为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > 基于单片机的电阻、电容、电感测试仪

基于单片机的电阻、电容、电感测试仪

2012-08-18 50页 doc 5MB 158阅读

用户头像

is_808969

暂无简介

举报
基于单片机的电阻、电容、电感测试仪你好 基于单片机的电阻、电容、电感测试仪_毕业论文 摘 要 随着电子工业的发展,电子元器件急剧增加,电子元器件的适用范围也逐渐广泛起来,在应用中我们常常要测定电阻,电容,电感的大小。因此,设计可靠,安全,便捷的电阻,电容,电感测试仪具有极大的现实必要性。 在系统硬件设计中,以MCS-51单片机为核心的电阻、电容、电感测试仪,将电阻,电容,电感,使用对应的振荡电路转化为频率实现各个参数的测量。其中电阻和电容是采用555多谐振荡电路产生的,而电感则是根据电容三点式产生的,将振荡频率送入AT89C52的计数端端,通过定时并且计...
基于单片机的电阻、电容、电感测试仪
你好 基于单片机的电阻、电容、电感测试仪_毕业论文 摘 要 随着电子工业的发展,电子元器件急剧增加,电子元器件的适用范围也逐渐广泛起来,在应用中我们常常要测定电阻,电容,电感的大小。因此,设计可靠,安全,便捷的电阻,电容,电感测试仪具有极大的现实必要性。 在系统硬件设计中,以MCS-51单片机为核心的电阻、电容、电感测试仪,将电阻,电容,电感,使用对应的振荡电路转化为频率实现各个参数的测量。其中电阻和电容是采用555多谐振荡电路产生的,而电感则是根据电容三点式产生的,将振荡频率送入AT89C52的计数端端,通过定时并且计数可以计算出被测频率,再通过该频率计算出被测参数。 在系统的软件设计是以Keil51为仿真平台,使用C语言与汇编语言混合编程编写了系统应用软件;包括主程序模块、显示模块、电阻测试模块、电容测试模块和电感测试模块。 最后,实际制作了一台样机,在实验室里进行了测试,结果表明该样机的功能和指标得到了设计要求。 关键词:单片机,555多谐振荡电路,LED动态显示模块,电容三点式振荡 ABSTRACT With the development of electronic industry,electronic components rapidly increased the scope of electronic components widely up gradually,in applications we often measured resistors,capacitors,inductors size. Therefore,the design of reliable,safe,convenient resistance,capacitance,inductance tester of great practical necessity. In the system hardware design,take the MCS-51 monolithic integrated circuit as the core resistance,the electric capacity,the inductance reflectoscope reflector,the resistance,the electric capacity,the inductance,the use correspondence's oscillating circuit transforms for the frequency realizes each parameter survey.And the resistance and the electric capacity are use 555 multiresonant circuits to produce,but the inductance is produces according to the electric capacity bikini,the oscilation frequency will send AT89C52 the counting to be neat,through and fixed time counts may calculate by the frequency measurement rate,figures out again through this frequency meter is measured the parameter. In system's software design is take Keil51 as the simulation platform,used the C language and the assembly language mix programming has compiled the system application software;including master routine module,display module,resistance test module,electric capacity test module and inductance test module. Finally,the actual production of a prototype,tested in the laboratory results show that the prototype of the functions and indicators are the design requirements. KEY WORDS: Single slice of machine,555 resonance swings circuit,LED dynamic display module,Capacitance three-point shock 目 录 11 前言 11.1 设计的背景及意义 11.2 电阻、电容、电感测试仪的发展历史及研究现状 31.3 本设计所做的工作 31.4 本论文的结构安排 52 电阻、电容、电感测试仪的系统设计 52.1 电阻、电容、电感测试仪设计比较 52.2 系统的原理框图 73 电阻、电容、电感测试仪的系统硬件设计 73.1 MCS-51单片机电路的设计 93.2 LED数码管电路与键盘电路的设计 133.3 测量电阻、电容电路的设计 133.3.1 555定时器简介 153.3.2 测量电阻电路的设计 163.3.3 测量电容电路的设计 173.4 测量电感电路的设计及仿真 173.4.1 测量电感电路的设计 183.4.2 测量电感电路的仿真 203.5 多路选择开关电路的设计 224 电阻、电容、电感测试仪的软件设计 224.1 I/O口的分配 224.2 主程序流程图 244.3 频率参数计算的原理 265 PCB板的设计与系统的调试 265.1 PROTEL99SE的介绍与PCB板的设计 285.2 系统调试与系统测试 285.2.1 系统软件调试 285.2.2 系统硬件调试 325.2.3 系统测试 346 结论与展望 36致谢 37参考文献 38附录 38附录一 系统原理图及PCB 40附录二 源程序 1 前言 1.1 设计的背景及意义 目前,随着电子工业的发展,电子元器件急剧增加,电子元器件的适用范围也逐渐广泛起来,在应用中我们常常要测定电阻,电容,电感的大小。因此,设计可靠,安全,便捷的电阻,电容,电感测试仪具有极大的现实必要性。 通常情况下,电路参数的数字化测量是把被测参数传换成直流电压或频率后进行测量。 电阻测量依据产生恒流源的方法分为电位降法、比例运算器法和积分运算器法。比例运算器法测量误差稍大,积分运算器法适用于高电阻的测量。 传统的测量电容方法有谐振法和电桥法两种。前者电路简单,速度快,但精度低;后者测量精度高,但速度慢。随着数字化测量技术的发展,在测量速度和精度上有很大的改善,电容的数字化测量常采用恒流法和比较法。 电感测量可依据交流电桥法,这种测量方法虽然能较准确的测量电感但交流电桥的平衡过程复杂,而且通过测量Q值确定电感的方法误差较大,所以电感的数字化测量常采用时间常数发和同步分离法。 由于测量电阻,电容,电感方法多并具有一定的复杂性,所以本次设计是在参考555振荡器基础上拟定的一套自己的设计方案。是尝试用555振荡器将被测参数转化为频率,这里我们将RLC的测量电路产生的频率送入AT89C52的计数端端,通过定时并且计数可以计算出被测频率再通过该频率计算出各个参数。 1.2 电阻、电容、电感测试仪的发展历史及研究现状 当今电子测试领域,电阻,电容和电感的测量已经在测量技术和产品研发中应用的十分广泛。 电阻、电容和电感测试发展已经很久,方法众多,常用测量方法如下。电阻测量依据产生恒流源的方法分为电位降法、比例运算器法和积分运算器法。比例运算器法测量误差稍大,积分运算器法适用于高电阻的测量。传统的测量电容方法有谐振法和电桥法两种。前者电路简单,速度快,但精度低;后者测量精度高,但速度慢。随着数字化测量技术的发展,在测量速度和精度上有很大的改善,电容的数字化测量常采用恒流法和比较法。电感测量可依据交流电桥法,这种测量方法虽然能较准确的测量电感但交流电桥的平衡过程复杂,而且通过测量Q值确定电感的方法误差较大,所以电感的数字化测量常采用时间常数发和同步分离法。 在我国1997年05月21日中国航空工业总公司研究出一种电阻、电容、电感在线测量方法及装置等电位隔离方法,用于对在线的电阻、电容、电感元件实行等电位隔离,其特征在于,(1)将一个运算放大器的输出端与其反相输入端直接连接,形成一个电压跟随器;(2)将基准精密电阻(R)的一端与被隔离的在线元件(Z↓[x])的一端通过导线连接,基准精密电阻(R)的另一端与信号源(V↓[i])或者地连接,被隔离的在线元件(Z↓[x])的另一端通过导线与地或者信号源(V↓[i])连接,基准精密电阻(R)与被隔离的在线元件(Z↓[x])连接的一端同时与运算放大器的同相输入端连接;(3)通过导线将运算放大器的输出端与线路板上所有的隔离点(C)连接,隔离点(C)的确定方法是:在线路板上凡是与被隔离的在线元件(Z↓[x])靠近信号源(V↓[i])的一端(A)相连的电阻、电容、电感元件的另一端均为隔离端(C)。 中国本土测量仪器设备发展的主要瓶颈。尽管本土测试测量产业得到了快速发展,但客观地说中国开发测试测量仪器还普遍比较落后。每当提起中国测试仪器落后的原因,就会有许多不同的说法,诸如精度不高,外观不好,可靠性差等。实际上,这些都还是表面现象,真正影响中国测量仪器发展的瓶颈为: 1.测试在整个产品流程中的地位偏低。由于人们的传统观念的影响,在产品的制造流程中,研发始终处于核心位置,而测试则处于从属和辅助位置。关于这一点,在几乎所有的研究机构部门配置上即可窥其一斑。这种错误观念上的原因,造成整个社会对测试的重视度不够,从而造成测试仪器方面人才的严重匮乏,造成相关的基础科学研究比较薄弱,这是中国测量仪器发展的一个主要瓶颈。实际上,即便是研发队伍本身,对测试的重视度以及对仪器本身的研究也明显不够。 2.面向应用和现代市场营销模式还没有真正建立起来。本土仪器设备厂商只是重研发,重视生产,重视狭义的市场,还没有建立起一套完整的现代营销体系和面向应用的研发模式。传统的营销模式在经济年代里发挥过很大作用,但无法满足目前整体解方案流行年代的需求。所以,为了快速缩小与国外先进公司之间的差距,国内仪器研发企业应加速实现从面向仿制的研发向面向应用的研发的过渡。特别是随着国内应用需求的快速增长,为这一过渡提供了根本动力,应该利用这些动力,跟踪应用技术的快速发展。 3.缺乏标准件的材料配套体系。由于历史的原因,中国仪器配套行业的企业多为良莠不齐的小型企业,标准化的研究也没有跟上需求的快速发展,从而导致仪器的材料配套行业的技术水平较低。虽然目前已有较大的改观,但距离整个产业的要求还有一定距离。所以,还应把标准化和模块化的研究放到重要的位置。还有,在技术水平没有达到的条件下,一味地追求精度或追求高指标,而没有处理好与稳定性之间的关系。上述这些都是制约本土仪器发展的因素。 近年来我国测量仪器的可靠性和稳定性问题得到了很多方面的重视,状况有了很大改观。测试仪器行业目前已经越过低谷阶段,重新回到了快速发展的轨道,尤其最近几年,中国本土仪器取得了长足的进步,特别是通用电子测量设备研发方面,与国外先进产品的差距正在快速缩小,对国外电子仪器巨头的垄断造成了一定的冲击。随着模块化和虚拟技术的发展,为中国的测试测量仪器行业带来了新的契机,加上各级政府日益重视,以及中国自主应用标准研究的快速进展,都在为该产业提供前所未有的动力和机遇。从中国电子信息产业统计年鉴中可以看出,中国的测试测量仪器每年都以超过30%以上的速度在快速增长。在此快速增长的过程中,无疑催生出了许多测试行业新创企业,也催生出了一批批可靠性和稳定性较高的产品。 1.3 本设计所做的工作 本设计是以555为核心的振荡电路,将被测参数模拟转化为频率,并利用单片机实现计算频率,所以,本次设计需要做好以下工作: (1)学习单片机原理等资料。 (2)学习PROTEL99E, KEL3.0等工具软件的使用方法。 (3)设计测量电阻,电容,电感的振荡电路。 (4)设计测量LED动态显示电路。 (5)设计测量频率程序,设置程序。 (6)用PROTEL软件绘制电原理图和印刷电路版图。 (7)安装和调试,并进行实际测试,记录测试数据和结果。 (8)撰写毕业论文。 (9)完成英文翻译。 1.4 本论文的结构安排 本论文的结构安排为:第1章 前言,第2章 电阻、电容、电感测试仪的系统设计,第3章 电阻、电容、电感测试仪的系统硬件设计,第4章 电阻、电容、电感测试仪的软件设计,第5章 PCB板的设计与系统的调试,第六章 结论与展望。 2 电阻、电容、电感测试仪的系统设计 2.1 电阻、电容、电感测试仪设计方案比较 电阻、电容、电感测试仪的设计可用多种方案完成,例如利用模拟电路,电阻可用比例运算器法和积分运算器法,电容可用恒流法和比较法,电感可用时间常数发和同步分离法等、使用可编程逻辑控制器(PLC)、振荡电路与单片机结合或CPLD与EDA相结合等等来实现。在设计前对各种方案进行了比较: 1)利用纯模拟电路 虽然避免了编程的麻烦,但电路复杂,所用器件较多,灵活性差,测量精度低,现在已较少使用。 2)可编程逻辑控制器(PLC) 应用广泛,它能够非常方便地集成到工业控制系统中。其速度快,体积小,可靠性和精度都较好,在设计中可采用PLC对硬件进行控制,但是用PLC实现价格相对昂贵,因而成本过高。 3)采用CPLD或FPGA实现 应用目前广泛应用的VHDL硬件电路描述语言,实现电阻,电容,电感测试仪的设计,利用MAXPLUSII集成开发环境进行综合、仿真,并下载到CPLD或FPGA可编程逻辑器件中,完成系统的控制作用。但相对而言规模大,结构复杂。 4)利用振荡电路与单片机结合 利用555多谐振荡电路将电阻,电容参数转化为频率,而电感则是根据电容三点式电路也转化为频率,这样就能够把模拟量近似的转换为数字量,而频率f是单片机很容易处理的数字量,一方面测量精度高,另一方面便于使仪表实现自动化,而且单片机构成的应用系统有较大的可靠性。系统扩展、系统配置灵活。容易构成各种规模的应用系统,且应用系统有较高的软、硬件利用系数。单片机具有可编程性,硬件的功能描述可完全在软件上实现,而且设计时间短,成本低,可靠性高。 综上所述,利用振荡电路与单片机结合实现电阻、电容、电感测试仪更为简便可行,节约成本。所以,本次设计选定以单片机为核心来进行。 2.2 系统的原理框图 本设计中,考虑到单片机具有物美价廉、功能强、使用方便灵活、可靠性高等特点,拟采用MCS - 51系列的单片机为核心来实现电阻、电容、电感测试仪的控制。系统分四大部分:测量电路、控制电路、通道选择和显示电路。通过P1.3和P1.4向模拟开关送两位地址信号,取得相应的振荡频率,然后根据所测频率判断是否转换量程,或者是把数据进行处理后,得出相应的参数值。系统设计框图如图2-1如下所示。 图2-1 系统设计框图 框图各部分说明如下: 1)控制部分:本设计以单片机为核心,采用89C51单片机,利用其管脚的特殊功能以及所具备的中断系统,定时/计数器和LED显示功能等。LED灯:本设计中,设置了1盏电源指示灯,采用红色的LED以共阳极方式来连接,直观易懂,操作也简单。数码管显示:本设计中有1个74HC02、2个74LS573、1个2803驱动和6个数码管,采用共阳极方式连接构成动态显示部分,降低功耗。键盘:本设计中有Sr,Sc,SL三个按键,可灵活控制不同测量参数的切换,实现一键测量。 2)通道选择:本设计通过单片机控制CD4052模拟开关来控制被测频率的自动选择。 3)测量电路:RC震荡电路是利用555振荡电路实现被测电阻和被测电容频率化。电容三点式振荡电路是利用电容三点式振荡电路实现被测电感参数频率化。通过51单片机的IO口自动识别量程切换,实现自动测量。 3 电阻、电容、电感测试仪的系统硬件设计 3.1 MCS-51单片机电路的设计 在本设计中,考虑到单片机构成的应用系统有较大的可靠性,容易构成各种规模的应用系统,且应用系统有较高的软、硬件利用系数。还具有可编程性,硬件的功能描述可完全在软件上实现。另外,本设计还需要利用单片机的定时计数器、中断系统、串行接口等等,所以,选择以单片机为核心进行设计具有极大的必要性。在硬件设计中,选用MS-51系列单片机,其各个I/O口分别接有按键、LED灯、七位数码管等,通过软件进行控制。 MCS-51单片机包含中央处理器、程序存储器(ROM)、数据存储器(RAM)、定时/计数器、并行接口、串行接口和中断系统等几大单元,以及数据总线、地址总线和控制总线等三大总线,现在分别加以说明: 1)中央处理器: 中央处理器(CPU)是整个单片机的核心部件,是8位数据宽度的处理器,能处理8位二进制数据或代码,CPU负责控制、指挥和调度整个单元系统协调的工作,完成运算和控制输入输出功能等操作。 2)数据存储器(RAM): 内部有128个8位用户数据存储单元和128个专用寄存器单元,它们是统一编址的,专用寄存器只能用于存放控制指令数据,用户只能访问,而不能用于存放用户数据,所以,用户能使用的RAM只有128个,可存放读写的数据,运算的中间结果或用户定义的字型表。 3)程序存储器(ROM): 共有4096个8位掩膜ROM,用于存放用户程序,原始数据或表格。 4)定时/计数器(ROM): 有两个16位的可编程定时/计数器,以实现定时或计数产生中断用于控制程序转向。 5)并行输入输出(I/O)口: 共有4组8位I/O口(P0、 P1、P2或P3),用于对外部数据的传输。 6)全双工串行口: 内置一个全双工串行通信口,用于与其它设备间的串行数据传送,该串行口既可以用作异步通信收发器,也可以当同步移位器使用。 7)中断系统: 具备较完善的中断功能,有两个外中断、两个定时/计数器中断和一个串口中断,可满足不同的控制要求,并具有2级的优先级别选择。 8)时钟电路: 内置最高频率达12MHz的时钟电路,用于产生整个单片机运行的脉冲时序。 本设计中单片机的设计电路如下图3-1所示: 图3-1 单片机的设计电路 本电路使用单片机内部振荡器,11.0592MHz的晶体谐振器直接接在单片机的时钟端口X1和X2,电路中C2、C3为振荡器的匹配电容。该电路简单,工作可靠 。另外本系统的容阻上电复位,就是利用RC电路的充电过程来给单片机复位。RC电路的时间常数计算公式: T=RC (3-1) 即:T=RC=10u*10k=100ms。当需要复位时,也可以按下复位按键,进行复位。 3.2 LED数码管电路与键盘电路的设计 在电阻、电容、电感测试系统中,用LED灯来显示测量参数的类别和电源指示,既简单又显而易见。 与小白炽灯泡和氖灯相比,LED的特点是:工作电压很低(有的仅一点几伏);工作电流很小(有的仅零点几毫安即可发光);抗冲击和抗震性能好,可靠性高,寿命长;通过调制通过的电流强弱可以方便地调制发光的强弱。由于有这些特点,发光二极管在一些光电控制设备中常常用作光源。在本设计中,利用单片机的P1.0、P1.1和P1.2口直接和发光二极管相连接,控制程序放在 MCS-51单片机的ROM中。由于测试指示灯为发光二极管且阳极通过限流电阻与电源正极相接,所以为共阳极。因此 I/0口输出低电平时,与之相连的相应指示灯会亮;I/0口输出高电平时,相应的指示灯会灭。发光二极管的接口电路如图3-2所示: 图3-2 发光二极管的接口电路 发光二极管的设计中,每个二极管与单片机接口间有一个电阻,其阻值至少为180欧。按3.3V时的工作电流15mA来计算,需要让与之串联的电阻,分去VCC 5V电压中的2.7V电压,则得到R=U/I=2.7V/0.015A=180欧,且电阻的功率为P=UI=2.7V*0.015A=0.041W。 另外,在本设计中,LED应用于七位数码管中,实现了被测参数的显示,七位数码管以共阴极的方式经过74LS573锁存器与单片机的P0口相连。六位数码管显示被测参数的示值从左到右依次代表十万、万、千、百、十和个位,这样显示结果更为简单可行。 数码管要正常显示,就要用驱动电路来驱动数码管的各个段码,从而显示出我们要的数字,因此根据数码管的驱动方式的不同,可以分为静态式和动态式两类。 1)静态显示驱动:静态驱动也称直流驱动,静态驱动是指每个数码管的每一个段码都由一个单片机的I/O端口进行驱动,或者使用如BCD码二-十进制译码器译码进行驱动。静态驱动使编程简单,显示亮度高。 2)动态显示驱动:数码管动态显示接口是单片机中应用最为广泛的一种显示方式之一,动态驱动是将所有数码管的8个显示笔划"a,b,c,d,e,f,g,dp"的同名端连在一起,另外为每个数码管的公共极COM增加位选通控制电路,位选通由各自独立的I/O线控制,当单片机输出字形码时,所有数码管都接收到相同的字形码,但究竟是那个数码管会显示出字形,取决于单片机对位选通COM端电路的控制,所以我们只要将需要显示的数码管的选通控制打开,该位就显示出字形,没有选通的数码管就不会亮。通过分时轮流控制各个数码管的COM端,就使各个数码管轮流受控显示,这就是动态驱动。在轮流显示过程中,每位数码管的点亮时间为1~2ms,由于人的视觉暂留现象及发光二极管的余辉效应,尽管实际上各位数码管并非同时点亮,但只要扫描的速度足够快,给人的印象就是一组稳定的显示数据,不会有闪烁感,动态显示的效果和静态显示是一样的,能够节省大量的I/O端口,而且功耗更低。 经过对两种显示方式的比较分析:静态方式需要大量I/O,而动态扫描显示方式能够节省大量的I/O口,且电路结构也比较简单,显示效果良好,因此最终采用动态扫描显示方式。 系统核心电路(AT89S52最小系统)的P0口以总线方式与二片数据锁存器(74HC573)相连接,二片74HC573的片选使能端(LE)分别连接在或非门(74HC02)的1、4管脚,三个或非门相类似,都是两个输入端的其中一端接在单片机的16管脚(WR),而另一端分别接在P2.5~P2.6。单片机片选电路如图3-3所示。 图3-3 单片机片选电路 或非门片选电路分析:当单片机通过P0口总线输出数据时,16管脚(WR)为低电平“0”,片选信号端P2.5~P2.7中,要被片选端为“0”,其它为“1”,这样三个或非门中,只有需要片选中或非门的输出为高电平“1”,其它两个或非门的输出信号为低电平“0”。另外,74HC573数据锁存器的LE使能端为高电平有效,与之前电路结合可以实现片选功能。 在本设计中,LED显示接口电路如下图3-4所示: 图3-4 LED显示接口电路 电路由6个共阴极数码管、两个74HC573和一个ULN2803组成。 两个74HC573分别作为段码和位码的数据锁存器,它们的片选信号来自最小系统AT89S52的P2.5和P2.6,由此可以计算出它们的片选地址:段码片选地址为[C000H~DFFFH],位码片选地址为[A000H~BFFFH]。 ULN2803是达林顿管,在电路中能起到大电流输出和高压输出的作用。由于电路使用的是共阴极动态显示方式,ULN2803在位码数据锁存器后连接八个数码管的COM端,可以增强驱动数码管的能力,使数码管的显示效果更好。 本设计中设置了Sr,Sc,SL三个按键,利用单片机的P1.0、P1.1和P1.2口直接和按键相连接,控制程序放在 MCS-51单片机的ROM中用于启动各个被测参数程序的调整。见图3-5按键电路所示 图3-5 按键电路 控制R、L、C的三个按键接入一个10K大小的上拉电阻,起限流保护作用。当有键按下时为低电平,无键按下时则为高电平。 3.3 测量电阻、电容电路的设计 3.3.1 555定时器简介 555定时器是一种模拟电路和数字电路相结合的中规模集成器件,它性能优良,适用范围很广,外部加接少量的阻容元件可以很方便地组成单稳态触发器和多谐振荡器,以及不需外接元件就可组成施密特触发器。因此集成555定时被广泛应用于脉冲波形的产生与变换、测量与控制等方面。 1)555定时器内部结构 555定时器是一种模拟电路和数字电路相结合的中规模集成电路,其内部结构如图3-6(A)部分及管脚排列如图(B)部分所示。 图3-6 定时器内部结构 它由分压器、比较器、基本R--S触发器和放电三极管等部分组成。分压器由三个5KΩ的等值电阻串联而成。分压器为比较器A1、A2提供参考电压,比较器A1的参考电压为,加在同相输入端,比较器A2的参考电压为,加在反相输入端。比较器由两个结构相同的集成运放A1、A2组成。高电平触发信号加在A1的反相输入端,与同相输入端的参考电压比较后,其结果作为基本R--S触发器端的输入信号;低电平触发信号加在A2的同相输入端,与反相输入端的参考电压比较后,其结果作为基本R--S触发器端的输入信号。基本R--S触发器的输出状态受比较器A1、A2的输出端控制。 2)多谐振荡器工作原理 由555定时器组成的多谐振荡器如图3-7(C)部分所示,其中R1、R2和电容C为外接元件。其工作波如图(D)部分所示。 图3-7 震荡器工作原理 设电容的初始电压Uc=0,t=0时接通电源,由于电容电压不能突变,所以高、低触发端VTH=VTL=0 QUOTE ,比较器A1输出为高电平,A2输出为低电平,即=1,=0(1表示高电位,0表示低电位),R--S触发器置1,定时器输出u0=1此时,定时器内部放电三极管截止,电源Vcc经R1,R2向电容C充电,uc逐渐升高。当uc上升到时,A2输出由0翻转为1,这时==1,R--S触发顺保持状态不变。所以0报表
。 (2)印刷电路板设计系统(Advanced PCB 99):印刷电路板设计系统包括印刷电路板编辑器(简称PCB编辑器)、零件封装编辑器(简称PCBLib编辑器)和电路板组件管理器。本系统的主要功能是:绘制、修改和编辑电路板;更新和修改零件封装;管理电路板组件。 (3)自动布线系统(Advanced Route 99):本系统包含一个基于形状(Shape-based)的无栅格自动布线器,用于印刷电路板的自动布线,以实现PCB设计的自动化。 2、电路仿真与PLD部分 (1)电路模拟仿真系统(Advanced SIM 99):电路模拟仿真系统包含一个数字/模拟信号仿真器,可提供连续的数字信号和模拟信号,以便对电路原理图进行信号模拟仿真,从而验证其正确性和可行性。 (2)可编程逻辑设计系统(Advanced PLD 99):可编程逻辑设计系统包含一个有语法功能的文本编辑器和一个波形编辑器(Waveform)。本系统的主要功能是;对逻辑电路进行分析、综合;观察信号的波形。利用PLD系统可以最大限度的精简逻辑部件,使数字电路设计达到最简化。 (3)高级信号完整性分析系统(Advanced Integrity 99):信号完整性分析系统提供了一个精确的信号完整性模拟器,可用来分析PCB设计、检查电路设计参数、实验超调量、阻抗和信号谐波要求等。 二、Protel 99 SE的功能特性 1、开放式集成化的设计管理体系 2、超强功能的、修改与编辑功能 3、强大的设计自动化功能 本设计中,PCB的设计如图5-1所示: 图5-1 PCB板的设计电路 5.2 系统调试与系统测试 5.2.1 系统软件调试 单片机开发中除必要的硬件外,同样离不开软件,汇编语言源程序要变为CPU可以执行的机器码有两种方法,一种是手工汇编,另一种是机器汇编,目前已极少使用手工汇编的方法了。机器汇编是通过汇编软件将源程序变为机器码,用于MCS-51单片机的汇编软件有早期的A51,随着单片机开发技术的不断发展,从普遍使用汇编语言到逐渐使用高级语言开发,单片机的开发软件也在不断发展,Keil软件是目前最流行开发MCS-51系列单片机的软件,这从近年来各仿真机厂商纷纷宣布全面支持Keil即可看出。Keil提供了包括C编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(uVision)将这些部份组合在一起。运行Keil软件需要Pentium或以上的CPU,16MB或更多RAM、20M以上空闲的硬盘空间、WIN98、NT、WIN2000、WINXP等操作系统。 5.2.2 系统硬件调试 本设计的硬件部分通过调试,在调试过程中遇到很多问题,由于本单路是由面包板搭成的,所以电路不稳定。刚开始数码管全亮但是单片机供电出现问题,用万用表测试后发现单片机地线连接断路,问题解决后在显示测试过程中数码管显示不变,然后发现一片573芯片发热,断电后用万用表测试发现连接该573芯片的数据口出现断路,再次更换面包板后,测试显示部分基本正常,有时会出现数码管g段显示不稳定,分析后可能因上次g段数据断路导致573芯片发热有损坏,更换新的573后显示正常。其调试为: 1)面包板接通电源,程序在KEIL4.0软件上运行后,调试数码管全亮显示效果,数码管调试结果如图5-2所示: 图5-2 数码管调试 2)被测电阻的调试,按下Sr键后,闭合开关Srg,数码管显示被测电阻20K的阻值,电阻调试经修正后的结果如图5-3所示: 图5-3 电阻调试 3)被测电容的调试,按下Sc键后,数码管显示被测电容103的示值: 电容调试经修正后的结果如图5-4所示: 图5-4 电容调试 5.2.3 系统测试 (1)测试原理:在系统设计中,以MCS-51单片机为核心的电阻、电容、电感测试仪,将电阻,电容,电感,使用对应的振荡电路转化为频率实现各个参数的测量。其中电阻和电容是采用555多谐振荡电路产生的,而电感则是根据电容三点式产生的,将振荡频率送入AT89C52的计数端端,通过定时并且计数可以计算出被测频率,再通过该频率计算出被测参数。以Keil51为仿真平台,使用C语言与汇编语言混合编程编写了系统应用软件;包括主程序模块、显示模块、电阻测试模块、电容测试模块和电感测试模块。 (2)测试方法:在测试时将被测参数通过本系统测量出来的示值与参数的标称值进行对比,进而可以知道本系统的测试精度。 (3)测试仪器:示波器,万用表,稳压电源,计算机。 (4)测试结果:通过按键,实现其按键所对应的功能,并观察测试结果,对设计进一步的进行校正和对实现功能的可靠性的确认,并记录观察结果。 测试结果如下: a)电阻测试数据如表5-1所示。 表5-1电阻测试数据 标称值 (Ω) 振荡频率 (Hz) 系统测量 (Ω) 相对误差 (%) 330 6929 333 0.9 200 9501 205 2.5 530 4981 528 0.4 4700 5036 4892 4.1 20000 2596 19216 3.9 470000 157 464683 1.1 b) 电容测试数据如表 5-2所示。 表 5-2电容测试数据 读取示值 (pF) 振荡频率 (Hz) 标称值 (pF) 相对误差值 (%) 103 316 10105 1.0 104 29 96206 3.8 224 16 199583 9.2 c) 由于电感制作复杂本次测试暂未对电感进行测试。 (4)测试分析:在实际测量中,由于测试环境,测试仪器,测试方法等都对测试值有一定的影响,都会导致测量结果或多或少地偏离被测量的真值。为了减小本设计中误差的大小,主要利用修正的方法来减小本测试仪的测量误差。所谓修正的方法就是在测量前或测量过程中,求取某类系统误差的修正值。在测量的数据处理过程中选取合适的修正值很关键,修正值的获得有三种途径。第一种途径是从相关资料中查取;第二种途径是通过理论推导求取;第三种途径是通过实验求取。 本测试修正值选取主要通过实验求取,对影响测量读数的各种影响因素,如温度、湿度、电源电压等变化引起的系统误差。通过对相同被测参数的多次测量结果和不同被测参数的多次测量选取平均值,最后确定被测参数公式的常数K值,从而达到减小本设计系统误差的目的。由于振荡电路外围器件由电容电阻分立元件搭接而成,所以由振荡电路产生的被测参数对应的频率有一定的误差,所以只能通过多次实验测量,选取合适的修正值来尽可能的减少本测试系统的误差。 6 结论与展望 毕业论文是一次非常好的将理论与实际相结合的机会,通过对电阻、电容、电感测试仪的课题设计,锻炼了我的实际动手能力,增强了我解决实际工程问题的能力,同时也提高我查阅文献资料、设计规范以及电脑制图等其他专业能力水平。 本设计的硬件电路图简单,可降低生产成本。采用单片机可提高系统的可靠性和稳定性,缩小系统的体积,调试和维护方便,而且以MCS-51单片机最小系统为核心的设计能够满足了整个系统的工作需求,555振荡器实现了被测电阻和被测电容参数的频率化,电容三点式振荡电路实现了被测电感参数的频率化,被测频率通过CD4052模拟开关送入单片机计数,再经过显示电路显示被测参数的测量值,软件用C语言编程,根据具体情况控制启动被测参数的相应程序,能灵活控制被测参数的档位切换。经过测试,系统各个模块都能正常共组,成功地达到了设计的硬件要求。 系统的软件部分是系统实现各种工作状态的关键。通过结合硬件电路,在Keil51的平台上,使用C语言与汇编语言混合编程编写了系统应用程序,使程序能够正常运行,实现了设计的要求。 总之,整个系统的工作正常,完成了设计任务的全部要求。 虽然本系统完成了设计设计要求,但其中仍然存在着很多需要改进的地方。作品实测中,测量电容值有一定的误差,而且C值越大时误差越大,该误差则是来源于振荡电路产生的频率和单片机程序上的误差。希望在之后的设计之中能够得到进一步解决。在人机交换方面,显示部分可以改用显示效果更好的液晶屏显示,使系统工作状态和数据显示更加清晰、更加人性化。 致 谢 本文是作者在西安交通大学城市学院做毕业设计期间学习、工作的,是在导师xxxxxx老师指导下完成的。 在这几个月毕业设计的学习和工作中,导师的精心指导和培养使我在各个方面都受益非浅。在分析问题、解决问题及独立工作的能力有了很大的提高。在此期间,xx老师提出了很多有益的建议并给予我很大帮助。在本文的课题研究及写作过程中,也给予了大力支持。在此谨向xx老师表示衷心的感谢。 在城市学院这个学习氛围活跃、团结友爱的集体里,大家互相帮助,彼此讨论问题,共同提高。在此也要感谢我的各位学友,有了大家的支持和帮助使得论文研究工作得以顺利的进行。 最后,再次向xxxxxx老师以及帮助过我的同学们表示最真诚的谢意! 参 考 文 献 [1]申忠如,申淼,谭亚丽.MCS-51单片机原理及系统设计.西安交通大学出版社,2008年3月第1版 [2]申忠如,郭福田,丁晖.现代测试技术与系统设计.西安:西安交通大学出版社,2006.2. [3]付家才.单片机控制工程实践技术[M].北京化学工业出版社,2004 [4]张毅刚.MCS-51单片机应用系统.哈尔滨工业大学出版社,1997 [5]夏继强.单片机实验与实践教程.北京航空航天大学出版社,2001 [6]肖洪兵.跟我学用单片机.北京航空航天大学出版社,2002 [7]付晓光.单片机原理与使用技术.清华大学出版社,ISBN7- 81082- 169- 5TP [8]李桂安.电子技术实验及课程设计.东南大学出版社,2008 [9]J.C.Whitaker.Thermal Design of Elektronic Equipment,CRC Press LLC.Lond on2001 [10]W.Janke.Zjawiska termiznew elementachi.ukladach polprzewodnik owych.WNT.Warszawa.1992 附 录 附录一 系统原理图及PCB 附图1 附图2 附录二 源程序 源程序: #include #include #include #include unsigned char inte=0; //频率值溢出定时器值 unsigned long int uu=0; //频率相对应的计数值 unsigned long int ff=0; //实际频率值 typedef unsigned char uchar; typedef unsigned int uint; uchar key1; int m=0,w=0,q=0,b=0,s=0,g=0; #define LEDSEG XBYTE[0xbfff] #define LEDDAT XBYTE[0xdfff] /*** 按键 ***/ sbit sl=P1^0; sbit sc=P1^1; sbit sr=P1^2; sbit fw=P3^5; sbit srg=P1^5; sbit srd=P1^6; void delay_5ms() { uchar i,j; for(j=0;j<5;j++) for(i=0;i<125;i++){;} } void delay_50us() { uchar i; for (i=0; i<6; i++){;} } void display(uchar num,uchar seg) { swi
/
本文档为【基于单片机的电阻、电容、电感测试仪】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索