为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

汽车发动机

2012-09-14 50页 doc 3MB 37阅读

用户头像

is_202138

暂无简介

举报
汽车发动机发动机 BlueDIRECT BlueDIRECT是奔驰的第三代汽油缸内直喷技术,搭载这一技术的发动机于2010年正式亮相,目前该技术已经较广泛的应用于奔驰的新V6、V8以及直列四缸发动机上,他们分别服役于奔驰的S级、E级以及最新的奔驰B级和新ML车型上。 这一技术的核心主要是能够在一毫秒内连续四次放电的多火花点火技术(Multi-spark ignition)和能够在一个行程内最多喷射五次燃油的压电式喷油嘴,再加上优化的缸内涡流设计,带来了混合更充分的混合气和更充分的燃烧效果,使燃料的燃烧效率进一步提高,同时达到了更高的...
汽车发动机
发动机 BlueDIRECT BlueDIRECT是奔驰的第三代汽油缸内直喷技术,搭载这一技术的发动机于2010年正式亮相,目前该技术已经较广泛的应用于奔驰的新V6、V8以及直列四缸发动机上,他们分别服役于奔驰的S级、E级以及最新的奔驰B级和新ML车型上。 这一技术的核心主要是能够在一毫秒内连续四次放电的多火花点火技术(Multi-spark ignition)和能够在一个行程内最多喷射五次燃油的压电式喷油嘴,再加上优化的缸内涡流设计,带来了混合更充分的混合气和更充分的燃烧效果,使燃料的燃烧效率进一步提高,同时达到了更高的排放。 ECU 电控单元是电子控制单元(ECU)的简称。电控单元的功用是根据其内存的程序和数据对空气流量计及各种传感器输入的信息进行运算、处理、判断,然后输出指令,向喷油器提供一定宽度的电脉冲信号以控制喷油量。电控单元由微型计算机、输入、输出及控制电路等组成。 ECU(Electronic Control Unit)电子控制单元,又称“行车电脑”、“车载电脑”等。从用途上讲则是汽车专用微机控制器,也叫汽车专用单片机。它和普通的单片机一样,由微处理器(CPU)、存储器(ROM、、RAM)、输入/输出接口(I/O)、模数转换器(A/D)以及整形、驱动等大规模集成电路组成。 ECU的电压工作范围一般在6.5-16V(内部关键处有稳压装置)、工作电流在0.015-0.1A、工作温度在零下40-80度。能承受1000Hz以下的振动,因此ECU损坏的概率非常小,在ECU中CPU是核心部分,它具有运算与控制的功能,发动机在运行时,它采集各传感器的信号,进行运算,并将运算的结果转变为控制信号,控制被控对象的工作。它还实行对存储器(ROM、、RAM)、输入/输出接口(I/O)和其它外部电路的控制;存储器ROM中存放的程序是经过精确计算和大量实验取的数据为基础,这个固有程序在发动机工作时,不断地与采集来的各传感器的信号进行比较和计算。把比较和计算的结果控制发动机的点火、空燃比、怠速、废气再循环等多项参数的控制。它还有故障自诊断和保护功能,当系统产生故障时,它还能在RAM中自动记录故障代码并采用保护措施从上述的固有程序中读取替代程序来维持发动机的运转,使汽车能开到修理厂。 正常情况下,RAM也会不停地记录你行驶中的数据,成为ECU的学习程序,为适应你的驾驶习惯提供最佳的控制状态,这个程序也叫自适应程序。但由于是存储于RAM中,就象错误码一样,一但去掉电瓶而失去供电,所有的数据就会丢失。 目前在一些中高级轿车上,不但在发动机上应用ECU,在其它许多地方都可发现ECU的踪影。例如防抱死制动系统、4轮驱动系统、电控自动变速器、主动悬架系统、安全气囊系统、多向可调电控座椅等都配置有各自的ECU。随着轿车电子化自动化的提高,ECU将会日益增多,线路会日益复杂。为了简化电路和降低成本,汽车上多个ECU之间的信息传递就要采用一种称为多路复用通信网络技术,将整车的ECU形成一个网络系统,也就是CAN数据总线。 ECU升级 通过重新改写行车电脑程序,达到提升动力、增加马力、扭矩或降低油耗、优化汽车性能的目的。由于现代的汽车要适应各种天气、环境(如高原、沙漠、严寒和劣质汽油等恶劣条件)及各种驾驶者的不同要求,同时它也要保证这种复杂的情况下依然能够通过严格的尾气排放、油耗标准,因此在大多情形下,原装ECU内的程序是一个符合众多条件的最佳妥协。 而在国外,ECU调校是买车时提供的一项服务。由于每辆车出厂的情况不尽相同,加之一些车采用的技术有可能不适应具体实际的要求,调整行车电脑(ECU)除了可以让发动机提升输出功率、加速性和稳定性外,还可使车更好地适应相关的路段和环境。 ECU升级的效果(仅供参考) 通过程序的调校可以让车达到最佳状态,主要表现在动力性能与降低油耗方面。 升级后,动力提升8%-36%,降低油耗5%-25%,具体如下:   A.自然进气车型可增加马力8﹪~15%;    B.TURBO车型可增加马力20﹪~36%,甚至更多;    C.自动挡车型,换档更平顺,动力衔接更流畅;    HEMI Hemi是源于“hemispherical”一词的缩写,是由于发动机采用了半球形燃烧室而得名,Hemi发动机自上个世纪五十年代起就已经诞生,至今已繁衍了半个多世纪。其特点是发动机气缸的进排气门采用倾斜角度布置,以更好的利用气流提升气缸的进排气效率,气缸燃烧室因此而呈半球形,这种气缸结构设计一直沿用至今。“HEMI”发动机最早出现在1948年,当时开发了一款用于捷豹汽车的6缸HEMI发动机,随后在1951年,克莱斯勒汽车公司发布了180马力的V-8“HEMI”发动机,排量5.4升(331立方英寸),因此被命名为“331 HEMI”。虽然180马力对于现代发动机算不得什么,可在当时,这是一个难以触及的动力巅峰,由此开辟了HEMI的传奇时代。 『331 HEMI发动机』 相对于HEMI的半球缸盖,平顶缸盖发动机是上世纪50年代大多数车型的首选,因为这样的结构制造成本更低。平顶燃烧室发动机的进排气门安排在发动机一侧,由凸轮轴直接驱动而省略了挺杆和摇臂系统。与同时代发动机相比,早期HEMI发动机的最大优势在于燃烧室效率,使得它能产生更强大的功率。HEMI 发动机的燃烧室顶部呈半球状,火花塞通常安装在燃烧室的顶部中央,进排气门分列在燃烧室两侧。 上世纪70年代后,HEMI发动机的表现已经大不如前了,新的发动机技术如多气门结构、可变气门升程和点火提前角技术、稀薄燃烧和缸内直喷技术等让人眼花缭乱的新鲜事物已经把曾经辉煌的HEMI徽标淹没了。就在人们已经把HEMI逐渐遗忘时,克莱斯勒发布了全新的5.7升HEMI V-8发动机。 『HEMI 5.7L V8发动机』 HEMI V-8发动机可以在40毫秒内实现4缸模式和8缸模式之间自动平顺转换,在发动机的不需要全功率运转时,可以瞬间关闭四个汽缸,而在需要时,MDS又可以迅速恢复汽缸工作以释放发动机的全部功率,从而将燃油经济性大大提高,燃油压缩比为7.5:1,这项技术可以保证车辆的综合油耗降低20%。 OBD OBD是英文On-Board Diagnostics的缩写,中文翻译为“车载自动诊断系统”。这个系统将从发动机的运行状况随时监控汽车是否尾气超标,一旦超标,会马上发出警示。当系统出现故障时,故障(MIL)灯或检查发动机(Check Engine)警告灯亮,同时动力总成控制模块(PCM)将故障信息存入存储器,通过一定的程序可以将故障码从PCM中读出。根据故障码的提示,维修人员能迅速准确地确定故障的性质和部位。 OBD的工作原理 OBD装置监测多个系统和部件,包括发动机、催化转化器、颗粒捕集器、氧传感器、排放控制系统、燃油系统、EGR等。OBD是通过各种与排放有关的部件信息,联接到电控单元(ECU),ECU具备与排放相关故障的功能。当出现排放故障时,ECU记录故障信息和相关代码,并通过故障灯发出警告,告知驾驶员。ECU通过标准数据接口,保证对故障信息的访问和处理。 OBD在国内的发展 2005年12月23日,北京环保局和北京市质量技术监督局发布公告【京环发(2005)214号】,宣布自2005年12月30日起,在北京市销售新定型车型(包括全新产品及产品扩展与更改)须安装车载诊断(OBD)系统。 2005年12月30日前已定型上市销售并通过国家第三阶段排放标准审核的车型可延迟安装OBD系统;2006年12月1日后,停止在北京销售未安装OBD系统的新车。 2006年1月12日,北京环保局公布了【京环发(2006)4号】第一批达到国III排放标准,且带OBD功能的轻型车目录。 2006年11月15日,北京环保局再次发布公告【京环发(2006)214号】,重申半个月后的12月1日起,北京市将停止销售未安装车载诊断系统(OBD)的国Ⅲ轻型汽车。 单点电喷 汽车发动机的电喷装置一般是由喷油油路、传感器组和电子控制单元三大部分组成的。如果喷射器安装在原来化油器位置上,即整个发动机只有一个汽油喷射点,这就是单点电喷。 由于单点喷射是将喷射器设在节气门上方,只能改善在节气门处的雾化以及加热管壁温度提高燃油的蒸发程度,但难以保证节气门后至进气门的一段管壁上不形成油膜或油滴,因此进气歧管的结构对混合气的输送和分配有重大影响,而且难以实现在所有工况下都能保持理想的混合气分配。 但是单点喷射构造简单,工作可靠,维护简单。其中一个很显著的优点就是单点喷射的喷射器设在节气门上方,直接向气流速度很高的进气管道中喷射,由于该处压力低(流速与压力成反比),喷射时只需要0.1 MPa的低压就可以喷射了,多点喷射则要在0.35MPa才工作,这就意味着单点喷射系统可以降低对电动燃油泵的要求,节省了成本。不过单点电喷的排放标准以及燃油经济性都不及多点电喷,现在慢慢也被淘汰。 点火方式 根据汽车发动机的点火方式,可以分为压燃点火和火花点火。 压燃点火 压燃点火:对应于柴油发动机的一种点火方式,柴油发动机以柴油作为燃料,与汽油相比,柴油的自燃温度低(220℃左右)、黏度大且不易蒸发。而且柴油发动机本身没有火花塞,其压缩比也要大于汽油发动机,因此柴油发动机依靠压缩行程将混合气压缩到燃点,使其自动着火,故称这种点火方式为压燃点火。 火花点火 火花点火:对应于汽油发动机的一种点火方式,汽油的自燃温度(480℃左右)要大于柴油发动机,而且黏度小容易蒸发,所以可以在气缸外部与空气形成均匀的混合气,或者用喷射系统直接将汽油喷入气缸,然后在压缩行程快结束时通过火花塞跳火将混合气点燃,故称这种点火方式为火花点火。 点火提前角 汽油发动机从点火时刻起到活塞到达压缩上止点这段时间内曲轴转过的角度称为点火提前角。 混合气从点燃、燃烧到烧完有一个时间过程,最佳点火提前角的作用就是在各种不同工况下使气体膨胀趋势最大段处于活塞做功下降行程。这样效率最高,振动最小,温升最低。 影响点火提前量最大的因素是转速,随着转速的上升,转过同样角度的时间变短,只有更大的提前角才能得到相应的提前时间。 理论上最小点火提前角为0度,但为了防止在做功行程才点燃混合气(这样会造成动力的损失),往往将点火提前角设为5度以上,这也是启动转速所需要的角度。最大点火提前角也不能太大,一般不能超过60度,否则振动和温升问题将凸显,效率也将下降。 点火过早,会造成爆震,活塞上行受阻,效率降低,热负荷、机械负荷、噪声和振动加剧,这是应该防止的。点火过晚,气体做功困难,油耗大,效率低,排气声大。不论点火过早或过晚,都会影响发动机的工作效率。除了发动机转速外,最佳点火角还受很多其它因素影响: 1、缸温缸压越高,混合气则燃烧越快,点火提前角就要越小。影响缸温缸压的因素有发动机压缩比、气温、缸温、负荷等。 2、汽油辛烷值,也就是汽油标号,其标号越高表示汽油的抗爆震能力越强,相应允许更大的点火提前角。 3、燃气混合比,过浓过稀的混合气,燃烧速度都比较慢,需增加点火提前角,而燃气混合比主要看节气门开度、海拔高度等。 汽车的发动机上都加装了爆震传感器,当检测到发生爆震时,发动机电脑会控制点火系统减小点火提前角。要完成相对复杂、精确的调制,靠传统的机械式点火器是难以胜任的。只有微机点火器,才能高速、精确、稳定地实现最佳点火提前角。 多点电喷 汽车发动机的电喷装置一般是由喷油油路、传感器组和电子控制单元三大部分组成的。如果喷射器安装在每个气缸的进气管上,即汽油的喷射是由多个地方(至少每个气缸都有一个喷射点)喷人气缸的,这就是多点电喷。 多点电喷在每个气缸盖上安装一个电磁喷油器,直接将燃油喷入进气歧管,再与流经进气歧管的空气流混合,当进气门打开时,混合气体被吸入气缸。多点电喷与化油器式进气系统相比,而且从根本上解决了相邻气缸进气重叠而引起的配气不均匀,功率下降,油耗增加的问题,而且多点喷射发动机可以采用顺序喷射,因此空燃比的控制比单点喷射更精确,可以根据正时进行喷油,对喷油量、喷油时刻进行精确控制,所以多点喷射发动机的排放更好,更经济省油。 发动机自动启停 发动机自动启停就是在车辆行驶过程中临时停车(例如等红灯)的时候,自动熄火。当需要继续前进的时候,系统自动重启发动机的一套系统。 『系统在得知驾驶员意图后会自动重启发动机』 发动机自动启停系统是这几年来发展最迅猛的汽车环保技术,特别适用于走走停停的城市路况。预计到2012年,欧洲新上市的车中将有50%配备起步停车系统。据介绍,这套系统能在城市工况下达到15%的节油能力。 使用方法: 行驶中只要直接踩制动踏板,车辆完全停止大概两秒钟后发动机就会自动熄火,一直踩着制动踏板,发动机就会保持关闭。只要一松开刹车,或者转动方向盘,发动机又会马上自动点火,立即又可以踩油门起步,整个过程都处于D档状态。 从化油器到缸内直喷技术 [汽车之家 技术] 汽车发动机要想工作,需要将汽油和空气混合后燃烧做功,这个问题看似简单,但如何把有效把燃油与空气混合一直是工程师们费尽心思琢磨的问题,据说原始汽车的供油系统和酒精灯的原理差不多,是不是很不可思议? 顺便说一句,现代汽车所谓的“油门”其实跟汽油并没有什么太大的关系,油门踏板连接的是节气门,也就是说我们所能控制的是发动机的进气量,根据进气量的大小再决定喷油量。那么如何决定喷油量呢?我们常见的一般是以下几种: ● 化油器 当今市面上采用化油器装置的汽车已经很少了,但它却主宰了很长一段时间,化油器的原理说起来也挺简单的,就是一根管子,无需任何电子控制,这根管子的位置,就像图中所示的那样,插在进气管臂上,一侧是储存燃油的小容器,另一侧通向进气管,通过纯物理原理,小管内的燃油能自动吸到进气管里。 『化油器原理示意图』 恐怕没有谁不知道这样的原理:将两个纸条放在嘴边然后吹气,纸条并不会向两边飘开而是聚合在一起,会产生这样的现象是因为流速快的气体会产生低压,而周围流速慢的气体压力较大,于是将纸条被推到一起。汽车发动机的化油器就是采用了相同的原理。由于进气管内空气的高速流过导致气压下降,从而将管内的燃油吸出来。空气流速越快,气压就越低,吸出的燃油就越多,可以说这是一种纯粹依靠物理原理的简单而可靠的装置,而且成本较低。 但是从现代眼光来看,这个装置存在很多问题。化油器通常装在节气门的前面,燃油被吸出来后要经过节气门和进气歧管,这其中难免会有一部分燃油沾在节气门和歧管壁上,非常不利于对燃油的精确控制。而且纯粹的物理原理对于空气温度等条件的要求较高,气温较低时严重影响燃油和空气的混合,以前的汽车在冬季启动时需要长时间热车其中就有这个原因。 ● 机械式燃油喷射 由于化油器不能满足人们对于经济性和环保方面的要求,人们开发了机械式燃油喷射装置。汽油发动机的机械式燃油喷射系统依靠发动机曲轴的动力驱动油泵工作,燃油达到一定压力后由喷油嘴喷出。 『喷油嘴喷油瞬间』 机械式燃油喷射装置相比化油器来说对于燃油控制的精确性有一定提升,但还是有些不尽人意的地方。早期机械式燃油喷射装置只是简单的替代了化油器,位置依然是装在节气门之前,油气混合气依然要经过较长的路程才能到达气缸,这就是所谓的单点式燃油喷射。 ● 电子燃油喷射 随着科学技术的发展,电子燃油喷射装置出现了,它的工作原理是通过装在进气管中的空气压力传感器或空气流速传感器计算气缸的进气量,所得数据传送至发动机电子控制单元(ECU),再由ECU计算后控制电磁阀喷射 『多点燃油喷射』 另外一大革新是采用了多点燃油喷射,燃油不再是喷到进气管内再输送到各个进气歧管,而是在每个气缸的进气歧管末端各设置一个燃油喷嘴,这样一来油气混合气所经过的路程大大缩短,提升燃油喷射的精确度和效率。特别是电子节气门的出现使得ECU可以对发动机动力输出进行更全面的控制,进一步提升了燃油经济性。 ● 缸内直喷 在对能源和环保要求日趋严格的今天,即使是多点燃油喷射这样的技术也不能满足人们的要求了,于是更为精确的燃油喷射技术诞生,那就是缸内直喷技术。缸内直喷技术简单来说就是把原本普通电喷系统的喷油嘴装在了每个气缸的内部,油气混合效率提升到了更高的水平。 另外,缸内直喷系统的出现使得“分层燃烧”技术成为可能。以往的多点电喷发动机吸入气缸内的油气混合气大致是均匀混合的,而分层燃烧技术依靠气缸顶部特殊设计的凹陷,在压缩过程中使得火花塞附近聚集较浓的油气混合气,而周边区域的油气浓度相对稀薄,这样一来就节约了一部分燃油,提升了效率,正所谓“好钢用在刀刃上”。( 机械增压   装用在汽车上的增压器,起初都是机械增压,在刚发明时被称超级增压器(Supercharge),后来涡轮增压发明之后为了区别两者,起初涡轮增压器被称为Turbo Supercharger,机械增压则被称为 Mechanical Supercharger。久而久之,两者就分别被简化为Turbocharger与Supercharger了! 『奔驰C180K用的1.6升机械增压发动机』 机械增压器压缩机的驱动力来自发动机曲轴。一般都是利用皮带连接曲轴皮带轮,以曲轴运转的扭力带动增压器,达到增压目的。根据构造不同,机械增压曾经出现过许多种类型,包括:叶片式(Vane)、鲁兹(Roots)、温克尔(Wankle) 等型式。不过,现在较为常见的为前两种。   鲁兹增压器有双叶、三叶转子两种型式,目前以双叶转子较普遍,其构造是在椭圆形的壳体中装两个茧形的转子,转子之间保有极小的间隙而不直接接触。两转子借由螺旋齿轮连动,其中一个转子的转轴与驱动的皮带轮连接,转子转轴的皮带轮上装有电磁离合器,在不需要增压时即放开离合器以停止增压。离合器的开合则由计算机控制以达到省油的目的。 而叶片式( 亦有称为涡流式) 的本体就是属于叶片式本体的一种。其运作方式主要是利用三个可根据不同离心力而改变转速的行星齿轮组带动进气叶片。透过齿轮组与叶片轴心的相互磨擦,提高轴心转速并进一步提高进气叶片的速度,以获得持续不断的增压反应。换句话说,就是发动机转速愈高,进气叶片的转速也能跟着提高。 机械增压的特性: 机械增压与涡轮增压在动力输出上有着明显的区别,前者有接近自然进气的线性输出,而后者则因为有涡轮迟滞的现象,出力相对多一点突兀,没那么线性。 因为机械增压的作动原理,使其在低转速下便可获得增压。增压的动力输出也与曲轴转速成一定的比例,即机械增压引擎的动力输出随着转速的提高,也随之增强。因此机械增压引擎的出力表现与自然气极为相似,却能拥有较大的马力与扭力。 由于机械增压器采用皮带驱动的特性,因此增压器内部叶片转速与引擎转速是完全同步的,基础特性为: 引擎rpm X(R1/R2)= 增压器叶片之rpm R1 引擎皮带盘之半径 R2 机械增压器皮带盘之半径 而机械增压器由于利用引擎转速来带动机械增压器内部机构。其整体结构简单,工作温度介于70℃ -100℃,比起靠废气驱动的涡轮增压器的400℃ -900℃的高温工作环境要舒服得多。因此,机械增压系统对于冷却系统、润滑系统的要求与NA 引擎基本相同,机件保养程序也大同小异。 此外,机械增压优点为体积小,不需修改引擎本体、安装容易,因此在美国的改装界也颇受欢迎。原本为大排气量NA 设计的车辆,尤其适合改装。 房车赛的赛车在改装时要拆除空调压缩机,而方程式(Formula)赛车,甚至连启动马达、机油泵都改成外部连接,目的都是为了减少对引擎造成的负担。 依靠发动机动力带动的机械增压器,与以上部件一样,都会给发动机带来额外的负担。因此,增压器本身的运转阻力必须越小越好,才不会拖累引擎的工作效率,发动机转速提升才能更快。 然而,机械增压器的进风量与阻力成正比关系。当使用高增压时,虽然引擎输出的能量大增,但相对增压器内部叶片受风阻力也会升高,当阻力达到某一界限时,这个阻力会使引擎承受极大的负荷,严重影响转速的提升。因此,机械增压必须在增压值与引擎负荷间取得平衡,以避免高增压带来的负面效应。 目前,欧洲设计的机械增压多为介于0.3-0.5bar的低增压,着重在低转速扭力输出与中高转速“高原型”马力输出。而台湾“特嘉”研发的新式高效率增压器可以产生0.6-1.2bar 的中度增压值,动力提升的幅度更为显著。虽然机械增压系统在现阶段仍然无法突破1.5bar 的高增压范围,而涡轮增压早已突破2.2bar 的超高压境界,单就效率而言,涡轮增压系统可以用“倍数”来提升引擎输出,但要付出的金钱、维护,以及周边整合也是机械增压的数倍,孰优孰劣,就请各位读者自行评断。 可变气缸 可变气缸技术一般适用于多气缸大排量车型,如V6、V8、V12发动机,因为日常行驶,大多数情况下并不需要大功率的输出,所以大排量多汽缸就显得有点浪费,于是可变汽缸技术应运而生,它可以在不需要大功率的输出时,控制关闭一部分汽缸,以减少燃油的消耗。 VCM VCM的全称为Variable Cylinder Management,是本田公司研发的一种可变汽缸管理技术,它可通过关闭个别气缸的方法,使到3.5L V6引擎可在3、4、6缸之间变化,使得引擎排量也能在1.75-3.5L之间变化,从而大大节省燃油。 车辆起步、加速或爬坡等任何需要大功率输出的情况下,该发动机将会把全部6个气缸投入工作。在中速巡航和低发动机负荷工况下,系统仅将运转一个气缸组,即三个气缸。在中等加速、高速巡航和缓坡行驶时,发动机将会用4个气缸来运转。 借助三种工作模式,VCM系统能够细致地确定发动机的工作排量,使其随时与行车要求保持一致。由于系统会自动关闭非工作缸的进气门和排气门,所以可避免与进、排气相关的吸排损失,并进一步提高了燃油经济性。VCM系统综合实现了最高的性能和最高的燃油经济性-这两种特性在常规发动机上通常无法共存。 VCM通过VTEC系统关闭进、排气门,以中止特定气缸的工作,与此同时,由动力传动系控制模块切断这些气缸的燃油供给。在3缸工作模式下,后排气缸组被停止工作。在四缸工作模式下,前排气缸组的左侧和中间气缸正常工作,后排气缸组的右侧和中间气缸正常工作。 非工作缸的火花塞会继续点火,以尽量降低火花塞的温度损失,防止气缸重新投入工作时因不完全燃烧造成火花塞油污。该系统采用电子控制,并采用专用的一体式滑阀,这些滑阀与缸盖内的摇臂轴支架一样起着双重作用。根据系统电子控制装置发出的指令,滑阀会有选择地将油压导向特定气缸的摇臂。然后,该油压会推动同步活塞,实现摇臂的连接和断开。 VCM系统对节气门开度、车速、发动机转速、自动变速箱档位选择及其它因素进行监测,以针对各种工作状态确定适宜的气缸启用。此外,该系统还会确定发动机机油压力是否适合VCM进行工作模式的切换,以及催化转化器的温度是否仍会保持在适当范围内。为了使气缸启用或停用时的过渡能够平稳进行,系统会调整点火正时、线控节气门的开度,并相应地启用或解除变矩器锁定。最终,3缸、4缸和6缸工作模式间的过渡,会在驾驶员觉察不到的状态下完成。 MDS MDS是为克莱斯勒的Hemi发动机量身打造的多级可变排量控制系统,全称为MDS-Multi-Displacement System。 所谓的MDS,实质上与其它的可变排量技术一样,都是依靠关闭相应的汽缸来达到节省能耗的目的。由于Hemi发动机采用的是OHV的结构,凸轮轴山布满了凸轮,无法像本田的VCM发动机那样设计比较复杂的副摇臂和液压控制的连接机构,所以只能在原先的结构上想办法。 『Hemi发动机的凸轮轴与气门挺柱机构』 Hemi发动机的气门是由凸轮轴-挺柱-推杆-气门摇臂这些机构的串联动作来驱动的,任何一个环节如果能够中断便能够实现关闭气门的设想,但是由于发动机的工况需求,要求气门的开启和关闭控制都足够迅速,这样才能够保证平顺性和较快的响应速度,保证V8发动机原本应有的乐趣。 『对气门的控制依靠特别设计的挺柱实现,液压控制的卡销可以使挺柱不推动气门推杆』 最后工程师们决定在与凸轮接触的挺柱上面做文章,他们为Hemi发动机的挺柱设计了独特的滑块结构,滑块与气门推杆相连,滑块下方有一个可以定位的卡销,卡销可以使滑块与挺柱成为一体,推动气门推杆,或者使滑块活动,是挺柱无法推动气门推杆。工程师们为卡销在发动机中设计了独特的油道,依靠润滑系统中的润滑油提供液压推动卡销(电磁阀控制),卡销本身带有回位弹簧,当液压消失时便能够自动回位。在发动机正常运转时,卡销将卡住滑块使之不能上下自由移动,挺柱直接推动推杆驱动气门摇臂,而当发动机需要关闭气缸时,卡销松开,滑块便能够上下滑动,挺柱上下移动时滑块与挺柱发生相对运动,不再推动推杆,这样一来气门就被关闭,同时ECU停止向该气缸喷油,便达到了“关闭气缸”的效果,实现了“排量可变”。 在MDS技术的支持下,这台5.7L Hemi发动机通过ECU对发动机负荷、工况的判断,能够以4缸或8缸运转,发动机对称关闭4个气缸,剩下的4个气缸则组成了一台“V4”发动机,使发动机依然能够保持较好的平顺性。 『关闭4个气缸后,这台V8发动机就变成了一台“V4”发动机』 搭载MDS系统的Hemi发动机最早于2005年服役,当时搭载在克莱斯勒的300C,Jeep的大切诺基和道奇Charger等车型上,而其品牌下的皮卡和大排量轿车也陆续装备该发动机。不过,克莱斯勒各品牌下的SRT-8高性能车型所使用的6.1L Hemi V8发动机并没有使用MDS技术。 可变气门 汽车发动机气门正时的机构和技术,也叫连续可变气门正时系统,当今高性能发动机普遍配备该系统。该系统通过配备的控制及执行系统,对发动机凸轮的相位或者气门生程进行调节,从而达到优化发动机配气过程的目的。 因为高转速下与低转速下,气门的正时角对发动机经济性和动力的影响是明显的,高转速下可以充分利用进气惯性而提就进气量和扫气效率,所以气门早开晚闭,低转速反之,现在的发动机大多有这个技术。 VVT-i VVT-i.系统是丰田公司的智能可变气门正时系统的英文缩写。近几十年来,基于提高汽车发动机动力性、经济性和降低排污的要求,许多国家和发动机厂商、科研机构投入了大量的人力、物力进行新技术的研究与开发。目前,这些新技术和新方法,有的已在内燃机上得到应用,有些正处于发展和完善阶段,有可能成为未来内燃机技术的发展方向。   丰田VVT-i发动机的ECM在各种行驶工况下自动搜寻一个对应发动机转速、进气量、节气门位置和冷却水温度的最佳气门正时,并控制凸轮轴正时液压控制阀,并通过各个传感器的信号来感知实际气门正时,然后再执行反馈控制,补偿系统误差,达到最佳气门正时的位置,从而能有效地提高汽车的功率与性能,尽量减少耗油量和废气排放。 发动机可变气门正时技术(VVT,Variavle Valve Timing)是近些年来被逐渐应用于现代轿车上的新技术中的一种,发动机采用可变气门正时技术可以提高进气充量,使充量系数增加,发动机的扭矩和功率可以得到进一步的提高。 VTEC “最贵的东西不一定是最赚钱的,最赚钱的东西不一定是最好的。”很容易就能在汽车行业内找到这一句话的例证,大家都说日系车厂精明,是因为他们都把最好的东西用在刀刃上。要论到最顶尖的发动机技术、最强劲的动力输出,在超级跑车的圈子里面似乎不多见日系车的身影。但要论到年产量的大小,似乎排在前几名都是我们熟识的日系厂商标。他们把最好的资源都投入到研发更能兼顾动力和油耗的机型,以更适应消费者需求的产品来争夺市场。日系品牌众多发动机在国内有着相当可观的保有量,而要数最经典的4款莫过于本田i-VTEC系列、丰田VVT-i系列、日产VQ系列和三菱的4G系列发动机。下文我们先对本田的i-VTEC系列发动机作深入研究。   i-VTEC技术不单只是本田的看家本领,更是各大厂家大同小异的“CVVT”可变气门正时技术的鼻祖。自新一代飞度1.3L车型弃用i-DSI引擎转投i-VTEC阵型后,本田正式对其在国内的所有车型普及i-VTEC发动机。小至1.3L的低排量,大到2.4L排量,无论是两厢小车还是MPV或者SUV,只要挂的是本田商标,打开引擎盖便能看到那银色的一串英文字母。到底这简单的5个英文字母背后到底包含了什么独到技术呢? 工作原理   在中低转速时,发动机需要的混合气量并不高,以保持转速的稳定以及减少燃油消耗和污染物排放。但到达高转速时便需要更大的进气量来满足高动力输出的需求,而发动机进气门的相位(开闭的时机)和升程(开度的大小)便是决定汽缸进气量的最直接因素。普通的发动机在制造出来后,配气相位和气门升程就固定不变了,无法适应不同转速下发动机对进排气的需求。因此,人们希望能够有这样一种发动机,其凸轮型线(凸轮的轮廓曲线)能够适应任何转速,不论在高速还是低速都能得到最佳的配气相位。于是,可变配气相位控制机构应运而生。本田公司在1989年推出了自行研制的“可变气门正时和气门升程电子控制系统”,英文全“Variable Valve Timing and Valve Life Electronic Control System”,缩写就是“VTEC”,是世界上第一个能同时控制气门开闭时间及升程等两种不同情况的气门控制系统。 与很多普通发动机一样,VTEC发动机每缸有4气门(2进2排)、凸轮轴和摇臂等,但与普通发动机不同的是凸轮与摇臂的数目及控制方法。中、低转速用小角度凸轮,在中低转速下两气门的配气相位和升程不同,此时一个气门升程很小,几乎不参与进气过程,进气通道基本上相当于单进气门发动机。而在高转速时,通过VTEC电磁阀控制液压油的走向,使得两进气摇臂连成一体并由开启时间最长、升程最大的进气凸轮来驱动气门,此时两进气门按照大凸轮的轮廓同步进行。与低速运行相比,大大增加了进气流通面积和开启持续时间,从而提高了发动机高速时的动力性。这两种完全不同性能表现的输出曲线,本田的工程师使它们在同一个发动机上实现了。 i-VTEC=VTEC+VTC   但是VTEC系统对于配气相位的改变仍然是阶段性的,也就是说其改变配气相位只是在某一转速下的跳跃,而不是在一段转速范围内连续可变。为了改善VTEC系统的性能,本田不断进行创新,推出了i-VTEC系统。增加了一个称为VTC(Variable timing control“可变正时控制”)的装置——一组进气门凸轮轴正时可变控制机构,即i-VTEC=VTEC+VTC。此时,进气阀门的正时与开启的重叠时间是可变的,由VTC控制,VTC机构的导入使发动机在大范围转速内都能有合适的配气相位,这在很大程度上提高了发动机的性能。 不过值得车友们注意的是,虽然发动机上同样打着光亮的i-VTEC标志,但东风本田思域的R18A1发动机的i-VTEC却有着另一层深意。上文的i-VTEC机构的作动目的在提高马力输出,但这颗R18A1引擎i-VTEC机构的作用是省油。 上文VTEC切换至高角度凸轮的时机,是在引擎达到4800转以上、水温高于60度,并在进气歧管内的负压指数符合原厂设定值后,便会开启VTEC电磁阀,将油压导入摇臂内以推动自由活塞,使高角度凸轮开始介入,延长进气门关闭时间,提高引擎于高转速时的进气量。 在R18A1引擎上的VTEC作动时机,是设定在1000~3500rpm之间的任一转速域内,皆有介入的可能性,且超过此范围外不论转速多高VTEC机构皆不会再作动,如此听来是不是与我们上文所述的VTEC作动时机大不相同呢?且为何提早切换至高角度凸轮,可获得节省油耗的目的呢?关键在于进气阻力的控制。 一般汽油引擎在高速巡航低负载时,因速度不需再提高,驾驶者只会轻踩油门以保持同样速度,节气门开启角度相对缩小(也就是说高速巡航是节气门的开度很小),减缓新鲜空气吸入量,但此时引擎内的吸气阻力,却会因节气门开度小而增加,并提高活塞于进气行程时的向下阻力,相对消耗部分活塞爆炸时的推力,进而降低引擎输出功率,就像吸管变小,需用更多的吸力饮料才能吸到嘴里的道理是相同的。此时如果能将节气门开度变大,就能减缓活塞吸气阻力进而提高效率,使引擎输出功率全部用在传动系统上,而不会在运转时便已消耗掉一部分,进而提升高速巡航时的燃费经济性。   R18A1发动机的i-VTEC系统就是针对该种情况,在车辆低转速高车速巡航的时候让高角度凸轮轴介入,通过加大气门开度来减少进气阻力。文章开头提到的i-VTEC系统能够在引擎高转速时提供爆发的动力,而这款R18A1发动机的i-VTEC系统则反其道而行在低转速时介入达到节油的效果。   除了巧妙地“反其道而行”外,思域身上的R18A1引擎上还有着多种针对油耗的技术,如活塞机油冷却喷嘴与可变长度进气歧管等,这里便不作详述了。 结语: 归根到底,本田的i-VTEC技术就是让本来“一成不变”的进排气门改为能够根据发动机及车辆工况来调节,这种改变的好处是可想而知的,就像变速箱由只有一个挡位升级到有多个挡位一样。   但是i-VTEC也有一些明显的缺点,例如发动机噪音在气门全开时噪音过大,虽然有人认为这种明显的“VTEC”声非常吸引,但是毕竟也会对行驶舒适性造成一定影响。特别是长期运转在高角度凸轮轴的状态下油耗会明显的增高,例如国内没有引进的高性能版的K20A发动机,虽然排量仅仅是2.0升,但其在进排气两侧均有i-VTEC控制的多角度凸轮轴可变换,导致在全速发力时的油耗已经接近2.5~3.0排量的发动机。此外,i-VTEC系统需要复杂的ECU控制单元来配合,而且对运作部件的加工质量要求高,所以需要厂家在质量保证方面下更多的功夫。   在这一个思路下,很多汽车厂家都研发出类似的可变气门技术,来应对油耗和动力这一对矛盾,我们下一期的主角丰田VVT-i技术便是其中的佼佼者,敬请关注。 MIVEC MIVEC全称为“Mitsubishi Innovative Valve timing Electronic Control system”,中文解释为三菱智能可变气门正时与升程管理系统。 装备MIVEC系统的发动机与普通发动机一样采用每缸四气门,两进两排的设计,但不同的是它可以控制每缸两个进气门的开闭大小。如在低速行驶时,MIVEC系统发出指令此时两个进气门中的其中一个升程很小,这时基本就相当于一台两气门发动机。由于只有一个进气门工作,吸入的空气不会通过汽缸中心,所以能产生较强的进气涡流,对于低速行驶,尤其是冷车怠速条件下能增大燃烧速率,使燃烧更充分从而也大大提高了经济性。在我们日常行车中,经常会遇到这种情况,比如堵车时,这时装备了MIVEC系统的发动机比普通发动机能节省不少的燃料。 而另一种情况就是当我们需要加速或高转速行驶时,这时MIVEC系统会让两个进气门同时以同样的最大升程开启,这时的进气效率能显著提高,令发动机在高转速运转时能有充足的储备。 当然MIVEC并不是只有这两种可变的工作状态,它可以根据各传感器传来的发动机工况信号来适时调整最合理的配气正时,总而言之mivec可以令发动机时刻处在最佳燃烧状态。 Valvetronic Valvetronic中文翻译为电子气门,宝马应用Valvetronic技术的发动机是世界上第一个没有节气门发动机。这项技术用电动控制每个汽缸上进气门的提升,取代了传统节气门。这样一来,发动机能够自由地呼吸,在油耗更少的同时性能更佳。 由于消除了传统节气门造成的泵吸损失和空气流扰动,发动机更加高效,反应也更加迅捷。与传统节气门的情况相反,空气可以通过进气歧管自由流动,Valvetronic电子气门精确地调节进入汽缸的空气量。 Valvetronic电子气门使用步进马达控制装备有一系列中间摇臂的次级偏心轴,而次级偏心轴则又控制阀门提升度。作为一种控制空气供给的手段,节气门不再是必要的,但为安全考虑,仍然安装节气门作为紧急后备装置。 通过优化燃油/空气混合过程,Valvetronic电子气门最多能够节省百分之十的燃油(以ECE驾驶标准为准)。此外,Valvetronic电子气门还可改善冷起动能力,降低废气排放并提供更平稳迅捷的动力输出。 Double-VANOS Double-VANOS:双凸轮轴可变气门正时系统。   Double-VANOS是由BMW开发的双凸轮轴可变气门正时系统,这是宝马技术发展领域中的又一项成就:Double-VANOS双凸轮轴可变气门正时系统根据油门踏板和发动机转速控制扭矩曲线,进气和排气气门正时则根据凸轮轴上可控制的角度按照发动机的运行条件进行无级的精准调节。   在低发动机转速时,移动凸轮轴的位置,使气门延时打开,提高怠速质量并改进功率输出的平稳性。在发动机转速增加时,气门提前打开:增强扭矩,降低油耗并减少排放。高发动机转速时,气门重新又延时打开,为全额功率输出提供条件。 Double-VANOS双凸轮轴可变气门正时系统还控制循环返回进气歧管的废气量以增强燃油经济性。系统在发动机预热阶段使用一套专用参数以帮助三元催化转换器更快达到理想工作温度并降低排放。整个过程由车辆的汽油发动机电子控制系统(DME)控制。 涡轮增压 涡轮增压发动机是依靠涡轮增压器来加大发动机进气量的一种发动机,涡轮增压器(Turbo)实际上就是一个空气压缩机。它是利用发动机排出的废气作为动力来推动涡轮室内的涡轮(位于排气道内),涡轮又带动同轴的叶轮位于进气道内,叶轮就压缩由空气滤清器管道送来的新鲜空气,再送入气缸。当发动机转速加快,废气排出速度与涡轮转速也同步加快,空气压缩程度就得以加大,发动机的进气量就相应地得到增加,就可以增加发动机的输出功率了。 涡轮增压发动机的最大优点是它可在不增加发动机排量的基础上,大幅度提高发动机的功率和扭矩。一台发动机装上涡轮增压器后,其输出的最大功率与未装增压器相比,可增加大约40%甚至更多。 双涡轮增压 双涡轮增压一般称为Twin turbo或Biturbo,双涡轮增压是涡轮增压的方式之一。针对废气涡轮增压的涡轮迟滞现象,串联一大一小两只涡轮或并联两只同样的涡轮,在发动机低转速的时候,较少的排气即可驱动涡轮高速旋转以产生足够的进气压力,减小涡轮迟滞效应。 在双涡轮增压的汽车上会看到2组涡轮通过串联或者并联的方式连接。并联指每组涡轮负责引擎半数汽缸的工作,每组涡轮都是同规格的,它的优点就是增压反应快并减低管道的复杂程度。 串联涡轮通常是一大一小两组涡轮串联搭配而成,低转时推动反应较快的小涡轮,使低转扭力丰厚,高转时大涡轮介入,提供充足的进气量,功率输出得以提高。 单涡轮双涡管 单涡轮双涡管可以说是宝马的独有技术,单涡轮双涡管就是将一个涡轮增压器的气流在经过涡管时分为两股气流,每股气流负责3个缸.同时于双涡轮相比,单涡轮的设计也减低了排气脉冲相互干扰的情况。单涡轮双涡管发动机逐渐在宝马各个车系开始 普及。 与N54B30的3.0双涡轮发动机相比,它只采用了一颗经过TwinPower优化的单涡轮增压器,TwinPower简单的说双进气道,单涡轮双涡管就是由双涡轮的每三个汽缸驱动一个涡轮进化成了每三个汽缸各自通过一个涡轮进气管路共同驱动一个涡轮,从而减轻发动机自重和降低油耗。 可变截面涡轮 为了更好的了解可变截面涡轮的优势,先让我们分析一下普通涡轮增压发动机的缺点。 普通涡轮增压发动机在全负荷状态下时排气能量非常可观,但当发动机转速较低时,排气能量却小的可怜,此时涡轮增压器就会由于驱动力不足而无法达到工作转速,这样造成的结果就是,在低转速时,涡轮增压器并不能发挥作用,这时候涡轮增压发动机的动力表现甚至会小于一台同排量的自然吸气发动机,这就是我们经常说的“涡轮迟滞”现象。 对于传统的涡轮增压发动机来说,解决涡轮迟滞现象的一个方法就是使用小尺寸的轻质涡轮,首先,小涡轮会拥有较小的转动惯量,因此在发动机低转速时,在发动机较低转速下涡轮就能达到最佳的工作转速,从而有效改善涡轮迟滞的现象。不过,使用小涡轮也有它的缺点:当发动机高转速时,小涡轮由于排气截面较小,会使排气阻力增加(产生排气回压),因此发动机最大功率和最大扭矩会受到一定的影响。而对于产生回压较小的大涡轮来说,虽然高转速下可以拥有出色增压效果,发动机也会拥有更强的动力表现,但是低速下涡轮更难以被驱动,因此涡轮迟滞也会更明显。 可变截面涡轮增压的原理 为解决上述矛盾足,让涡轮增压发动机在高低转速下都能保证良好的增压效果,VGT(Variable Geometry Turbocharger)或者叫VNT可变截面涡轮增压技术便应运而生。在柴油发动机领域,VGT可变截面涡轮增压技术早已得到了很广泛的应用。由于汽油发动机的排气温度要远远高于柴油发动机,达到1000°C左右(柴油发动机为400°C左右),而VGT所使用的硬件材质很难承受如此高温的环境,因此这项技术也迟迟未能在汽油机上应用。近年来,博格华纳与保时捷联手克服了这个难题,使用了耐高温的航空技术,从而成功开发出了首款搭载可变截面涡轮增压器的汽油发动机,保时捷则将这项技术称为VTG(Variable Turbine Geometry)可变涡轮叶片技术。 『图中涡轮外围的红色叶片就是导流叶片』 『一般的涡轮并没有导流叶片的结构』 VGT技术的核心部分就是可调涡流截面的导流叶片,从图上我们可以看到,涡轮的外侧增加了一环可由电子系统控制角度的导流叶片,导流叶片的相对位置是固定的,但是叶片角度可以调整,在系统工作时,废气会顺着导流叶片送至涡轮叶片上,通过调整叶片角度,控制流过涡轮叶片的气体的流量和流速,从而控制涡轮的转速。当发动机低转速排气压力较低的时候,导流叶片打开的角度较小。根据流体力学原理,此时导入涡轮处的空气流速就会加快,增大涡轮处的压强,从而可以更容易推动涡轮转动,从而有效减轻涡轮迟滞的现象,也改善了发动机低转速时的响应时间和加速能力。而在随着转速的提升和排气压力的增加,叶片也逐渐增大打开的角度,在全负荷状态下,叶片则保持全开的状态,减小了排气背压,从而达到一般大涡轮的增压效果。此外,由于改变叶片角度能够对涡轮的转速进行有效控制,这也就实现对涡轮的过载保护,因此使用了VGT技术的涡轮增压器都不需要设置排气泄压阀。 需要指出的是,VGT可变截面涡轮增压器只能通过改变排气入口的横切面积改变涡轮的特性,但是涡轮的尺寸大小并不会发生变化。如果从涡轮A/R值去理解的话,可变截面涡轮的原理会更加直观。 『也有的厂商将这项技术称为VNT,比如沃尔沃和奥迪,它们在本质上是一样的』 A/R值是涡轮增压器的一项重要指标,用以表达涡轮的特性,在改装市场的涡轮增压器销售册上也常有标明。A表示Aera区域,指的是涡轮排气侧入口处最窄的横切面积(也就是可变截面涡轮技术中的“截面”),R(Radius)则是代表半径意思,指的是入口处最窄的横切面积的中心点到涡轮本体中心点的距离,而两者的比例就是A/R值。相对而言,压气端叶轮受A/R值的影响并不大,不过A/R值却对排气端涡轮有着十分重要的意义。 INCLUDEPICTURE "http://img.autohome.com.cn/2010/12/4/4-10-21-36-489588158.jpg" \* MERGEFORMATINET 导流叶片的开度能够影响导向涡轮叶片的气流速度,低转速时开度小(左图),提高空气流速,高转速时开度大(右图),减小排气负压 当A/R值越小时,表示废气通过涡轮的流速较高,这种特性可以有效减轻涡轮迟滞,涡轮也就能在较低的转速区域取得较高的增压,而发动机高转速时则会产生较大的排气背压,使高转速时功率受到限制。反之,当A/R值越大时,涡轮的响应速度就越慢,低转速时涡轮迟滞明显,不过在高转速时,拥有较小的排气背压,且能够更好的利用排气能量,从而获得更强的动力表现。 而VGT技术所实现的截面可变就是指改变A值。当叶片角度较小时,排气入口的横切面积便会相应减小,因此A值会随之变化,从而拥有小涡轮响应快的特点。而当叶片角度增大时,A值随之增大,这时A/R值增大,从而在高转速下获得更强的动力输出。总而言之,透过变更叶片的角度,VTG系统可随时改变排气涡轮的A/R值,从而兼顾大/小涡轮的优势特性。 尽管结构和原理都很简单,但VGT可变截面涡轮技术对于增压效果的提升非常显著,在目前主流的涡轮增压柴油发动机上,这项技术已经得到了非常普遍的应用。不过,由于硬件材质的限制,这项技术在排气温度较高的汽油发动机上才刚刚起步,保时捷和博格华纳的合作可以说开创了先河。不过,随着材料科技的进步,这项技术在未来的汽油发动机上必将会得到更广泛的应用。 泄压阀 当一辆改装车从身旁飞驰而过,我们时常会听到“嗡嗡……”的一段发动机加速声音后,又传来“呲……”的一声——这给人让人传递了冲劲十足的感觉。这声音是从那里传来的?为什么普通民用车,或者一些高性能跑车上都没有这样的声音(而一些普通的改装车却有)? 其实这种特有的“呲……”声是涡轮增压发动机的卸压阀在卸压时所发出的声音,可以说,所有的涡轮增压发动机都会产生这种声音,只不过对于日常民用车而言,厂家在设计时会将这种声音作为噪音来处理,尽可能地将它降低。做法是将压力泄到进气歧管内,因此噪音很小——这种泄压方式叫做内泄式。 对于装配涡轮增压发动机的普通民用车而言,不仔细听一般都无法觉察到有卸压时的“呲呲”声。这就好比对于普通民用车,发动机噪音和隆隆的排气声是属于负面参数(而高性能车有时则可以强调这种声音),原厂设计时尽可能的将这种声音消除。而对于喜欢驾驶乐趣的车友,这种声音则成了激发其驾驶激情的催化剂(我们经常看见很多车的排气管被改得像炮筒一般,声音也隆隆的震天响)。 除了激发驾驶激情以外,“炫”也是改装的诉求之一,很多人希望将自己的车改得像超高性能车,即便车子动力并不是特别强。一般来说,涡轮增压发动机发出 “呲、呲”声的大小是与增压强度相关的——大涡轮增压器更容易发出这样的声音。因此如果这种声音比较大,可以显得这台车的增压器较大,让人有很炫的感觉。 许多改装发烧友也是出于这个目的,把自己民用车发动机(如宝来1.8T、帕萨特1.8T)的内泄式泄压改成了外泄式,并进一步加大“呲”声,其道理与炮筒式的排气管很类似。那么,为什么涡轮增压发动机会发出这样的声音呢? 当我们踏下油门踏板加速时,节气门打开,发动机排出高温高压的废气能量推动废气涡轮旋转,当达到涡轮增压器工作时的转速(也就是使涡轮旋转在每分钟10万转以上时),涡轮增压器才将周围的空气进行压缩,使发动机进气量增加、提升发动机的动力性。 『HKS外排式泄压阀』 在当我们收油时,节气门开度迅速减小直至处于关闭的怠速状态,也就是说发动机不需要进气了,或者说进气管中的气流会在节气阀处受阻。但此时此刻涡轮增压器并没有停止工作!由于惯性,涡轮增压器仍然保持在每分钟10万转以上的转速继续旋转着。现在可以想象,此时的空气仍然继续被源源不断地压缩进入进气管中,如果在进气管中这部分高压空气不能被及时排走,就会使进气管中压力迅速升高,有可能造成节气门损害或进气管爆裂。 『泄压阀安装在进气管中』 这时,就需要在进气管道中加装一个卸压装置,来卸掉管道中来自进气涡轮压缩后的多余高压空气。实际上泄压阀就是安装在进气管上一个阀门,用以控制增压压力。泄压阀的开闭由ECU(电子控制单元)操纵的电磁线圈控制。ECU会根据涡轮出口增压的压力高低来做出判断,一旦压力超过临界值时,就会对电磁线圈进行通电或断电控制,从而开启或关闭泄压阀。 当卸压阀关闭时以保证进气管内有足够的进气压力为依据,当阀门打开能将多余的气体泄到大气中,减轻进气道内压力,保护发动机进气管道。所以我们听到改装车上的“呲、呲”声就是泄压阀在泄压排气时的声音。 事实上,改装车上发出的“呲、呲”声对于提升发动机性能提升没有任何意义,只不过能渲染出一种增压值很大的假象。相对来说,增压值越大的发动机,这种泄压阀泄压排出的空气也就越多,理论上产生的噪音也就越大。而改装车的时候,将泄压阀泄压时的声音进行放大,就像采用大炮筒排气管一样——动静很酷,却没有什么实际效果。 OHV 发动机的凸轮轴布局形式分为OHC(顶置凸轮轴)和OHV(底置凸轮轴)这两种。目前日本及欧洲的汽车厂家较为青睐顶置凸轮轴这种设计;而底置凸轮轴,通常我们只有在美国车上才
/
本文档为【汽车发动机】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索