为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > 氨基酸的生物合成[试题]

氨基酸的生物合成[试题]

2017-10-24 7页 doc 21KB 32阅读

用户头像

is_686908

暂无简介

举报
氨基酸的生物合成[试题]氨基酸的生物合成[试题] 第九章 氨基酸的生物合成 第一节 氮循环 氮是组成生物体的重要元素。自然界中的不同氮化物相互转化形成氮循环。生物界的氮代谢是自然界氮循环的主要因素。 第一步:固氮作用,将氮气还原为氨。可工业固氮和生物固氮完成,自然界中由固氮生物固氮酶完成的分子氮向氨的转化约占总固氮的三分之二,由工业合成氨或其他途径合成的氨只有三分之一。 第二步:硝化作用,将氨转化为硝酸盐。在土壤中含量丰富的硝化细菌进行着氧化氨形成硝酸盐的过程,因此土壤中几乎所有氨都转化成了硝酸盐。 第三步:成氨作用,将硝态氮转化为氨态氮。植...
氨基酸的生物合成[试题]
氨基酸的生物合成[试题] 第九章 氨基酸的生物合成 第一节 氮循环 氮是组成生物体的重要元素。自然界中的不同氮化物相互转化形成氮循环。生物界的氮代谢是自然界氮循环的主要因素。 第一步:固氮作用,将氮气还原为氨。可工业固氮和生物固氮完成,自然界中由固氮生物固氮酶完成的分子氮向氨的转化约占总固氮的三分之二,由工业合成氨或其他途径合成的氨只有三分之一。 第二步:硝化作用,将氨转化为硝酸盐。在土壤中含量丰富的硝化细菌进行着氧化氨形成硝酸盐的过程,因此土壤中几乎所有氨都转化成了硝酸盐。 第三步:成氨作用,将硝态氮转化为氨态氮。植物体所需要的氮除了来自生物固氮外,绝大部分还是来自土壤中的氮,它们通过根系进入植物细胞。然而硝态氮并不能直接被植物体利用来合成各种氨基酸和其他有机氮化物,必须先转变成为氨态氮。 第四步:同化作用,氨经谷氨酰胺合成酶和谷氨酸合成酶同化为谷氨酸。这些有机氮化合物可随食物或饲料进入动物体内,转变为动物体的含氮化合物。 第五步:分解作用,各种动植物遗体及排泄物中的有机氮经微生物分解作用,形成无机氮。 这样,在生物界,总有机氮和总无机氮形成了一个平衡。 第二节 固氮作用 1、大气固氮:闪电和紫外辐射固定氮约占总固氮量的15%。 2、工业固氮:氮气中的氮氮三键十分稳定,1910年提出的作用条件在工业氮肥生产中一直沿用至今。500?高温和30MPa条件下,用铁做催化剂使氢气还 原氮气成氨。约占总固氮量的25%。 3、生物固氮:是微生物、藻类和与高等植物共生的微生物通过自身的固氮酶复合物把分子变成氨的过程。自然界通过生物固氮的量可达每年100亿公斤。约占地球上的固氮量的60%。 固氮生物的类型有自生固氮微生物和共生固氮微生物。前者如鱼腥藻、念球藻,利用光能还原氮气,好气性固氮菌利用化学能固氮;后者如与豆科植物共生固氮的根瘤菌,其专一性强,不同的菌株只能感染一定的植物,形成共生的根瘤。在根瘤中植物为固氮菌提供碳源,而细菌利用植物提供的能源固氮,为植物提供氮源,形成一个很好的互利共生体系。 生物固氮所需条件:一是有充分的ATP供应,二是需要很强的还原剂,三是需要厌氧环境。 第三节 氨基酸的生物合成 1、丙氨酸族 包括丙氨酸、缬氨酸、亮氨酸。它们共同碳架来源是糖酵解生成的丙酮酸。 2、丝氨酸族 包括丝氨酸、甘氨酸、半胱氨酸。 3、谷氨酸族 包括谷氨酸、谷氨酰胺、脯氨酸、精氨酸。它们的碳架都是来自三羧酸循环的中间产物ɑ,酮戊二酸。 4、天冬氨酸族 包括天冬氨酸、天冬酰胺、赖氨酸、苏氨酸、异亮氨酸和蛋氨酸。它们的碳架都三羧酸循环的中间产物草酰乙酸或延胡索酸。 5、组氨酸和芳香氨基酸族 包括组氨酸、酪氨酸、色氨酸和苯丙氨酸。 第四节 个别氨基酸的代谢 由于每一个氨基酸的碳链部分的结构不同,因此除上述一般代谢途径外, 尚有其特殊的代谢途径,一般讲,非必需氨基酸较简单,而必需氨基酸较复杂。现分四类加以讨论:一碳单位、含硫氨基酸、支链氨基酸、芳香族氨基酸。 一、碳单位的代谢 (一) 概念 机体在合成嘌呤、嘧啶、肌酸、胆碱等化合物时,需要某些氨基酸的参 这些氨基酸可提供含一个碳原子的有机基团,称为一碳单位 与,(one carbon group)或一碳基团。体内的一碳单位有五种:甲基(-CH,methyl), 甲烯基3 (-CH-,methylene), 甲炔基(-C=,methemyl), 甲酰基(-CHO,formyl)和亚氨甲2 基(-CH=NH,forminino)。 凡是这种涉及到一个碳原子有机基团的转移和代谢的反应,统称为一碳单位代谢。一碳单位不能以游离形式存在,常与四氢叶酸(tetrahydrofolic acid,FH)结合在一起转运,参与代谢。因此,FH是一碳单位的载体,也可44 以看作是一碳单位代谢的辅酶。一碳单位与FH结合后成为活性一碳单位,参4 与代谢,尤其在核酸的生物合成中占重要地位。一碳单位与FH结合的位点在4 510FH的N和N上。 4 (二) 来源及互变 一碳单位来自丝氨酸、甘氨酸、甲硫氨酸、色氨酸和组氨酸的分解代谢。 510甘氨酸在甘氨酸裂解酶系催化下裂解生成N,N-甲烯四氢叶酸、NH和3CO等。 2 5甲硫氨酸的甲基可以转移到FH上生成N-CHFH,不过FH并非活性甲基4344的惟一载体,体内更重要的活性甲基载体是S-腺苷甲硫氨酸(S-adenosyl-methionine,SAM)。 一碳单位不仅是甲硫氨酸合成时甲基的供给者,更重要的是合成嘌呤的原料之一。故一碳单位在核酸生物合成中占有重要地位。正如乙酰辅酶A在联 系糖、脂和蛋白质代谢中所起的枢纽作用一样,一碳单位在氨基酸和核酸代谢方面起重要的联接作用。 二、含硫氨基酸的代谢 (一) 甲硫氮酸和转甲基作用 甲硫氨酸是体内重要的甲基供体,但必须先转变成它的活性形式SAM,才能供给甲基。已知体内约有50多种物质需要SAM提供甲基,生成甲基化合物,如;SAM在体内参与合成许多重要的甲基化合物肌酸、肾上腺素、胆碱等。核酸或蛋白质通过甲基化进行修饰,可以影响它们的功能。此外,一些活性物质经甲基化后,又可消除其活性或毒性,是生物转化的一种重要反应,因此,甲基化作用不仅是重要的代谢反应,更具有广泛的生理意义,而SAM则是体内最重要的甲基直接供体。 5甲硫氨酸是必需氨基酸,虽然在体内同型半胱氨酸得到从N—甲基FH4所携带的甲基后可以生成甲硫氨酸,但体内并不能合成同型半胱氨酸,它只能由甲硫氨酸转变而来,故甲硫氨酸必须由食物供给。不过通过甲硫氨酸循环可以使甲硫氨酸在供给甲基时得以重复利用,起了节约一部分甲硫氨酸的 5作用。从甲硫氨酸循环可见,N-甲基FH可看成是体内甲基的间接供体。4 5甲硫氨酸循环的生理意义是甲硫氨酸的再利用。在此反应中,因N-甲基 5FH同型半胱氨酸转甲基酶的辅酶是甲基维生素B,故维生素B缺乏时,N-41212甲基FH的甲基不能转移,不仅影响了甲硫氨酸的合成,同时由于已结合了甲4 基的FH不能游离出来,无法重新利用以转运一碳单位,如此,可导致DNA合4 成障碍,影响细胞分裂,最终可能引起巨幼红细胞贫血。 在体内, 甲硫氨酸还参与了肌酸的合成, 后者和ATP反应生成的磷酸肌酸是体内ATP 的储存形式。 (二) 半胱氨酸及胱氨酸的代谢 1、半胱氨酸含巯基(-SH),胱氨酸含二硫键(-S-S-)。两分子半胱氨酸 可氧化生成胱氨酸,胱氨酸亦可还原成半胱氨酸。两个半胱氨酸分子间所形成的二硫键在维持蛋白质构象中起着很重要的作用。在蛋白质化学一章中已述及,体内许多重要的酶,如乳酸脱氢酶、琥珀酸脱氢酶等都有赖于分子中半胱氨酸残基上的巯基以现其活性,故有巯基酶之称,某些毒物,如重金 2+2+属离子Pb、Hg等均能和酶分子上的巯基结合而抑制酶活性,从而发挥其毒性作用。二硫基丙醇可使已被毒物结合的巯基恢复原状,具有解毒功能。 2、半胱氨酸可经氧化、脱羧生成牛磺酸,是结合胆汁酸的组成成分。 3、谷胱甘肽(glutathione,GSH)是由谷氨酸分子中的 -羧基与半胱氨酸及甘氨酸在体内合成的三肽,它的活性基团是半胱氨酸残基上的巯基。GSH有还原型和氧化型两种形式可以互变。 GSH在维持细胞内巯基酶的活性和使某些物质处于还原状态(例如使高铁血红蛋白还原成血红蛋白)时本身被氧化成GS-SG,后者可由细胞内存在的谷胱甘肽还原酶使之再还原成GSH,NADPH为其辅酶。 此外,红细胞中的GSH还和维持红细胞膜结构的完整性有关,若GSH显著降低则红细胞易破裂。 在细胞内,GSH,GS-SG的比例一般维持在100,1左右。 4、半胱氨酸在体内进行分解代谢可以直接脱去巯基和氨基,产生丙酮酸、氨和硫化氢,硫化氢被迅速氧化成硫酸根。在体内生成的硫酸根,一部分可以无机硫酸盐形式随尿排出,一小部分则可经活化转变成“活性硫酸根”,即3'-磷酸腺苷5'-磷(3'—phosphoadenosine-5'phosphosulfate,PAPS),这一转变过程需要ATP的参与。 PAPS性质活泼,可以提供硫酸根与某些物质合成硫酸酯,例如;类固醇激素可形成硫酸酯形式而被灭活。PAPS还可参与硫酸软骨素的合成。 三、支链氨基酸的代谢 支链氨基酸包括缬氨酸、亮氨酸和异亮氨酸,它们都是必需氨基酸,均主要在肌肉、脂肪、肾、脑等组织中降解。因为在这些肝外组织中有一种作用于此三个支链氨基酸的转氨酶,而肝中却缺乏。在摄入富含蛋白质的食物后,肌肉组织大量摄取氨基酸,最明显的就是摄取支链氨基酸。支链氨基酸在氮的代谢中起着特殊的作用,如在禁食状态下,它们可给大脑提供能源。支链氨基酸降解的第一步是转氨基, -酮戊二酸是氨基的受体。缬、亮、异亮氨基酸转氨后各生成相应的,-酮酸,此后,在支链,-酮酸脱氢酶系的催化下氧化脱羧生成各自相应的酰基CoA的衍生物,反应类似于丙酮酸和,-酮戊二酸的氧化脱羧。 肌肉组织中的,-酮戊二酸在接受支链氨基酸的氨基后转变成谷氨酸,然后谷氨酸又可与肌肉中的丙酮酸经转氨作用又回复生成,-酮戊二酸和丙氨酸,丙氨酸经血液运送至肝脏参与尿素合成和糖异生作用,即参加葡萄糖-丙氨酸循环。 四、芳香族氨基酸的代谢 芳香族氨基酸包括苯丙氨酸、酪氨酸和色氨酸。 (一)苯丙氨酸及酪氨酸的代谢 苯丙氨酸和酪氨酸的结构相似。苯丙氨酸在体内经苯丙氨酸羟化酶(phenylalanine hydroxylase)催化生成酪氨酸,然后再生成一系列代谢产物。 苯丙氨酸羟化酶存在于肝脏,是一种混合功能氧化酶,该酶催化苯丙氨酸氧化生成酪氨酸,反应不可逆,亦即酪氨酸不能还原生成苯丙氨酸,因此,苯丙氨酸是必需氨基酸而酪氨酸是非必需氨基酸。 若苯丙氨酸羟化酶先天性缺失,则苯丙氨酸羟化生成酪氨酸这一主要代谢途径受阻,于是大量的苯丙氨酸走次要代谢途径,即转氨生成苯丙酮酸, 导致血中苯丙酮酸含量增高,并从尿中大量排出,这即是苯丙酮酸尿症(phenylketonuria,PKU),苯丙酮酸的堆积对中枢神经系统有毒性,使患儿智力发育受障碍,这是氨基酸代谢中最常见的一种遗传疾病,其发病率约为8,10,10万,患儿应及早用低苯丙氨酸膳食治疗。PKU现在已可进行产前基因诊断。 酪氨酸的进一步代谢涉及到某些神经递质、激素及黑色素的合成。如酪氨酸是合成儿茶酚胺类激素(去甲肾上腺素和肾上腺素)及甲状腺素的原料。 酪氨酸在体内可以合成黑色素,若合成过程中的酶系先天性缺失则不能合成黑色素,黑色素合成障碍,皮肤、毛发等发白,称为白化病(albnism),发病率约为3,10万。 酪氨酸还可转氨生成对羟苯丙酮酸,再转变成尿黑酸,最后氧化分解生成乙酰乙酸和延胡索酸,所以酪氨酸和苯丙氨酸都是生糖兼生酮氨基酸。若有关尿黑酸氧化的酶系先天性缺失,则尿黑酸堆积,使排出的尿迅速变黑,出现尿黑酸症(alkaptonuria),此遗传疾病较罕见,发病率约仅为0(4,10万。 (二)色氮酸的代谢 色氨酸的降解途径是所有氨基酸中最复杂的。此外,它的某些降解中间产物又是合成一些重要生理物质的前身,如尼克酸(这是合成维生素的特例)、5-羟色胺等。 上述芳香族氨基酸降解的两种主要酶:苯丙氨酸羟化酶和色氨酸吡咯酶,都主要存在于肝脏,所以当患有肝脏严重疾病时,芳香族氨基酸的分解代谢受阻,使之在血液中的含量升高,此时应严格限制食物或补液中的芳香族氨基酸含量且多补充支链氨基酸。
/
本文档为【氨基酸的生物合成[试题]】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索