅汽油。汽油引擎的压缩比应该超过8.5:1,但是当压缩比超过12.5:1时对性能的提升的效益就变得很小,而且伴随而来的汽门和活塞相对距离不足、爆震、预燃及其他伴随而来的后遗症会使问题变得很复杂。因此在进行提高压缩比之前必须先知道汽门的扬程和凸轮轴所设定的气门开启时间、正确的进汽门和排汽门的尺寸甚至燃烧室的形状及尺寸。此外如果汽缸头曾经研磨过或是使用了薄的汽缸垫片,其相关的数据也必须一并考虑。 引擎内部组件改装时,必须特别注意材料的选择、制作精度及平衡度的要求,更不能忽略各组件间的搭配,从上文可知引擎的改装往往是牵一发而动全身,单对某一部份进行改装通常会破坏引擎的平衡性,而且效果不彰,因此如果你考虑对引擎进行改装时,,请务必选择专业改装厂所出产的产品,并尊重专业的搭配,千万不可土法炼钢,否则因小失大就得不偿失。 此外安装的手工也是一大难题,常常可看到国外改装厂的改装套件广告,宣称装了以后马力可达几匹,0~100可在几秒内完成。但是你真的相信这些套件到了国内后经由本地的技师安装后,能够达到和国外相同的数据吗,~也许可能但不容易,这其中的差异就在于安装的手工。 举例来说,连 在安装时必须特别注意螺丝的锁法及紧度,锁螺丝时应该先充分的清洁并涂上一层薄机油,避免螺牙间产生异常的应力造成螺丝虽按照规定的力量锁紧但却无法达到应有的紧度,否则引擎运转后由于紧度的不足会造成轴承立即且严重的损害。在事事吹毛求疵的引擎改装领域里绝不可大而化之。 避震器的改装 避震器的功用 悬吊是大多数人改装计画的第一步,而悬吊的改装通常都是由换装一套较硬的避震器开始着手。上一期我们曾经说过弹簧最主要的功用是用来消除行经不平路面的震动,既然有了可消除震动的弹簧,那麽又要避震器做什麽呢,避震器它并不是用来支持车身的重量而是用来抑制弹簧吸震后反弹时的震汤和吸收路面冲击的能量。假如你开过避震器坏掉的车,你就可以体会车子通过每一坑洞、起伏后馀波汤漾的弹跳,而避震器正是用来抑制这样的弹跳。没有避震器将无法控制弹簧的反弹,车子遇到崎岖路面时将会产生严重的弹跳,过弯时也会因为弹簧上下的震汤而造成轮胎抓地力和循迹性的丧失。最理想的状况是利用避震器来把弹簧的弹跳限制在一次。 阻尼 当我们以一固定的速度压缩或拉伸避震器其所产生的阻力就称为阻尼。这阻力来自于避震器作动时,活塞会把阻尼油加压使其通过小孔径的阀门,如果改变阀门的孔径就可以改变阻尼的大小。在日本自动车规格(JASO C602)规定以作动速度0.3m/s时的阻力大小来代表避震器的性能,我们称为阻尼系数,单位为Kgf,所谓较硬的避震器就是作动时可产生比较大的阻力。当我们让避震器以非常慢的速度压缩或拉伸时,它的阻力只有来自机构内部的摩擦力,阻尼油几乎不产生阻力。但是当作动速度增 加时,阻力的增加会和避震器作动速度变化率的平方成正比,也就是说作动速度增为2倍时阻力却会增为4倍。 避震器的阻力可分为压缩和回弹两部份,压缩阻力和弹簧的硬度有加成效果,作动时可增加弹簧的强度,而回弹阻力则是发生在弹簧受路面冲击压缩后的反弹行程,这也是避震器存在的最大理由,它是用来抵挡弹簧压缩后再将轮胎压回地面的力量,减缓反弹的冲击并保持车辆的平稳。一般道路用的避震器,吸震行程的阻力通常远小于回弹行程,因为吸震行程的阻力太大时会影响行路舒适性,对道路用车来说冲击时和反弹时的阻尼力量比值大约是1:3,但对赛车来说则为1:2~1:1.5,较高的比值会降低舒适性,但却可改善行经不规则路的循迹性。 避震器与车身重量的转移 进弯和出弯时车身重量转移(Weight Transfer)的速度会影响操控的平衡,这影响会持续直到重量转移完成,而车身重量转移的速度是由避震器所控制,改变避震器在压缩和拉伸行程的速度可改变车身动量转移的速度。避震器越硬重量转移的速度越快,重量转移越快则车身子的转向反应也越快。 过弯时转动方向盘,轮胎会产生一个滑移角(Slip Angle),进而产生转向力,这力量作用在滚动中心(Roll Center)和重心(Center of Gravity),然后导致车身重量转移,车身产生滚动(Roll)。此时弯外轮的转向力会随着滑移角的增大及车身重量的转移而加大,车子在达到最大转向力及完成重量转移后会建立一个过弯姿势(Take a set),由于避震器控制重量转移的速度,因此也会影响建立过弯姿势的速度。由于转向反应对操控很重要,因此我们希望过弯姿势的建立越快越好,但也不可太快,必须有时间让车手去感觉过弯姿势的建立,并感受循迹性的极限,如果重量转移太快会让车手来不及去感觉,因此设定一个车身重量转移的速度让热车手去感觉极限的接近,并且有所反应是车辆悬吊设定时的重要课题。我们常说车队会依不同的车手而有不同的车辆设定,对悬吊系统设定来说,不同的车手由于驾驶技术和习惯的不同,对转向反应的感觉速度及反应速度也会不同,因此需要不同的悬吊设定,以求得车手的充分发挥。 『一手太』原则 入弯时转动一次方向盘(方向盘在广东话称为太盘),就会产生一次车身的重量转移变化,建立一转向力与轮胎抓地力平衡的过弯姿势,所谓的过弯极限是出现在转向力等于轮胎的抓地力。有人在入弯后会连续的转动方向盘,这实在是天大的错误,因为这会造成车身在不平衡状态下过弯,如此车手将无从去驱使车辆逼进极限,降低了过弯的速度并存在着失控的危机。 过弯时应该尽量遵循所谓『一手太』原则,判定弯道角度后将方向盘一次打到定位,让车身尽速建立平衡的过弯姿势,出弯后也是一手太让转移的车身重量回复直行时的状态。若在弯中遇到突发状况则必须Smooth的修正,避免突然加剧已处于极限边缘的重量转移,让它变得不可控制,造成车身的失控。 避震器的难题 避震器的阻尼作用是把震动冲击的能量转换成热能。假如悬吊产生大幅度的运动,相对的避震器也会产生相当大的阻力来抑制它,这阻力来自避震器的活塞会把油压入通过小的阀门,如此会把阻力变成热。避震器内部产生的热会使阻尼油加温,油加热后黏度会变稀(这反应就如同引擎机油一般)。变稀后的阻尼油会使通过油阀门的阻力变低,降低了阻尼力,我们称为『阻尼衰退』(Shock Fade)。为了避免阻尼衰退,可由加大避震器或增加阻尼油的容量来改善。所以所谓的高性能的避震器通常都具有是较大的筒径,及较大的阻尼。避震器的另一个问题是阻尼油的气泡问题,避震器作动时活塞为会对阻尼油造成搅动的效果,造成组泥油产生气泡,气泡的产生会造成阻尼的丧失。为了对抗气 泡,以除了使用品质较佳的阻尼油外,制造商通常利用田填充高压气体来减少气泡的产生,这做其中最具代性的产品当属Bilstein,Bilstein的产品有一项独特的设计,它有一个『气室』(Gas Chamber)用来抵抗气泡的产生,这如同用高压来抵抗你的水温问题一样(沸点与压力成正比)。此外这个气室也有有对柱栓的冷却效果,因为柱栓暴露在空气中可获致冷却效果。而油封不良造成的漏油问题则是避震器损坏的一大主因,这直接关系到避震器的『耐用性』,所以较贵的避震器通常也有较好的油封。。 赛车避震器 和赛车用轮胎和轮圈不同的是赛车用的避震器可用在一般道路,唯一的缺点是价格相当贵,一支赛车用的避震器往往超过万元,这和一支可能只要几百元的『原厂』避震器相比真是有如天价,据了解一套HONDA EG6 Gr.A所用的Mugen避震器约要新台币8万,而March用的NISMO竞技用避震器也大约是这个价。 赛车用的避震器通常为可调式,甚至可分别调整压缩和回弹行程的阻尼,经由调整以得到最佳的抑制缓冲效果,这项工能在做悬吊设定的尝试错误过程中扮演了重要的角色。调整时由最软的模式开始,计算它上下摆动的次数(通常超过一次),慢慢加硬直到上下摆动一次后就恢复平静,并且每次比赛前都要再依场地确认设定的正确与否。赛车避震器通常没有橡皮的止档衬垫(End Bushing)取而代之金属的球状轴承,这虽可获得在通过小震动路面时较佳的阻尼效果,提供较清晰的路面反应,但却增加了来自悬吊的震动和噪音。赛车避震器通常有接近1:1的压缩和拉伸阻尼力。此外赛车避震器的作动行程也比较短,一般车也许有10寸, 4~5寸。所以单换高性能避震器而不换行程相搭高性能版也许为7寸,赛车可能只有 配短弹簧可能无法得到应有的效果。 避震器的改装 在大部分市售车上,制造商都会使用最软而且最便宜的避震器,以降低成本并获得一般驾驶状态下最柔软舒适的行路性。但是若要用来应付剧烈驾驶则这些避震器就无法胜任了。 所谓避震器的改装实际上是换上阻尼较硬、品质较好并且能和弹簧充分配合的避震器,选择一组适合的避震器是最重要的,要在舒适性和操控性之间取得折衷尤其困难。若用在赛车上那麽一切以操控为依归不必考虑舒适性,但是要用在一般道路上就必须有所妥协,这时一组阻尼可调式的避震器,就可提高实用性,尤其在道路多变的台湾,可调式避震器似乎是可认真考虑的投资。 前面说过避震器的压缩阻力和弹簧的硬度有加成的效果,一组弹簧只有一种性能表现,要改变弹簧的硬度唯有更换另一组不同弹力系数的弹簧,有了可调式避震器正可弥补此一缺憾,随路况调高阻尼也等于调硬了弹簧,毕竟调硬避震器要比换一组弹簧来的得轻松的多,甚至有所谓电子调整式避震器,只要在操作车内的旋钮即可轻易的改变阻尼,达到悬吊设定微调的效果。 改装时要先选定一品质好的品牌,然后再从这品牌的系列产品中选出适合的规格型号。一支好的避震器必须有高精密度的柱栓及密闭性良好的油封,高品质的阻尼油(优质的阻尼油是阻尼衰退及气泡现象的治本之道),再加上填充高压气体的气室设计,当然最好是可调式的。目前国内常见的品牌中欧系的Bilstein、KONI以及日系的GAB都是口碑不错的主流派产品,目前的新趋势则是针对特有品牌的专属改装套件品牌,如TOYOTA的TRD、TOM's,HONDA的Mugen,NISSAN的NISMO,都是很不错的产品。 选定品牌后,就得面临搭配性的问题,在悬吊改装过程中最棘手的课题就是避震器和弹簧的搭配,如果你的车降低车身超过2英寸或是弹簧硬度增加超过20%,你就必须把避震器一并更换。硬的避震器和硬的弹簧要相互搭配,因为弹簧的硬度是由车重来决定,而较重的车需要较硬 的避震器。所以在赛车或高性能车上的避震器要比一般车上的硬,用以匹配较硬的弹簧。假如避震器太软会造成车身上下的摆汤,如果太硬会造成太大的阻尼,使弹簧无法正常运作,而且会因为避震器的阻尼作用而造成行驶时车高的改变。由于避震器制造商通常不会提供他们产品太详细的相关技术资料,因此当你要为一部车作悬吊设定时你唯有不断的尝试错误。不过别担心,搭配性的问题可交给为你服务的改装店去烦恼,针对车主的需要搭配出最佳的悬吊组合是一家专业改装店的基本责任,也是顾客的基本权益。而根据经验,最适合台湾多变路况的道路版悬吊搭配,是以较软的弹簧(当然是渐进式的),配上较硬的可调式避震器,以避震器的硬度补弹簧强度的不足,加上可自由调整的阻尼,获得高度的路况适应性。 刹车系统的改装 前言 刹车的工作原理主要是来自摩擦,利用来令片与刹车碟(鼓)及轮胎与地面的摩擦,将车辆行进的动能转换成摩擦后的热能,将车子停下来。一套良好有效率的刹车系统必须能提供稳定、足够、可控制的刹车力,并且具有良好的液压传递及散热能力,以确保驾驶人从刹车踏板所施的力能充分有效的传到总泵及各分泵,及避免高热所导致的液压失效及刹车衰退。车子上的刹车系统分为碟式和鼓式两大类,但是除了成本上的优势外,鼓式刹车的效率远比不上碟式刹车,因此本文所讨论的刹车系统将仅以碟式刹车为主。 开始还是注定悲情和你的新车保养的良否有着极大的关系。 摩擦 『摩擦』是指两相对运动物体接触面间的运动阻力。摩擦力(F)的大小是与摩擦系数(()及摩擦受力面所受垂直方向的正压力(N)的乘积成正比,以物理学公式表示成:F=(N。对刹车系统来说:(是指来令片与刹车碟的摩擦系数,N是刹车卡钳活塞对来令片所施的力(Pedal Force)。摩擦系数越大所产生的摩擦力就越大,但是来令片与碟盘间的摩擦系数会因为摩擦后所产生的高热而有所变化,也就是说摩擦系数(()是随温度的的变化而变化,每一种来令片因为材质的不同而有不同的摩擦系数变化曲线,因此不同的来令片会有不同的最佳工作温度,及适用的工作温度范围,这是大家选购来令片时所必须知道的。 刹车力的传递 刹车卡钳活塞对来令片所施的力就称为:刹车踏板力(Pedal Force)。驾驶人踩在刹车踏板的力经由踏板机构的 放大效果后,经由真空动力辅助器(power boost)利用真空压力差的原理再将力量放大,用来推动刹车总泵。刹车总泵所发出的液压力利用的液体不可压缩的动力传递效果,经由刹车油管传递到各分泵,并运用『帕斯卡原理』将压力放大,推动分泵的活塞对来令片施力。『帕斯卡原理』(Pascal's Law)是指在一密闭的容器内任何位置的一体压力均相同。 压力是由施力除以受力面积所得,压力相等的情况下,我们正可以利用改变施、受力面积的大小比例来达成动力放大的效果(P1=F1/A1=F2/A2=P2)。用在刹车系统上,总泵与分泵压力的比值就是总泵活塞面积和分泵活塞面积的比。 最物超所值的配备:ABS ABS:Anti-lock Brake System,顾名思义就是『防锁死刹车系统』。大家都知道最大的制动效果是发生在轮胎锁死前的瞬间,如果能够让刹车制动力一直保持在与轮胎摩擦力平衡的状态,那麽将获得最大的制动效果。当刹车的制动力大过轮胎的摩擦力就会造成轮胎锁死,一旦发生轮胎锁死那麽轮胎与地面间的摩擦就由『静摩擦』变成『动摩擦』,不但摩擦力大幅降低更会失去转向循迹能力。由于轮胎的锁死是刹车制动力和轮胎与地面的摩擦力比较的结果,也就是说车子行进间轮胎锁死与否的极限是会随轮胎本身的特性、路面的状况、定位角度、胎压、悬吊系统的特性而『随时不同』。 ABS 是利用装在四个轮子的车速感应器,去判断轮胎的锁死与否,排除了人体感官的不确定因素,准确的控制适时的释放刹车分泵的液压,达到防止刹车所死的目的。目前的ABS大多采用每秒钟可连续踩放12~60次的设计(12~60Hz),相对于顶尖职业赛车手的3~6次已是超高水准的表现,踩放的频率越高越能将刹车制动力维持在越接近极限的边缘。ABS所能达到的准确及可靠度已经超乎人的极限,因此我们说:ABS是买车时最物超所值的配备。尤其是Air-Bag相对于的危险性更是如此。 ABS的质疑 近来有很多报告指出:配备ABS的车子发生车祸的机率大于没有配备ABS的,也因此造成许多人对ABS功效的质疑。这是一般车主对刹车系统及ABS的认知不够所造成的,很多人都误认为装了ABS后可提高刹车制动力或轮胎与地面摩擦力的极限,事实上ABS虽然能将刹车制动力尽量维持在最大极限,但是却无法提高极限。在此重申:轮胎与地面摩擦力的极限是由轮胎本身的特性、路面的状况、定位角度、胎压、悬吊系统的特性所决定,但不包括ABS。ABS能将刹车系统的能力充分、有效的发挥,但对提高制动力或摩擦力却无济于事。此外紧急情况利用ABS来进行高速闪躲时,请记得先在直线做主减速动作再转方向盘,转动方向盘时不要将刹车踏板松掉,也不要因为踏板传来的ABS反馈动作而惊慌失措。 也有很多人认为ABS必须大脚踩刹车才有作用,这又是个对ABS的错误认知。防锁死刹车系统当然是在车轮锁死时才有作用,你如果开车经过结冰的路上,只要你轻点刹车ABS可能就动个不停;又如果你换了一组抓地力超强的大尺寸热溶胎,开在平坦干燥的路面,如果你的刹车系统没有强化过,就算你用尽全力踏在刹车踏板上,说不定ABS依然没有动静,因为你的刹车制动力并不足以将轮胎锁死。如果车商在将配备ABS的车卖给消费者的同时,能针对上述两点做充分有效的告知,那麽ABS才能真正成为一项『主动安全』配备,否则让消费者在踩刹车时有恃无恐那肇事机率可能就不降反增。 刹车的改装 改装前的检视:对于一般道路用车或是赛车来说一套有效率的刹车系统都是必须的。在刹车改装之前必须先对原有刹车系统做一全面性的确认。检查刹车总泵、分泵和刹车油管是否有渗油的痕迹,如果有任何可疑的痕迹处必须追根究底,必要时将有问题的分泵、总泵或刹车管或刹车管换掉。 影响刹车稳定度最大的因素莫过于刹车碟盘或刹车鼓的表面的平整与否,异音或是不平衡的刹车往往都是由此而来。对碟式刹车系统来说,表面不能出现磨损凹槽线沟,而且左右碟盘的厚度必须相同,如此才能获得相同的刹车力分配,此外必须确保碟盘避免受到侧向的撞击。碟盘和刹车鼓的平衡也会严重的影响车轮的平衡,所以如果你要求绝佳的车轮平衡,有时候必须把进行轮胎的动态平衡。 刹车油 刹车系统的改装最基本的就是换上高性能的刹车油。当刹车油因为高温而劣化或是吸收了空气中的湿气,都会造成刹车油的沸点降低。沸腾的刹车油会使刹车踏板踩空,这种情况在剧烈频繁连续的使用刹车时会突然的发生。刹车油的沸腾是所面临刹车系统最大的问题。刹车由必须定期的更换,开封后保存时要将瓶口确实的密封,以避免空气中的湿气接触到刹车油。有些车种会限制所使用刹车油的品牌,因为有些刹车油会侵蚀橡皮制品,必须参考使用手册上的警语,避免误用,尤其在使用含有硅胶成份的刹车油更要特别注意。更重要的是不要将不同的刹车油混合使用。 对一般道路用车来说刹车油应该每一年至少更换一次,对赛车来说则要每一次比赛后更换。 来令片 高性能的刹车来令片是提高刹车制动力最直接、有效、简单的方法。目前高性?艿睦戳钇 蠖嗖捎锰枷宋 徒鹗舨闹饰 饕 希 ?康鞑缓 薜幕繁,浞健,捎诶戳钇 腒now-How就在于材质的配方因此消费者并不能从产品标示中得知实际的材质,因此来令片的选择除了以厂商所提供的摩擦系数-温度曲线及适用工作温度做为依据外(如果有的话),仅能从专业媒体的测试报告或使用心得做为参考。就有车主误用了纯竞技的来令片,花了高价却得到比原厂来令片还差的制动效果,究其原因只是它温驯的开车方式让来令片始终无法达到最基本的工作温度,效果当然差了。换来令片最常遇到困扰就是伴随而来的噪音,如果碟盘是平的那就无解,要嘛接受要嘛就再换人做做看。 刹车油管 一般刹车系统的都会有一段材质是用软质的橡胶管,用来配合悬吊的活动,但是橡胶本身是有弹性的,承受刹车系统的液压力会产生变形,造成管径的变化,降低了刹车油液压的传递效果,使刹车分泵无法产生稳定的刹车力。这样的情况会随着使用年限及剧烈的操作刹车系统而加剧变形的程度。原本用在飞机液压系统,可承受高压、高温的金属油管,正可以改善这种情况。内为铁弗龙材质,外层包覆金属蛇管,不易产生变形的特性,提供了优良的液压传递效果,使由刹车总泵传来的液压力能完全用来推动分的活塞,提供稳定的刹车力道。此外金属材质也有不易破损的特性,可大幅减少油管破损造成刹车失灵的机率。刹车油管对赛车(尤其是RALLY赛车)是一种必要的改装,对一般道路用车来说则是提供了另一种的安全保障。 增加刹车踏板力 假如你用力将刹车踩死但却无法使轮胎锁死,那麽表示踏板所产生的刹车力不足,这是非常危险的。一部车如果刹车力太低,虽然在急踩时仍会产生锁死,但却也失去了循迹控制能力。刹车的极限是出现在刹车锁死之前的瞬间,而驾驶人必须能够把刹车踏板维持控制在这个力道。要增加刹车踏板力可先由加大刹车动力辅助器着手,换个尺寸较大的Air-Tank,但是加大幅度有限,因为过度加大的真空辅助力会让刹车失去渐进性,刹车一踩就是到底,如此一来驾驶人就无法有效、稳定的控制刹车。最理想的是改装总泵和分泵,利用进一步利用帕斯卡原理提高刹车踏板力。改装分泵和夹具时可同时配合加大碟盘的尺寸,制动力是来令片所产生的摩擦力对轮轴所施的力矩,因此碟盘的直径越大产生的制动力也越大。 刹车的冷却 温度过高是来令片衰退的主要原因,所以刹车的冷却就变得格外重要。对碟式刹车来说冷却空气应该直接吹向夹具。因为刹车的衰退主要原因是由于夹具内的刹车油沸腾,如能经由适当的管道或是经由有特殊设计的轮圈在行驶时将冷却空气导入夹具。此外如果轮圈本身的散热效果良好也能分担部份来自碟盘和夹具的热度。而划线、钻孔或是有通风设计的通风碟盘都可以维持稳定的刹车效果并避免来令片和碟盘间高温铁屑所产生的滑动效? 行У娜繁,渤盗Α? 弹簧 前言 悬吊系统存在的意义有二:隔离路面的不平使行驶更舒适;行经不平路面时保持轮胎与路面接触。而改良悬吊对『车狂人』来说只有一个目的就是改善操控性。 弹簧的工作原理及改装 现行悬吊系统的弹簧以圈状弹簧最常用,原因是容易制作、性能效率高、价格低。弹簧在物理学上的定义就是储存能量,当我们施一固定的力于弹簧,它会产生变形,当我们移开施力则弹簧会有恢复原状的趋势,但弹簧在回弹时震汤的幅度往往会超过它原来的长度,直到有磨擦阻力的出现才会减缓弹簧回弹后造成的自由震汤,这减缓弹簧自由震汤的工作通常是避震器的任务。 一般的弹簧是所谓的『线性弹簧』,也就是弹簧受力时它的压缩变形量是遵循物理学上的『虎克定律』:F=KX,其中F为施力,K为弹力系数,X则为变形量。举例来说有一线性弹簧受力50Kg时会造成 2cm的压缩,之后每增加50Kg的施力2cm一定会增加的压缩量。将此一弹簧装在一部车上,假设其承受的重量为250Kg,则在车子静止时它会产生10cm的压缩量,当这部车行经崎岖路面时,弹簧除了承受车子的重量外还要承受来自路面的冲击,有了这些冲击的存在将使弹簧的压缩量大于原来的10cm,而这冲击所造成的压缩量的增加,将以悬吊碰到『缓冲止挡器』(Bump Stop)为上限,假设这个范围也是10cm。那麽两项总和20cm就称为『弹簧的行程』(Spring Travel)。而整个弹簧的行程从0到20cm正表示弹簧的受力为0到500Kg。事实上悬吊的弹簧还有其他的压力存在,即使弹簧完全伸展时弹簧仍会受到压力以便让弹簧本身固定在车上,所以以上述的例子来说弹簧也许是受力范围也许是100到600Kg。 在传统弹簧、吸震筒式的悬吊设计上,弹簧扮演支持车身以及吸收不平路面和其它施力对轮胎所造成的冲击,而这里所谓的其它施力包含了加速、减速、刹车、转弯等所对弹簧造成的施力。更重要的是在震动的消除过程中要保持轮胎与路面的持续接触,维持车子的循迹性。而改善这轮胎与路面的接触是我们改善操控性的首要考虑。 弹簧的最主要功能就是维持车子的舒适性和保持轮胎完全与地面接触,用错了弹簧会造成行车品质和操控性都有负面的影响。试想如果弹簧是完全僵硬的,那悬吊系统也就发挥不了作用。遇到不平的路面时车子跳起,轮胎也会完全离开地面,若这种情况发生在加速、刹车或转弯时,车子将会失去循迹性。如果弹簧很软,则很容意出现『坐底』的情况,也就是将悬吊的行程用尽。假如在过弯时发生坐底情况则可视为弹簧的弹力系数变成无限大(已无压缩的空间),车身会产生立即的重量转移,造成循迹性的丧失。如果这部车有着很长的避震行程,那麽或许可以避免『坐底』的情况发生,但相对的车身也会变得很高,而很高的车身意味着很高的车身重心,车身重心的高低对操控表现有决定性的影响,所以太软的避震器会导致操控上的障碍。假如路面是绝对的平坦,那我们就不需要弹簧和悬吊系统了。如果路面的崎岖度较大那就需要比较软的弹簧才能确保轮胎与路面接触,同时弹簧的行程也必须增加。弹簧的硬度选择是要由路面的崎岖程度来决定,越崎岖要越软的弹簧,但要多软则是个关键的问题,通常这需要经验的累积,也是各车厂及各车队的重要Know-How。 一般说来软的弹簧可以提供较佳的舒适性以及行经较崎岖的路面时可保持比较好的循迹性。但是在行经一般路面时却会造成悬吊系统较大的上下摆动,影响操控。而在配备有良好空气动力学组件的车,软的弹簧在速度提高时会造成车高的变化,造成低速和高速时不同的操控特性。 弹簧的改装 弹簧的改装主要是要改善操控性,也就是要改用较硬的弹簧或是较短的弹簧。弹簧控制了很多有关操控的因素,弹簧的改变会造成很复杂的操控特性改变。以硬度的增加来说,可提高悬吊的滚动抑制能力,减少过弯时车身的滚动。而车高的降低则可同时降低车身的重心,减少过弯时车身重量的转移,提高稳定性。而车高的降低也可兼收美观的效果。 渐进式弹簧 弹簧两个主要的功用:一是作为悬吊系统或底盘与地面的缓冲,也就是维持舒适性,二是使车子在行经不平路面时保持轮胎的贴地性。要达成这两个相冲突的目标需要有不同的弹力系数。保持轮胎的贴地性对操控有决定性的影响我们需要硬的弹簧设定,来保持贴地性。在遇到越颠簸的路面我们需要越软的弹簧设定。要同时达成这两个目的,使用具有复合弹力系数的『非线性弹簧』,也就是一般所谓的渐进式弹簧,式唯一可行的方法。 渐进式弹簧能随着弹簧的压缩而增加弹力系数,在设计和制造上都有相当的困难度。行经颠簸路面时,弹力系数就会增加维持车身稳定。而 最初的弹力系数较软则用来提高行经颠簸路面时轮胎贴地性。渐渐变硬的弹簧可避免悬吊或弹簧出现坐底的情况。这能容许使用高度比原来低的弹簧,用以降低车身重心,并且在行经颠簸路面时维持最低而且最短悬吊行程,不致发生坐底的情况。 要达成渐进式弹簧就是要作出弹力系数会随这着受压缩而产生变化的非线性弹簧,由弹力系数K来看,其影响因素可表成以下的公式:K= 其中G为材料的横弹性系数,n为有效圈数,D为圈径,d为弹簧的线径。通常G为定值,要改变弹簧的线径(d)在制作上也比较困难,因此目前的渐进是弹簧大多为采用不等螺距弹簧或圈径变化弹簧。不等螺距弹簧受压缩时会产生局部线间接触,以使有效圈数发生变化,进而造成弹力系数K的变化。经由弹簧上下圈径的变化则是改变弹力系数的最直接方法。 降低车身 改善操控最重要的方法就是降低车身重心,如此可以降低过弯时车身的重量转移和车身滚动,降低车身最简单的方法就是由弹簧着手。使用短弹簧是最简单也最快的方法。但降低车身时有许多的陷阱是您动手前必须注意的。 首先面对的是车身距地高度降低后行经颠簸路面时车底可能会触及地面,尤其在高速行驶和离开公路时。其次要面对的是悬吊因为行程变短所可能造成的坐底情况,更糟糕的是如果bump-stop这个用来缓冲避震器的装置被拆掉时,如果悬吊发生坐底时,弹力系数会瞬间变成无限大,立刻造成循迹性的丧失。 降低车身切忌土法炼钢 降低车身最简单的方法就是把弹簧切短,单纯以材料的观点来看,把弹簧切短并没有什麽不对,只有弹簧厂商才会反对。但是打弹簧切短弹力系数增加有限,通常并不足以避免悬吊行程缩短后所可能造成的坐底情况。通常来说使用切过的弹簧的车开起来会有很可怕的操控特性,而这是为了省钱常造成的错误。 在麦花臣支柱式悬吊设计的车子还会导致其他设定的问题,大部分支柱式悬吊设计的车可以容许车身降低1英寸而不会有坐底的问题,但是如果降低超过1英寸时悬吊的支柱必须配合变短或改变支点位置以便求得足够的悬吊行程,否则很容易发生坐底的情况。缩短支柱时也意味着避震器也要跟着改短。这些改装时必须有的配合动作应该是改装厂商的工作,你所要注意的是是否有适合你的改装部品。总之,降低车身时最好选择以市场现有的改装部品来改装,切忌土法炼钢。 极限驾驶的乐趣很大程度上来自绝佳的操控表现,而车辆抓地性的改善是提高操控性的基本方向。增加抓地性目的无非是为了提高过弯的速度(Conering Speed)、减少刹车距离、减少加速时的打滑现象。车子和路面接触的地方唯有轮胎,所有的性能都是经由轮胎来发挥和达成,为了提高操控性能和驾驶乐趣,我们针对底盘悬挂系统所作的种种改良和设定,无非是要增加轮胎的接地面积(Tire Contact Patch),提高车子的抓地表现。 增加轮胎的抓地性有几种方法: 一、增加轮胎和地面的摩擦力 要增加轮胎和地面的摩擦力有两种方法可达成这个目的。第一是增加路面的摩擦系的,所谓“摩擦系数”是路面所能提供对轮胎的抓附能力,摩擦系数越大抓附力越大。柏油路面、水泥路面、砂石路面各有不同的摩擦系数。所能提供对轮胎抓附力也各有不同。 其次是增加轮胎本身的摩擦系数,这可由选择较软的轮胎来达成。较软的轮胎可提供较强的抓地力,但是相对的磨损也较快。这里所谓“软的轮胎”指的是轮胎胎面的橡胶材质较软,如果和高扁平比轮胎和胎压不足所造成行路性较软、较舒适联想在一起那就大错特错~ 二、增加轮胎接地面积 要增加轮胎和路面接触的面积,最简单的方法就是换上较宽的轮胎,再来就是选用胎纹较少的轮胎,如此可增加轮胎与地面实际的接触面积,但是却也会影响在湿滑路面抓地表现。最后也是最重要的就是 在既定的接地面积下,经由正确的轮胎胎压及悬挂的精确调校把轮胎的潜力完全发挥。轮胎的接地面积即使是行驶在平坦的直路都会小于静止时,行经不平路面或是过弯时更会因为上下的跳动或是侧向的受力,而造成接地面积的大幅减少,甚至悬空。悬挂的改良最终的目的就是随时把轮胎尽可能的保持与地面接触,尤其是在过弯或是行经不平路面时。 三、增加轮胎的垂直荷重 轮胎的垂直荷重是车辆本身施予轮胎的重量加上空气动力学效应所产生的下压力的总和。轮胎的橡皮会因为垂直荷重的增加而与地面更紧密的接触,轮胎的抓地性能也得以更充分的发挥。有别于大家所认知的,增加轮胎的垂直荷重并不会增加轮胎的接地面积,至少在现代的高性能胎和赛车用轮胎几乎都是如此,增加垂直荷重所提高的是轮胎接地面积内,每一单位面积内橡胶分子和地面的附着力。在接地面积不变的情况下,轮胎抓地性的增加是由于对橡胶分子所施的压力增加。我们可以做个小实验:在一个光滑平面上移动橡皮擦,在橡皮擦上方没有施加压力的情况下我们可以很轻易的自由移动橡皮擦,当我们压着橡皮擦时,要移动它就变得比较不容易,压的力量越大橡皮所产生的附着力就越强,也就是抓地性越好。 轮胎的垂直荷重似乎可由增加车重来达成,虽然这可增加轮胎的抓地性,但是由于轮胎承受来自车重的负荷也增加,所以过弯速度、刹车距离、加速表现都不会有所改善。事实上整体的性能表现反而会因为车重的增加而变坏。要在不破坏整体性能表现的情况下提高轮胎的垂直荷重,唯一的途径就是经由车身空气动学的设计来达成。 空气动力学所产生的下压力 空气动力学对车身所产生的下压力(Downforce)(Aerodynamic Downforce) 也会增加轮胎接地面积的垂直负荷。对一般的道路用车来说并不需要很在意空气动力学所产生的下压力,但是对于任何比赛车种而言这却是必须去仔细考虑的问题。空力下压力的好处是只会增加轮胎接地面积的垂直负荷却不会增加车重。由于车重不变轮胎不用负担额外的惯性和离心力,加上轮胎抓地性的提高,所以过弯速度得以提高。同时刹车和加速时的抓地性也会获得提升。这也是为什么这二十几年来赛车工程师对于尾翼、车身空力组件和地面效应持续不断的进行研究、发展与改进。空力效应包含了车身下压力、车身扬升力和行进阻力,这三个力量是伴随发生的,而且所产生的力量是和车速成平方正比,也就是速度提高为2倍时空力效应会增为4倍。这也说明了为什么空力效应只有在高速时才会变得明显。 对一部针对比赛而生产的厂车来说,改善操控性的重要关键除了底盘悬挂的改良调校以外,其次就是就是空力特性的改良。要改良车身的空力特性,最重要的就是要减少高速流动的空气对车身产生的扬升力,因为扬力会减少轮胎的垂直荷重,破坏抓地性。目前的ITC、BTCC、JTCC等房车赛参赛车种车尾都有扰流尾翼的设计,最主要的的作用就是在减少车身的扬力并产生些许的下压力。此外前扰流和车侧裙角也可减少进入车底的气流,减少车底气流对车尾产生的扬力。由于产生下压力和改变气流的同时都会伴随产生行车阻力,所以改善车身空力特性的另一个重要课题就是要在伴随发生的压力、扬力、阻力三种力量间取的协调、均衡与折冲。 胎压对抓地性的影响 胎压对抓地性的影响可能远超乎你的想像,胎压并不会直接影响橡胶分子和地面的附着力,但却会影响轮胎接地面内有多少橡胶分子实际与地面接触。对一部有既定轮胎、车重的车来说正确的胎压只有一种。事实上这个正确的胎压是被局限在一个很小的范围,大概只有?1.5psi。假如胎压超出这个范围,轮胎的接地面会变形,以致无法完全紧贴路面。也就是说轮胎接地面内的实际接地的橡胶分子数目会比较少。 如果胎压太高,会造成轮胎边缘两侧无法完全贴地,接地面积自然跟着变小,接地面较小的情况下却有同样的负荷,当然性能表现要打折扣。假如胎压不足,表面上看来轮胎接地面积似乎并没有减少,甚至有人认为是增加了,实际上虽然轮胎两侧依然紧密的贴地,但由于胎压的不足使得胎面中间的橡胶分子无法紧贴路面,造成的结果就和胎压过高一样。这也可说明有人的轮胎使用了一段时间以后,出现中间或两侧磨损比较严重的情况,就是长期胎压过高或不足所造成的。 扁平比对抓地性的影响 轮胎的扁平比就是胎壁高度与轮胎宽度的比例。扁平比对抓地性的直接影响并不大,但是对轮胎的滑移角(Slip Angle)有影响,扁平比较低的轮胎在相同的负荷情况下会有较小的滑移角,在轮胎宽度不改变的情况下,只改变前两轮或后两轮的扁平比,会因为前后轮滑移角的不同使操控的平衡产生变化。 轮圈尺寸和轮胎的抓地性 轮圈的直径大小和轮胎的抓地性并无直接的关系,但是如果配合轮胎扁平比的降低而加大轮圈的直径却可增加轮胎的接地面积,同时也影响了行路舒适性和轮胎的转向反应。对一条轮胎来说,太宽的轮圈会让胎唇无法与轮圈紧密的结合,同理用了太窄的轮圈也会有同样的结果。轮胎制造商都会为每一条胎设定一个所适用轮圈宽度的范围,超出了这个范围将会对行车安全造成莫大的威胁。 轮圈的宽度会对轮胎接地面的轮廓会有直接的影响,如果轮圈太窄,轮胎就会变得“鼓鼓的”,会减少轮胎边缘的贴地性。反之如果轮圈太宽,则轮胎中间部份的贴地性就会减低。从实际的测试结果告诉我们,采用轮胎公司所建议宽度上限的轮圈,可让轮胎的性能充分的发挥。假如你是因为预算、比赛规则或是其他原因的限制限制了轮圈的宽度,那么我们建议你使用这个轮圈宽度所能使用的最小尺寸的轮胎,如此所获得的实际轮胎接地面积会是最大。不但可增加过弯速度、减少轮胎的磨损,更可容许采用对整体性能表现更佳的悬挂设定。虽然有很多市售胎由于采用较硬的胎壁设计,所以丧失了对于不适用轮圈的敏感度,但是对于高性能的轮胎来说,对轮圈宽度的敏感性依然存在。 轮胎的材质和抓地性 轮胎所使用的橡胶材质对轮胎的抓地性有着决定性的影响。胶质软的摩擦系数就高,橡胶分子也对地面有更佳的附着力,整体的抓地性将会提升。但这只有在轮胎还没有过热时才成立,因为不同的轮胎都有不同的工作温度范围,和最佳的工作温度。软质的轮胎虽有较佳的抓地性但是磨损也比较快,因此在赛车场上轮胎材质的选用真可说是一门艺术,不但要考虑抓地力还要考虑轮胎的过热临界点,更要考虑磨损。对越野赛来说,在泥沙路面使用越软的材质通常可得到最快的速度,但是在柏油、水泥这种硬质路面来说,磨损又是个令人头痛的问题。材质的选择必须考虑轮胎的荷重、工作温度以及磨损。对一般道路用胎来说,通常会选用较硬的材质是必须的,一方面是为了高速公路上的需要一方面是为了轮胎寿命的考量。 轮胎与行路性的关系 轮胎对行路性有着重要的影响。他和弹簧的任务有许多相同之处,轮胎扮演着吸收小振动的角色。太高的胎压或是较硬的胎壁设计都会使行路舒适性变得粗糙。要改善低扁平比轮胎舒适性不佳的唯一方法就是降低胎压,在一般街道和路面较差的道路将胎压降到适当胎压的下限,要上高速公路时再把胎压提高,虽然效果有限但也是没有办法中的办法。 滑移角(Tire Slip Angle) 充气轮胎实在是一项不可思议的发明。它扮演着传递汽车动力性能的角色。 任何有关操控的讨论都要先从轮胎开始谈起,轮胎胎印上的橡胶分子是车子和地面唯一的接触点,他们的表现决定了车子的操控。一个底盘的专家必须去了解轮胎发生了什么 事并且要在必要时改变设定。 轮胎是个弹性体,任何方向的受力都会使它产生变形,它的特性之一就是转弯时会造成轮胎本身的扭曲,当转动方向盘时,转向拉先转动轮圈,轮圈再扭曲轮胎,被扭曲的轮胎由于橡皮的弹性会有恢复原来形状的趋势,这个趋势会驱驶胎面转向,但是胎面和轮圈所转的角度并不会完全相同,而是会有一个小角度的差异。所谓滑移角是机械学名词,用来表示车子行进方向和轮圈所指的方向两者间所成的这个角度。也就是这个角度可使驾驶人感觉到车子过弯时的反应。一部车若没有滑移角而要高速过弯几乎是不可能的,因为驾驶人将感受不到滑胎的任何警告。 鸡和鸡蛋的问题也出现在滑移角和转向力的问题上,转向力会导致滑移角,滑移角导致转向力。基本上滑移角是轮胎的抓地力用来抵抗轮圈对轮胎所施的侧向力,由于轮胎具有弹性所以当它抓附在地面时若施给它一个侧向的力它会产生一个力量来使轮胎恢复原来的形状,转向力由于轮胎的扭曲而存在于路面和胎面之间,这个力量和转向力是大小相等方向相反的。 转向力是用来衡量轮胎的抗侧滑能力,但是在没有轮胎扭曲和滑移角的情况下,转向力是不存在的。滑移角和转向力会随着弯道半径的缩小而增加,但是当增加到一个限度时轮胎会产生打滑,这就时就叫最大滑移角。由于滑移角只被定义在轮胎未打滑之前的情况,所以当车子行驶在滑溜的路面时滑移角是没有意义的。轮胎打滑后车轮的方向和车身行进的方向并不会有直接的关系,除非减速或是回方向盘加大行进的半径,让轮胎重新获得抓地力,试着想像在冰上开车时就算你任意转动方向盘也不易对行进方向产生影 当驾驶人转动方向盘时,首先响。, 滑移角和转向力(Cornering Force) 转动的是轮圈。接着转向力会传送到前轮的胎壁,转向例会使胎壁产生扭曲,接着改变胎?〉姆较蚴钩盗咀 颉,弊 蛄Υ 铰秩κ碧ケ诹?谈 排で , 蛄π』 平蔷托。 蛄υ黾邮被 平蔷突岣 旁黾印,畲蟮淖 蛄Γ 痔サ募 蓿 岵 桓鲎畲蟮幕 平恰, 飧鲋底 蛄 峒跣。 痔セ岵 蚧 ? 转向不足和转向过度 假如有某一个轮胎比其他三个轮胎提早出现了滑胎的情况那就表示这部车的操控平衡上出现了分配不良的问题。一般来说前轮和后轮的滑移角并不一样,它们会各自循着不同的路径轨迹在路面上行进,当前轮的滑移角大于后轮时会呈现转向不足,当后轮的滑移角大于前轮时就变成了转向过度,如果前后轮的滑移角相同时,那么转向就成了中性,也就是达到了操控平衡的最佳境界。换句话说,当一不车转向不足时那么前轮橡胶分子所画出的轨迹半径会大于后轮,转向过度则情况相反。一部转向过度的车,在达到轮胎附着力的极限后,后轮会先滑出;而一部转向不足的车则会有抵抗转向的趋势。 滑移率 最大的抓地性表示所能承受最大的刹车力和加速力,而滑移比例是指轮胎直进时刹车或加速时轮胎胎印和路面间所产生的滑移。0滑移就表示车子行进的距离和轮胎胎面所转过的距离相等。100%滑移就表示任何轮胎的转动并部会造成车身的移动,当然也可说是车身的行进不须*轮胎的转动(这种情形出现在行进中的车辆四伦锁死时)。要达到零滑移几乎是不可能,即使在抓地性最佳的状况都会有5~10%的滑移率,也就是轮胎转了100m时车子只移动了90~95m,如果滑移率超过了10%,那就表示抓地性不佳且加速和刹车表现都会恶化。 操控马力(Handling Horsepower) 操控马力指的是轮胎所能负荷。大家都知道越多的马力表示车子的性能越好,当引擎的马力越大时,加速也就越快。轮胎的操控马力也是如此,对操控性来说,增大轮胎的胎印就像增加引擎的马力,使用胶质较软的轮胎就像换了高角度凸轮轴,空气力学所产生的下压力就像 加了涡轮增压器或机械增压器。对轮胎上的橡胶分子来说一定的垂直负荷下所能承受的负荷是一定的,当一部车以它所能最快的速度过弯时,轮胎胎印的橡胶分子也达到了负荷的极限,这个极限我们就称为操控马力。如果还想增加过弯速度,可以减轻车身的重量以减少车身的惯性力和轮胎的侧向负荷,或是加大轮胎的尺寸,选用胎质较软的胎,并改善空力特性。 前后胎印比 假如一部车有完美的50-50的前后配重,那么在稳定的过弯(过弯速度不变)时,前后轮所承受的离心力负荷应该是一样的。在减速或刹车的情况下,因为部份车身重量会由后往前移所以前轮的负荷是比较重的。反之在直线加速时前轮的部份重量也会转移到后轮。如果驱动轮在后轮那么加速时的抓地表现会比较好,滑移率会比较低。所以对一部马力不大且配重比为50-50的后驱车来说,前后轮的整体负荷(过弯、加速、减速)是几乎相等的。假如你因此推测这不车所需的前后轮胎印是相同的,那么你就答对了。前后车轮所需的胎印比例和前后轮所受的负荷比例是相同的,也就是说对一部前后轮负荷比例为60-40的车来说,它所需的前后轮胎印比例亦为60-40。 你或许会问:目前的车几乎都是配置四轮尺寸相等的轮胎(胎印相同),但为何车身配重大多不是50-50,事实上大部分的车都是前轮配重较重。此外前驱的的前轮荷重较重为何不见采用较大的前轮设计。这有两个原因,第一是便利性,一方面是为了制造厂一方面是为了使用者的缘故。毕竟准备两种尺寸的备胎任谁都会觉得不方便。第二个原因是使用了比所需要的更大的后轮会有转向不足的倾向,对大多数驾驶人来说可改善行车的稳定性和安全性。再从技术的角度来看,前轮荷重较重过弯时的负荷也会比较大,再相同的过弯速度下会有比较大的滑移角,也就是前轮的滑移角会大过后轮的,转向不足的情况就会发生。 外倾角和抓地性 悬挂的设定中最重要的大概就是外倾角,外倾角决定了车子静态时的轮胎贴地性。0度时轮胎胎印的橡胶分子的贴地性最平均也最佳,当刹车时我们希望四个轮子的胎印是平贴地面,加速时我们希望驱动轮是平贴路面,而过弯时我们也希望轮胎能平贴于地面,尤其是两个弯外轮。 在刹车和加速时最佳的外倾角是0度,在过弯时负0.125~0.25度的外倾角可增加转向力。在直线和弯道上所需的外倾角设定是完全不同的,事实上还需要配合悬调整体的设定并考虑车身滚动的问题,才能得到正确的设定角度。 轮胎和轮圈的选择 什么是选择最适用轮胎和轮圈最重要的因素,尤其在众多品牌和型式中选择尤其困难,在这里提供一些方法供你参考。 首先,考虑你的车的用途,严格来说就是考虑你轮胎的用途,假如这不车式你每天的代步车,那么轮胎的耐磨性可能式你最重要的考虑,高性能轮胎有很好的抓地力,但磨损也是一流。同时由于胎纹也会尽量的减少所以 地上的表现也不理想,更别提泥地或是雪地上的表现了。(在一般道路上用D98J的朋友一定有这样的感觉)如果住在多雨潮湿的地区,那么一套以 地抓地表现见长的雨胎可能是不错的选择。在 地上以正常的方式行车,胎温提升不易,也就不容易达到高性能胎的最佳工作温度,会有英雄无用武之地之叹。 其次要考虑宽度和扁平比,随着引擎技术的进步,单位容积输出的马力不断的提升,配合整体性能的提升,轮胎也不可避免的加大尺寸,扁平比也有持续降低的趋势,以1600c.c.的车来说10年前的马力基准是90匹,而现在的标准订在125匹应该是比较合理,以前配175/70-13的胎,一般车主通常升级到185/60-14,发烧级的则是用195/50-15,这已是上限。目前的趋势则是搭配185/65-14,而195/55-15,205/45-16则是升级的目标。轮胎宽度的升级要配合马力做适当的搭配,除了美观之外其他机 件的负荷也是要一并考虑的。若马力和悬挂没有做大幅度的提升,那么比原厂设定高一级的轮胎尺寸就已足够 汽车改装的基本动作,是从引擎的点火系统和进气系统着手。而火花塞和高压导线就是点火系的首步改动。 火花塞,俗称火咀,它的作用是把高压导线(火咀线)送来的脉冲高压电放电,击穿火花塞两电极间空气,产生电火花以此引燃气缸内的混合气体。高性能发动机的基本条件:高能量稳定的火花、混合均匀的混合气、高压缩比,可见火花塞的重要程度。改火花塞需把自己车的情况和使用习惯联系在一起。 常听说普通火咀、白金火咀、铱金火咀,其实这是对火花塞电极材料的不同而区分出来的特殊称谓。一般汽车的原厂火花塞(火咀),其电极材料由镍锰合金制成(即普通火咀),它们一般在行驶1万公里或1年后都要进行检查或更换。而白金火花塞则可实现10万公里内免检查更换,而近来才出现的铱金属火花塞同样能达到这样的水平。这给用车带来极大的方便,不过这里提醒一句,您在修发动机时若没特别申明,修理厂是不会给您换上白金火花塞的,因为一只普通火花塞仅几十元,而原厂的白金产品则上百才有交易(一般只有奔、宝 一类高档轿车和部分丰田轿车才原厂配用白金火花塞),所以您必须紧记普通火花塞的保养时限,并时常检查为妙(无非就是颜色、火花塞间隙等,此处不多说)。 白金、铱金火花塞的售价比较昂贵,毕竟是稀有金属吗~其实它们的份量很少,仅在两电极的尖端焊上小小丁点,不过不要小看这么一点。为什么要用稀有金属,正如前所说首先是耐用。气缸在工作时,混合气压缩、燃烧产生极 高的温度和压力,使火花塞电极温度高达900摄氏度左右,此时还要火花塞点火,电极上的高温程度可想而知。 由于银、金的熔点太低所以不能用作电极材料,而镍则有接近1500摄氏度的熔点且价格便宜,所以被广泛应用。白金则接近2000摄氏度才被熔掉,其稳定性和抗烧蚀自然比镍要好。而新近出现的铱金材料则比白金有更高的熔点, 所以更加适合高性能发动机长时间、高转速情况下使用。另外化学特性比较稳定是恒有金属的本质,所以白金、铱金在极高转速的高温、高压下,依然能提供准时、强劲的火花。要知道在这种极限情况下,普通火花塞极有可能发出不稳定、不准时的火花,甚至有可能"失火",引擎的工作因此大打折扣。 明白为什么改装高性能火花塞之后,还要提醒您,不要盲目跟风。改火花塞需把自己车的情况和使用习惯联系一起。换白金火花塞肯定好,一分钱一分货,是否需要自己衡量。而铱金火花塞更贵,试问您经常去"飙风"吗,如果不是,好的白金火花塞也不比铱金的差,没必要浪费钱。 附:至于效果如何,这种问题就要人见人智了,某些人火咀和火咀线,总会产生心理作用,觉得改装了这些东西,车子会多几匹马力。其实效果也并非象广告上说的那么神奇,因为火咀和火咀线的作用是加强点火,改装之后只能让你车子的原有马力更容易发挥,而不是增强车子的马力,因此对加速上多少是有些帮助的。 确认底盘的情况 我们一再强调进行任何改装之前一定要先确认该部份是否正常,如此一来当冤大头的机会就降低了一半,毕竟改装和修理并不相同,尤其再花费上差别更大。大多数人进行底盘改装的理由是『车子跑起来不够稳』,但事实上造成行车不稳定感的原因有很多,诸如胎压不正确造成轮胎贴地性不佳,四轮定位角度不正确造成直进性不良、转向异常,轮胎平衡不良造成贴地性不佳和方向盘异常抖动,这些问题都只需要经过调整或设定就可以改善,不需要改装。要了解底盘的情况可由四轮定位开始做起,由调整前的定位角度和检查底盘悬吊系统、转向系统机件的间隙即可知道。 轮胎 底盘改 装的第一步应该从选一条适用的好轮胎开始。轮胎是汽车性能的终端输出,再好的性能都?匦肟克奶趼痔ゲ拍鼙硐帧,痔サ母淖安煌夂跫涌怼?档捅馄奖取?ブ实母谋洹?除非马力大幅度的提升,否则入若只单纯为了提高循迹性通常加宽10~20mm就足以应付一般道路上较剧烈的驾驶方式,而且不致造成转向特性及悬吊负荷的改变。随着动力性能的普片提升,扁平比的降低已是时势之所趋,通常也是配合着轮胎加宽、轮圈加大所做的调整。以市场主流的1600c.c.车种为例,上一代车种大多使用175/70-13的组合,而目前则已改成185/65-14,改装时则以195/55-15或205/45-16为主要选择。 在民智未开的时代,轮胎的改装着重在尺寸的选择,但随着赛车活动的推展,消费者渐渐了解到胎质得改变对轮胎性能的影响,这最大的功臣当属D98J,若单以乾地循迹性表现来看,它的表现实在可圈可点。事实上大多数的情况改装轮胎是为了轮胎选择上的妥协,因为很多高性能的好胎并未提供小尺寸或高扁平比的产品。 轮圈 轮圈的加大必须是与轮胎配合着改变,有足够的理由使我们相信,超过半数以上的车主改用大尺寸的铝合金轮圈是为了美观的因素,也 Virage、17寸Corona Exore、18寸的A4才能吸引路人的眼光。除了美观唯有16寸的 的因素,轮圈的改装是为了散热及轻量化的因素。以铝合金或镁合金所制成的轮圈散热效果要比铁质的轮圈好上许多,若配合轮圈的特殊造型更能达到冷却效果。改装轮圈时要特别注意的是轮圈的Off-set,改用较宽的轮圈时Off-set的原则就是在不磨到轮拱和悬吊的情况下尽量采用原来的Off-set值。 在这儿要提醒读者的是轮圈的重量才是改装时最重要的考量,来自弹簧上方的重量负荷称为:(Sprung Weight),轮胎、轮圈、轴承、刹车系统、和悬吊系统机构重量的一半,构成了所谓的:『非弹簧负荷重量』(Unsprung Weight),『非弹簧负荷重量』对悬吊系统性能的影响远大於『弹簧负荷重量』,因为悬吊系统作动时我们可把弹簧负荷重量视为不动的,而真正在上下动作的是非弹簧负荷重量,非弹簧负荷重量越大,上下动作时惯性力就越大,每一次上下对悬吊系统的冲击也越大,减轻非弹性重量对悬吊系统改善的效果要远大於减轻同样重量的弹簧负荷重量,而非弹簧负荷重量中最容易轻量化的就是轮圈的重量。 在赛车场上轮圈改装的另一个重要目的是要争取更大的空间,以便容纳更大的刹车碟盘及夹具。 避震器和弹簧 轮胎的问题解决後接下来就轮到避震器和弹簧,有人会把避震器和弹簧分开换,但我们的建议是高性能避震器应该和渐进式短弹簧一并处理,。理由是高性能避震器都有有它最佳的工作行程范围,而原厂的弹簧的弹簧会使避震器在接进行程上限的情况下工作,无法使避震器发挥最大的效益。如果不得已必须分开换时,应该先换避震器,避免只换短弹簧时避震器抓不住弹簧,且悬吊坐底的情况。渐进式短弹簧是降低车身重心的正统途径,切弹簧或是利用Hi-Low Kit来达到降低车身的目的都不是最正确的方法,切弹簧虽会增加弹簧的弹力系数但所增加的幅度却不足以使压缩行程缩小到让避震器不至於发生坐底的情况,所以切弹簧是绝对不可行的。 现在有很多人会利用来改变车高,我想这是大家对Hi-Low Kit的中文翻译:『车高调整器』有所误解。一般的附有Hi-Low Kit的避震器大多是调整弹簧的支承座,如此一来调整Hi-Low Kit时不但会改变车高更会改变避震器的工作行程范围。举例来说,假设有一组避震器工作行程由上限到下限有20cm,搭配一组短弹簧能把避震器的工作行程限制在距离上、下限各5cm的最佳行程范围内,我们如果利用Hi-Low Kit使车高降低2cm,那麽会使得避震器的工作行程范围变成距离上限7cm、距离下限3cm,对悬吊的搭配性会产生 影响,Hi-Low Kit的存在通常只是为了进行车身配重平衡时车高微调整之所需,利用它来大幅改变车高就失去了原意,而且必须面对调整後配重的改变的问题。 防倾 先换防倾 或先换避震器及弹簧常常有所争议,其实这是因为大家对於防倾 的功用有不了解之处。防倾 只有在左右悬吊动作不同步时才会产生作用,也就是说防倾 的主要功能在於抑制侧倾,对於改善平路上高速直进时的漂浮感并没有帮助。因此如果有人在炫耀他装了粗的防倾 後在高速公路上高速直进时变得多稳时,你必须知道那只不过是心理作用。 如果你的车直进时的稳定度已符合你的要求,但过弯或变换车道时的侧倾却让你不能接受那麽你应该先换防倾 。如果连直进时都会有令人不悦的漂浮感,那麽你应该先从避震器和弹簧下手。高性能避震器和短弹簧虽然也会改善侧倾,但绝不可一 的加硬避震器和弹簧来抑制侧倾,这会使行路舒适性和行经不平路面时的循迹性严重劣化,应该要配和防倾 的改装才能收最大的效益。 衬垫 悬吊的连 、支柱、转向机构、防倾 、避震器、? 啥际蔷 沙牡妫?ushing)和车身连结,一般的衬垫都是以橡皮制成,以减少噪音和震动传入车厢,因此衬垫会产生扭曲、变形,更会影响车手所能得到的回馈。使用软的衬垫在转向或是承受刹车产生的扭矩时,会因为衬垫的扭转和变形造成Toe、Camber和其他定位角度的变化,破坏循迹性。因此对高性能车和赛车来说,衬垫必须采用对转向系统和悬吊系统影响较小的材质。如果你以换了高性能的弹簧、避震器、防倾 ,如果再换上硬的衬垫确保转向和悬吊的动作更精确。一般道路用的强化衬垫是以硬橡胶或 制成,而在赛车上为了要将衬垫对转向和悬吊的影响降低到最小 ,通常使用金属材质做为衬垫的材料。改了硬材质的榇垫後不可避免的要面对噪音和震动。 底盘设定 当你花了大笔预算把车子从轮胎、悬吊进行强化时,千万不可忽略设定、调校的工作,唯有细心的设定才能把改装部品的性能充分发挥,从胎压、定位角度、到车身配重平衡,该做的都不能省略,而且改装部品每经过一次更动都必须重新进行设定,这是最容易被大家所忽略的。 一、轮圈种类: 1.轮圈从材料来分主要有: 钢制轮圈和 铝合金轮圈(Alloy wheel),另外日本还有外观新颖的塑料制轮圈,不过还未普及,目前暂时只用于微型车。在改装市场里最流行的轮圈当然是铝合金轮圈,以往渗镁技术还未普遍的时候,有些轮圈强调是镁合金制造,现在已经不用再强调了,因为大多数的改装轮圈都己加渗了镁元素,而且由于采用了锻冶技术(Forging) ,现在高档的镁铝合金轮圈比纯镁合金轮圈更轻而硬。镁铝合金轮圈除了美观之外,另一个主要优点就是重量轻。轻轮圈的旋转惯性较钢制重轮圈小得多,所以装上合金轮圈可令汽车的加速、刹车、转弯都更加灵敏,就像我们脱去笨重的皮鞋改穿充气的超轻跑步鞋去跑步一样,轻的轮圈会让发动机提速更爽,所以有车轮减轻1公斤相当于车身减轻5公斤的这种说法,这可一点也不夸张。 除了在平坦公路上的性能表现外,轻的轮圈还可让颠簸路面上车的舒适性提高,因为车身的平稳性很大程度上取决于簧载质量(Sprung weight-即指车身)与非簧载质量(Unsprung weight -即指车轮和摇臂等)的比值,簧载质量与非簧载质量的比值相差越大,乘坐越舒适。而且,由于车重对于车的平地加速、刹车、转弯性能都有负面影响,所以车身在减重之余,非簧载质量总是越轻越好。此外,镁铝合金轮圈还有散热好的优点,一方面是因为镁铝合金这种材料吸热和散热都容易,可把刹车盘传过来的热量吸收,再散发在空气中,另一方面则是因为合金的强度大,轮辐比较窄,可以留出更多的空间用以通风并容纳大型的刹车钳和刹 车碟。 2.轮圈制造方式分类: 合金轮圈从制造方式来分,主要分为铸造(Casting)和锻造(Forged)两大类,铸造又分为重力铸造(Gravity Casting)和低压铸造(Low Pressure Casting)两种。重力铸造是把液态的合金倒进铸模里冷却成型,由于制造过程简单,铸模耐用,成为成本最低的制造方式。低压制造是用不大的压力把液态合金压进铸模里,令分子的分布平均,少砂孔,造型可以更复杂和精致。 锻造的轮圈是利用几千吨的压力把一块合金压成轮圈的外形,生产成本比起铸造的要高。因为高压的缘故,合金分子之间的间隙缩小,相互作用力大,所以整个轮圈只需较少的材料就能达到足够的刚度,整体重量就更轻。 近年在亚洲由于几间轮圈厂的大力推广和赞助赛车运动,令很多人认为锻造的轮圈比铸造的轮圈更好,但实际上锻造和铸造的轮圈在性能上各有优胜之处。锻造的轮圈虽然刚度大,却有脆的缺点,在受到猛烈的撞击后容易完全断开,而铸造的轮圈受到撞击后会弯曲,不易断裂。如果在高速公路上碰到一块砖头的话,弯曲车轮的可控性相对大一点,可以让车比较安全地停下。由于欧洲人更注重安全性,因此欧洲车更多采用铸造轮圈。又因铸造轮圈的刚度较小,欧洲普遍采用“热处理”(Heat Treatment)工艺对轮圈进行加强,即把铸造出来的轮圈加热和快速冷却,反复几次,让轮圈变得刚度更强而且富有弹性。世界拉力赛(WRC)中就有很多赛车选用这种工艺制造的铸造轮圈。 3.轮圈从结构上来看可分为一件和多件的结构。多件的轮圈即外框和轮辐分开制造,再用螺丝固定,它们是目前国内能够购买到的改装轮圈之一。它的出现其实是由于20世纪70年代以前的落后制造工艺所致,其好处是一方面制造容易,因为外框可用钢片卷成;另一方面方便维修和多型号互换,比如同一型号的轮辐可配宽窄不同的外框,令生产成本进一步降低。到了现在,多件的轮圈因为零件数多,生产工序多,而且外表看起来有精密、高贵的感觉,所以价格比一件式的轮圈还要贵得多,但多件的轮圈通常更重,而且刚度比不上锻造轮圈。选择哪种轮圈就要视乎你的个人喜好和考虑因素了。 至于如何分辨轮圈的制造方式,其实大部分品牌都有铸造和锻造的产品,有些轮圈上用forge、cast、heat treat之类的字眼注明生产工艺,若没有标注,那么就在店内多拿几款相同尺寸的轮圈,用手感觉它们的重量,轻的是锻造轮圈,重的就是铸造轮圈。 若用家非常注重高性能或者觉得车本身的马力太弱,那么可选用锻造的轮圈,若车更大程度上是一部运输工具,那么选铸造轮圈比较适合。 二、轮圈选购注意事项 及几点数据的解释: 1.轮圈尺寸:在轮圈改装的整体尺寸方面有Plus One、Plus Two的说法,意思即是在原厂轮圈基础上把轮圈直径和宽度同时加大1英寸或同时加大2英寸,比如原厂使用14×6英寸的轮圈配205/70 R14轮胎,Plus One即是用15×7英寸的轮圈,配上215/60 R15的轮胎,就能达到既加宽轮胎又保持车轮直径不变的目的。同理,Plus Two即是用16×8英寸的轮圈配225/50 R16的轮胎。 这里有一个计算公式给大家参照:轮胎直径 = 轮胎宽度×扁平率×2 + 轮胎内径(也即是轮圈直径)。无论Plus One还是Plus Two,只要保证轮胎直径变化不大,都是可以接受的,当然你计算出来的轮胎尺寸最好是市面常见的,比较方便购买啦~ 2.轮圈偏移度: 轮圈的另外一个尺寸参数是Off-Set。如果轮圈安装底面和轮圈中线在同一个平面,Off-Set就是零;如果轮圈底面偏向外侧,Off-Set就是正值;偏向内侧则时则为负值。不同车的原厂Off-Set可能不同,这是厂家设计汽车时决定的,比如越野车通常用接近零的Off-Set值(甚至是负值),轿车则通常都是正Off-Set的。改装时,选用较小Off-Set的轮圈可让车轮向外移,使车看起来更威 猛,比如Off-Set 45改成35,车轮就向外移动10毫米(若把35改成45则车轮内移10毫米)。相应地,如果把越野车的Off-Set 0改成-20则车轮会外移20毫米。 但是,当你考虑换轮圈更改Off-Set前,必须清楚这会给车的性能带来三方面的影响:一是车轮向外移之后,由于杠杆比的改变,悬挂就会显得软了;二是车的转向特性会发生变化,增大了前轮轮距,会增加转向不足的特性;三是更改轮距可能造成轮胎偏磨、方向盘沉重、甚至方向颤抖的情况。 Off-Set值的大小跟能否容纳大刹车钳并没有直接的关系,Off-Set值相同但轮辐形状不同的两个轮圈,可能有一个能容纳大刹车钳而另一个不能。购买轮圈时最好还是把车带过去试装,不要只看数字跟旧轮圈相同就买回去,退换都是很麻烦的事情。 3.安装尺寸: PCD值通常写成4×100 或5×114.3等,表示螺丝孔连成的圆圈直径为100毫米或114.3毫米、上四颗或五颗螺丝。这不需要担心,只要买轮圈时把车开过去试装,能装进去就一定不会错。 4.最后要谈的是轮圈的大小问题,一般来说较宽的轮胎/轮圈组合可以给车子带来更好的操控性,但直径较大的轮胎/轮圈组合却没有什么好处,反而会增加车子的非簧载质量。在赛车运动中选用大轮圈的好处是可以配置较大的刹车卡钳和巨型刹车碟,以提升散热效率和刹车效能,但如果您的刹车碟只有10英寸不到,而且又不打算选用一款外露刹车系统的轮圈的话,我建议您选购轮圈时最多Plus One就可以了,因为Plus Two以上的大轮圈会令你自曝其短(看到难看的原厂刹车卡钳和碟)。 三、阅读轮胎的标注: 子午线轮胎(Radial tyre)的规格包括〈宽度〉、〈扁平率(Aspect 蕖捣 拧? 比如标注为P195/65 R15(91V)的轮ratio)〉、〈内径〉和〈?俣燃 胎(这里仅介绍最常见的轮胎标注方式),P表示这轮胎用于一般的载人汽车,宽度是195毫米,扁平率65,,是子午线轮胎(用R表示),轮胎内径是15英寸,每条轮胎最大承载615公斤(用91表示),最高时速是240公里,小时(用V表示)。有些轮胎的标注没有斜杠,则宽度是以英寸表示的。非子午线轮胎以B或D代替R字。 轮胎装上标准尺寸的轮圈并充气后,胎壁高度与轮胎宽度的比值称为〈扁平率〉。扁平率对轮胎的性能有很大影响:扁平率较大的轮胎在颠簸的路面上有较好的舒适性;而扁平率较小的轮胎与路面有较大的接触面积,具有较大的胎壁刚度,因此在硬质路面上有更好的抓地力和敏锐的反应,但舒适性较低。 换用不同扁平率的轮胎时,要注意保持轮胎直径不变,轮胎直径可以利用胎壁上的尺寸标注计算出来,公式是:轮胎直径 = 轮胎宽度×扁平率×2 + 轮胎内径。比如尺寸为205/70 R14的轮胎,轮胎宽度是205毫米(8英寸),扁平率是70,,轮胎内径是14英寸(356毫米),所以轮胎总直径 = 205×0.7×2 + 356 =643毫米(25.2 英寸)。 选购轮胎时还应留意其它标注。若轮胎标注有M&S或M+S,表示适用于泥地和雪地(Mud & Snow),通常在冬天下雪的地方使用。TUBELESS表示无内胎(俗话叫真空胎),TREADWEAR则是表示磨损寿命,数值越大表示轮胎越耐磨。 除非因为特别原因,否则同一辆车的所有轮胎应该是相同尺寸、同类花纹、相同速度极限、磨损程度相近的。假如需要混用,要遵守以下原则:一、在同一条轮轴两侧一定要装相同型号、磨损程度相近的轮胎;二、不要选用速度极限和载重指标低于原车标配的轮胎,所有轮胎的速度极限必须相同;三、如果子午线轮胎和其它轮胎混用,子午线轮胎装在后轴;四、如果不同宽度的轮胎混用,较宽的轮胎装在后轴; 五、高性能跑车如果换装M&S的轮胎,则一定要四条轮胎同时换。 最后要提一下的是大家可能会在赛车场上看到一些专业比赛用轮胎,它们所用的标注和民用车不同, 比赛用胎的标注用直径数字代替了扁平率,因此标注由常用的200/50/15变为200/580/15或20/58/15 (mm和cm的分别)。这主要是方便赛车队知道胎的直径来调节轮胎/变速箱/终传率的综合比例,以便赛车的马力能在不同长短的赛道上均能全力发挥。 f1空气动力学 F-1赛车风驰电掣的速度,能在5秒之内瞬间加速到200km/h以上,最大过弯侧向加速可达4个G,极速最高超过350km/h,这样高的速度与过弯能力,除了需要优异的悬吊设置来让轮带尽可能的保持与跑道路面接触之外,也需要足够的下压力来产生足够的摩擦力,否则空有强大的马力,在过弯时将无从发挥,因此空气动力学设计的优劣已成为今日F1决胜的关键之一。 空气动力学的工程师们在风洞中实现他们的空力艺术,由功能强大的设计计算机所产生的3D模拟,并在大型的风洞中不断的测试。F1车队每年都会花上300万美元到1500万美元不等的风洞操作经费来验证空气动力学组件的效率。 空气动力学效率就是下压力和空气拖放阻力的比例。目标就是要获得最大的抓地力,和最小的拖放阻力。下压力是空气动力学上垂直方向的向下压力总合,这些力量是由前鼻翼和后尾翼所产生,用来把赛车压在地面上,下压力越大,赛车在跑道上的抓地力就越大。 理论上,由前后翼产生的可怕力量,可以让一部F-1赛车抵抗地心引力,让600公斤重的F1赛车在隧道的天花板上倒吊著跑,因为赛车可以产生超过车身重量数倍的下压力。要让F-1赛车那样高速的过弯,那么必须把车底、车顶以及车身周围的气流引导到完美的境界~ 关键的前后翼 影响F1赛车空力稳定性的最重要因素是前鼻翼,这是决定通过车身上方、下方和其他如散热器、后尾翼气流的比例和方向的关键性组件。除了分流前方的空气之外,前鼻翼在操控上也扮演重要的角色,那就是产生下压力来将前轮压在地面上。 尾翼是F-1赛车外观上重要的一部份,尾翼的组合被当前的比赛规则限制在只能有三片。透过调整前后翼的设置,车队可以控制赛车的抓地力来配合不同的赛道特性及底盘本身所产生的定值的下压力。理论上,翼面角度越陡,产生的空气动力学的拖放阻力越大,车速提高时对车辆产生的下压力越大。同时,陡峭的翼面设置会降低赛车的速度表现以及增加油耗。 F-1赛车空气力学的最高境界就是『平衡』。F-1赛车的抓地力约有1/3是由前轮负担,有超过2/3则是由后轮负担。在前轮采用低下压力的设置可以提高车速,但同时也会提高转向不足的趋势;转向不足就是车头会开始滑向弯外侧。相对的,如果车尾的下压力不足,那么会有转向过度的倾向,车尾就会开始打滑。 F1赛车循迹控制系统 循迹控制系统TCS(Traction Control System)约是在''90年代初期发展出来的电子系统,在''94年之前可合法使用这项系统,然后连同主动式悬吊都遭禁用,后来Senna的死则引发这些高科技设备的争论。直到2001年西班牙GP,循迹控制系统才又再度解禁。 循迹控制系统的原理是在轮带打滑时,包含了起跑、过弯、下雨天等等的情况,利用各式各样的方法来降低扭力的输出,让轮带重新获得抓地力,进而让车手能够控制赛车,将动力发挥到最极限,并增加赛车速度。而降低扭力的方法有油门的控制、点火延迟、或是关掉数个汽缸的点火或供油系统。 由于传动轮在加速时会超过50G,所以降低惯性所需的反应要非常快速,但是利用油压电子油门控制需要30毫秒,反应时间不够快;延迟点火又有耐用度的问题;因此现行的循迹系统是利用装置在轮带处的感应器来检测轮带状况,当轮带打滑时计算机就会降低引擎输出功率,通常是数个汽缸不点火,或是在供油程序下功夫,让轮带停止打滑,以降低车辆因为轮带 打滑所造成的失控状况,进而增加赛车速度。 不过现在的循迹控制系统可不只是那样简单,随着电子技术的进步,现在计算机已可以做出较过去更为顺畅的循迹控制,不只是单纯地点火与供油而已,当前的程序技术已可让赛车在即将打滑时,循迹控制系统就开始作动,保持在最大摩擦力的边缘,得到最佳的引擎动力运用。 循迹控制系统不仅在慢速弯道中有帮助,在高速弯中也有所助益,系统不只会在打滑的时候做出补偿的动作,就当车辆正开始滑动时就会介入,过去要以时速190公里半油门方式通过的弯,在配备循迹控制系统之后,可以时速200公里全油门的速度通过。 F1赛车起跑控制系统 起跑控制系统包含在循迹控制系统之内,它可以让车手在起跑时不会因轮带打滑而损失时间。跑控制系统的效率非常地好,如果它正常任务的话,起跑的速度会比车手自己控制到最好还佳,车手在起跑前按下起跑控制系统的开关,系统会在起跑之后车手收油时自动解除。 根据Jordan车队的报告指出,在比赛中采用起跑控制系统是非常有效果的,他们的数据显示,使用起跑控制系统的Jordan EJ11赛车可在4.3秒内由0加速到100英里,但是没 秒,这就是为什么许多车手在经历那么多次因系统有使用起跑控制系统时却需要4.8 故障所导致的起跑失误之后仍坚持使用起跑控制系统的原因。 F1空气动力学大观:4500万打造赛车竞争力 在F1领域,落后1/10秒就可能和胜利失之交臂,这没有任何值得惊讶的。因此为了达到提高赛车速度的目的,车队不会放过任何一个可以挖掘潜能的方面和机会;所以车队对于赛车的空气动力学套件无休止进行精雕细琢 在霍根海姆和其他的任何一条赛道都一样,F1赛车的竞也就不足为奇了。 争力不仅仅基于引擎和传动系统的表现,空气动力学套件的效率同样至关重要。“如果赛车在某条赛道的空气动力学套件有问题,他就不可能在这里赢得比赛。”威廉姆斯车队的总设计师加文-费舍尔(Gavin Fisher)如是说。 对于F1而言,时间就是金钱,同时时间也需要耗费金钱。据专家统计:目前F1车队在空气动力学开发上的花费已占到整个车队年度预算的15,,现在唯一能超过这笔费用开支的只剩下引擎开发了。新建一个全新的F1风洞至少需要花费4500万欧元。但尽管如此,如今的大多数F1车队还是在几年前便修建了属于自己的风洞。威廉姆斯车队设在英格兰格洛威(Grove)的总部,便拥有一个极其现代的私人风洞,它是目前各大车队中现代化程度最高的风洞之一。 威廉姆斯车队的工程主管帕特里克-海德(Patrick Head)表示:“即便F1规则在不断的变化,但是空气动力学对于F1赛车而言都是最为重要的因素之一。”现代风洞的主要作用是将赛车模型放在内部的钢铁传送带上模拟赛车在路面上的各种情况。通过对采集到的数据进行综合分析,可以准确地检测到赛车在路面上受到各种因素干扰时的状况。威廉姆斯车队的空气动力学主管安东尼亚-特尔兹(Antonia Terzi)认为:这种模拟可以将赛车空气动力学部件的精度提高30,。 F1风洞最引人瞩目的可能就是其巨大的碳纤维风扇了,它的极限转速可以达到600转/分,其驱动引擎的峰值功率更是可以达到令人汗颜的3兆瓦,即4000匹马力左右,这相当于4台主战坦克所提供的动力之和。如此强大的动力其带来的实际效果将时怎样的呢,答案是能在30秒内将静止的空气加速到300公里/小时。此时托起赛车模型的传送带的作用则是模拟赛车在比赛中的各种路况和车身姿态,最大限度保证模拟的真实性和有效性。 当进行空气动力学测试时,技师们的视点将放在三个方面:下压力、阻力和灵敏性(敏感度)。巨大的下压力可以提高赛车的过弯极限,但是在理想状态下,下压力的增加不应当带来赛车阻力的增加, 但是不可避免的却会牺牲赛车的部分极速。赛车的空气动力学灵敏性(敏感度)则是指赛车的状态性能对于空气动力学环境改变时自身变化的强弱,例如由不平整的赛道路面带来的赛车翼片以及底盘和路面距离之间的频繁变化时,赛车性能所受到的干预强弱。 现代化的新风洞——例如威廉姆斯车队的第二风洞,将使车队有条件对1:1的模型上进行模拟测试。这对于车队而言将是一项巨大的优势,因为目前大多数车队仍只能进行50,,60,比例的模型模拟测试。使用1:1模型进行模拟试验的优势是更有利于车队计算某一个赛车部件在相应的气流状况下的真实状况。而风洞试验室的另一种模拟测试是将两个类似的小模型放在一起:将一个放在另一个的后面。这种模拟测试是为测试赛车在比赛中处于其他赛车后部时所遇到的气流状况。两个赛车模型的高度和距离可以通过外部遥感来进行控制,精度可以达到惊人的0.01毫米。 为了保证始终走在全球激烈的市场竞争的前端,世界各大汽车制造商都拥有自己的风洞。尽管根据目前的电脑技术水准,已经可以对越来越多的赛道状况进行计算机模拟测试。但是精确的风洞测试在车辆空气动力学的研发上仍然占据着不可替代的地位。而人们对于民用车辆的空气动力学研发也不仅仅只是为了降低空气阻力和降低油耗,比如降低汽车行驶的风噪也是其中的目的之一。 在F1领域空气动力学发展的速度有多高,可以在威廉姆斯FW26上找到答案。举例说明:在摩纳哥大奖赛后的周一,威廉姆斯车队技术总监萨姆-米歇尔(Sam Michael)便赋予了车队工作人员新的:改进赛车若干处空气动力学套件,其中包括侧箱、侧箱冷却气流入口、散热器、引擎盖、排气管导流罩和侧箱小翼等等。但到四站之后的法国大奖赛,赛车新的空气动力学套件的改建工作又开始展开,如果没有风洞,这所有的一切都是不可能完成的。 为了达到这些改进目的,威廉姆斯车队风洞工作室的工作人员花费的时间长达500个小时之久。据专业人士统计,每年每支车队在风洞实验室内度过的时间长达8000个小时。为了对某个部件的改进,通常会制定两套甚至三套工作程序轮番进行对比研究,直至最后达成最佳成果。威廉姆斯车队的总设计师加文-费舍尔(Gavin Fisher)表示:“风洞为我们不断改进赛车提供了最大的可能,没有风洞一切都免谈 ECU常识问答 改装升级ECU可增强性能输出,为何原车出厂不如此设计呢? 答:引擎喷射计算机简称ECU(ENGINE CONTROL UNIT)例如:BOSCH、SIEMENS、MM……其生产厂商均为国际跨国企业,生产产品均销售至世界各地使用。因每个国家汽油品质、温度、大气压力、湿度、引擎形式上的差异ECU程序软件设定上须符合不同的条件来使用,故在设定上保留很多的空间可供改装。 改装升级行车ECU会耗油吗, 答:软件程序的升级改装,并不是以多喷射燃油来增加马力,而是将供油及点火的曲线等等重新搭配与调整,以达到增加马力和扭力的目的。以STD(标准型)来说,电脑改装后尾气排放全部符合欧洲EEC环保污染标准,当然环保检验均可通过,甚至七成以上客户反应说车子变得更会跑,而且比原来还省油,感觉非常的惊讶!而追求速度经常大脚油门的做法会增加实际油耗输出. 改装升级ECU中芯片的性能,会对行车电脑ECU有伤害吗, 答:由于只是对ECU中,动力程序芯片的重新改写,只是将引擎燃烧计算的更精准,及加速燃烧ECU芯片的运算速度,只会提高管理引擎燃烧芯片的效率,因此,对整个ECU不会有任何伤害,另外,改装升级的ECU,仅仅是在动力芯片上进行升级和调校,没有对ECU中任何的其他相关部件及芯片进行任何改动,所以,不会对行车电脑ECU有任何伤害.没有ECU厂商会提高功率的同时来损坏ECU这样的做法对ECU商家只有不利所以车主应该放 心而为之. 改装升级ECU有何好处, 答 1、自然进气形式发动机可增加10,,15,的马力及扭矩; ? ?2、TURBO车型可增加30%以上的马力及扭矩; ? ?3、自动档车型换档时更平顺、动力衔接更顺畅,在急加速时亦会延迟换档时间. 改装升级ECU后是否会出现电脑故障或无法回原厂诊断,安全防盗系统功能是否会丧失, 答:改装升级ECU采用车辆量身订做的方式,我们拥有专业改装升级设备,可将原车程序读下后传送至国外程序生产厂商总部,总部会根据您的车况将改装程序传回安装,故不影响您原车功能设定上的改变,此方法为改装ECU,而不是去欺骗SENSOR给ECU错误信息,所以原厂诊断计算机不会有无法消除的故障码出现,相应的安全防盗系统也会保留. 改装升级ECU寿命如何,有质保吗, 答:汽车行车电脑(ECU)的运算逻辑不像一般家用计算机,他只有0与1的选择,即只有不能使用与可用使用的两种情况,即使汽车被水侵,原车ECU损坏,改装升级的芯片仍会完好如初,只要不经外力破坏,用到车子报废,改装升级的芯片依然可用; 我们提供不限里程的改装升级ECU的保修.人为破坏除外! 何种情况需作ECU软件升级与更新, 答:当您的爱车做了引擎机械结构上的改装时,例如:排气头段、中段与CAT(三元)移除、凸轮轴(CAMS)改装与塘缸,或加装涡轮与机械增压时,可与我们联系依您现行车况上改变,更新您的芯片与软件(依然采用量身订做方式),让您的爱车做最出色的表现. 为何需要改装ECU来获得马力, 答:只要您想增强马力,又不增加油耗,改装升级ECU芯片是您最佳的选择,也是与国外改装科技同步的最正统的改装方法,想提高动力性,改装升级ECU芯片是必要的第一个步骤,也是最直接的,其他您换装的改装部件的硬件才能发挥100%的性能;另外,如果不改装升级ECU芯片,要想获得20匹到50匹的马力,估计硬件的改装费用在1-3万元,花费很高! 改装升级ECU后会增加油耗吗? 答:基本可以持平,原因很简单引擎动力输出增强了, 引擎运转速度提升了,相对踩踏油门的时间短了…个别车辆出现费油的传闻,拜托不要总是把高转速飙车的成本算进改装升级ECU的油耗成本内,另外,不良的火化塞,漏电的高压线,以及未按时清洁节气门和空滤,都会影响车辆的相关油耗水准,请及时检查和清理上述部件! 改装升级ECU增强性能后,会对引擎有伤害吗, 答:引擎最大的伤害莫过于疏忽保养,不管改装升级ECU与否,如果不注意引擎的保养或者经常在引擎最大峰值下驾驶,都会造成引擎的磨损和伤害;改装升级的ECU程序,只是提高了行车ECU中,燃烧部分的精准度和加速ECU的运算速度,主要还是看驾驶员对车辆的掌控和保养的情况,因此,改装升级ECU不会对引擎有任何的伤害,新车的磨合期均可安装. 为何我的车改了其它没有品牌ECU程序,油耗变得很高,加速时冒黑烟,怠速易熄火,加速时的输出不顺畅呢, 答:最重要因素有两点,即改装程序不准确或非此车型专用的程序,另外则为程序设定不良,只有当发动机在最佳的燃烧状态下,才能取得最大的输出. ECU改装常识如今,几乎所有的车皆为电子喷射发动机,因此全车各种电子系统的运作,都需交由电子控制单元ECU(Electronic Control Unit)掌控,如控制ABS、电子节气门、防盗器、空调系统等,与发动机运转息息相关的程序系统也在其中。除了发动机硬件外,ECU也必然是影响动力输出的关键。原厂车在设计发动机的软硬件时,除了动力输出,还考虑到经济性、实用性、油耗以及越发严格的排放标准,因此在ECU的调校和设定上趋于平衡。 ? ? 这时,为了使车子的动力更强,最直接最有效的手段莫过于改装ECU了。近年来,这种方法大受改装车主的欢迎,原因除了直接有效外,更重要的是性价比极高,并且从外表根本无法令人察 觉。 ? ? 市面上有不少品牌的ECU改装方法:一种是通过换装芯片或直接更新为由通过专业工程师测试编写的对应某一车型的套餐程序,如SuperChips、Chiptronic、REVO、DIGI-TEC等;还有一种就是加装外挂电脑硬件,按需要自行编写和设定程序,如E-manage、F,Con、MOTEC等。相对于第一种的软件改装,外挂电脑的最大优点便是可针对需求,随时调整供油、点火时间等。其多样化的功能使它成为重度改装车的首选。 ? ???现在有能力为客户提供量身设定电脑程序的改装店不多。主要原因是这些改装店无法像专业ECU厂商或专业赛车队一样,通过测功机等专业仪器进行测试调整,而只能在路上“边跑边改”的实际测试调整。“有一套好的空燃比表,就容易把电脑调好”。这种冒险的改装方式逐渐被很多人所认同,但是假如只依靠简单的仪表,没有功力深厚的、经验丰富的编程测试工程师来改装编程,是很容易损伤发动机及其它部件的,甚至会有车辆报废的危险。因此对于一般的ECU改装,选择一款适合自己车型的编写好的套装程序绝对是最保险、最合乎成本效益、最事半功倍的方法。 ? ???众所周知,改装ECU会调整供油量、点火正时和涡轮压力等参数。喷油量的多少直接影响到空气和燃料混合比。理论上,能让混合油气燃烧最完全最充分的混合比是14.7,但是在实际情况中,这种混合比是变化的,因此就需要电脑的及时分析并修正。点火正时就是点燃混合油气的时间。理论上点火的时间是在活塞达到最顶点时使油气完全燃烧,但实际上,高转速和低转速的点火时间是不同的。因为混合油气燃烧需要时间,因此高转速时点火时间要提前,使其有充分时间燃烧。涡轮压力值越高,发动机的马力输出就会越来越大。一般压力值在0.8,1.6Par之间,过高的压力会减少发动机的寿命或者直接报废。 ? ???以Chiptronic程序为例,它主要针对德系车的ECU改装程序,不管是NA、Turbo、还是Supercharge皆可改装,所有的改装程序均由国外母厂的专业工程师编写,由世界各地的产品代理利用专门设备写入ECU中即可。在改装Chiptronic程序时,对应不同种类的原车ECU硬件,原车资料的读写和新程序的传输、覆盖也有不同的方式。第一种方式就是拆下ECU上的芯片,利用设备读写新程序,再写入到ECU中;第二种就是简便的直接以车内的OBD接口进行刷新程序;第三种便是以BDM探针接到ECU电路板上的金属点来进行传输程序。 ? ???改装过程主要分为三大步骤,首先判断车辆的ECU品牌、型号,选择对应的程序读写方式,接着,代理商将读取出的ECU程序、硬件改装项目以及改装目标等资料发送给Chiptronic母厂。Chiptronic总部在进行分析与改写后传回,最后代理商重新写入完成ECU改装。一般传回原程序到接收新程序,最慢一个工作日,最快则20分钟。有些人可能会问:既然程序是由国外总公司改写,那使用在国内的车辆上会不会水土不服,当然不会,因为你所有的行车资料都记录在ECU中,当你车的ECU的程序传回总部时,专业的工程师马上就能够知道你的车是在何种状态,你只需和代理商沟通好,将硬件改装明细和改装目标传达给母厂,这样就能精准的编写出最合适的ECU程序,达到最大效果。 ? ???目前国内ECU改装的品牌有MTM(德)、Chiptronic(瑞士)、Superchips(英)、REVO(美)四大主流,其各有各的特色,如何挑选则依车型而定。 ? ? 来自德国的MTM,是改装Audi、VW、Porsche、Bentley、Lamborghini的大内高手,品牌知名度及形象在欧洲是五星级的,能够精密的将车的性能根据不同的硬件改装做出4阶段的提升,是少数几家能提供进阶改装的专业厂家,其芯片改装价位在英国报价是1199欧元。 ? ? 例如MTM针对国内的奥迪1.8T车型(原厂数据150hp)提供4阶段的动力升 级: ? ?? ?Stage1:ECU芯片改装,提升马力至190hp,持压1.1~1.2Bar,增压值1.4Bar。?? ? ?? ?Stage2:ECU芯片+4个加大喷嘴,提升马力至 205hp。? ? ? ? ? ?? ?Stage3:ECU在Stage2基础上+MTM中尾段排气管,提升马力至216 hp。? ? ? ?? ?Stage4:ECU在Stage3基础上+MTM头段,金属触媒段(三元催化)+K04涡轮,提升马力至232hp,增压值达到1.55Bar,扭力达到400NM。 ? ???近几年崛起的瑞士品牌Chiptronic,凭借着高超的技术及追求动力的激情,在国际市场上迅速将其品牌知名度打开,拿手车型为双B(BENZ、BMW)及VAG(Audi、VW)车系,对于双B车系亦有三种进阶动力可选择,其所改装的奔驰车在中国台湾地区击败过Kleeman的德国原厂改装车而声名大噪,连德国原厂技师都叹为观止。 ? ? Superchips身为全球最大的芯片改装厂,在国内的市场占有率最大。拿手车型为VAG车系、雪铁龙及部分日系车,程式稳定性高,但在国内不断出现盗版程式,所以在选购时务必再三认证才不至于受骗上当。 ? ? 来自美国的REVO,凭着低价策略,在国内吸引了一些追随者,其高阶改装在车上设有竞技调节按钮,可瞬间将增压值打到2.0以上,劲力十足,但其程序对发动机的硬件要求很高,假如超过运转负荷,使用时千万三思。 PAGE PAGE 1
/
本文档为【汽车改装知识】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索