为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

2.1喇叭的发声原理aa(精编)

2017-12-20 30页 doc 221KB 47阅读

用户头像

is_348501

暂无简介

举报
2.1喇叭的发声原理aa(精编)2.1喇叭的发声原理aa(精编) 喇叭的发声原理aa 任何声音的发出去是通过振动. 以前物理学过的,有振动就有声音,没振动就没声音 材质的的构成是很简单的,由外表只看到一个木箱及几个单体而已,通常会有保謢网罩,但其内部的发音原理呢,以计算机来说,当喇叭接受到由声卡的输出端输出讯号时,会启动扩大机的电流,而电流的正负电会使喇叭单体上线圈产生磁场反应,我们用两片磁石来比喻,当正极和正极在一定的距离时会互相排斥,而负极和正极会相吸引,但喇叭单体 的确是靠这个原理来发音的。接下来我们来讨论磁场是如何运用于声音的,这必需先了解到单...
2.1喇叭的发声原理aa(精编)
2.1喇叭的发声原理aa(精编) 喇叭的发声原理aa 任何声音的发出去是通过振动. 以前物理学过的,有振动就有声音,没振动就没声音 材质的的构成是很简单的,由外表只看到一个木箱及几个单体而已,通常会有保謢网罩,但其内部的发音原理呢,以计算机来说,当喇叭接受到由声卡的输出端输出讯号时,会启动扩大机的电流,而电流的正负电会使喇叭单体上线圈产生磁场反应,我们用两片磁石来比喻,当正极和正极在一定的距离时会互相排斥,而负极和正极会相吸引,但喇叭单体 的确是靠这个原理来发音的。接下来我们来讨论磁场是如何运用于声音的,这必需先了解到单体 的相关名词了,首先我们打开我们的音箱<喇叭>将网罩拿开,会看到这个音箱中装了几个单体,最上面的单体通常很小,是高音喇叭,底部较大的一个则负责中低音部份<若阁下的喇叭是三个或多个单体的话,最底下最大的通常是低音喇叭,而中等大小的则为中音喇叭>,而单体表面会有一种 类似橡胶的圆型膜,那是共振用来发声用的,这种材质不一定全是橡胶,亦可是纸盆及金属制或陶磁制,但有一个要素即<要轻><要硬><要薄>,如此才可达到发音的目的。 电流给线圈的的电发生磁场效应,正极-正极时会排斥<此时会振膜会往内收>负极-正极<此时振膜会往外扩>,这瞬间一收一扩的节奏会造成WAVE<声波><气流>,而产生声音,和我们讲话的喉咙振动是同样的效果。 喇叭发声通过纸盆振动发声. 常用的是永磁动圈式,可动线圈在磁铁附近通如交流点信号则变换位置,从而带动纸盆震动发声.高音喇叭的纸盆通常较小,对高声频信号敏感,而低音喇叭的纸较大,对低频信号敏感.功放级的电压很低,电流很大.通常永磁动圈式喇叭的阻尼只有8欧姆 音响中高音喇叭,低音喇叭,是独立的,通过分频器分别推动高、低音喇叭。 功放放大的是把前级电压进行功率放大,电流、电压,都得到进一步放大 扬声器应用了电磁铁来把电流转化为声音 (图一)。原来,电流与磁力有很密切的关系。试试把铜线绕在长铁钉上,然后再接上小电池,你会发现铁钉可以把万字夹吸起。当电流通过线圈时会产生磁场,磁场的方向就由右手法则来决定。 扬声器同时运用了电磁铁和永久磁铁 (图二)。假设现在要播放 C 调 (频率为 256 Hz,即每秒振动256次),唱机就会输出256 Hz的交流电,换句话说,在一秒钟内电流的方向会改变 256 次。每一次电流改变方向时,电磁铁上的线圈所产生的磁场方向也会随着改变。我们都知道,磁力是「同极相拒,异极相吸」的,线圈的磁极不停地改变,与永久磁铁一时相吸,一时相斥,产生了每秒钟 256次的振动。线圈与一个薄膜相连,当薄膜与线圈一起 振动时,便会推动了周围的空气。振动的空气,不就是声音吗,这就是扬声器的运作原理了。 其实,你身边还有许多电器运用了同一个原理~你可以把它们列举出来吗, 基本原理来自佛莱明左手定律,把一条有电流的道线与磁力线垂直的放进磁铁南北极间,道线就会受磁力线与电流两者的互相作用而移动,在把一片振膜依附在这根道线上,随着电流变化振膜就产生前后的运动。目前百分之九十以上的锥盆单体都是动圈式的。 目前绝大多数的喇叭都还是用传统的锥盆式单体前后运动声,比较学术性的说法,这些喇叭叫电动(ElectrokineticDynamic)或动圈式(Moving Coil)。早在一八七七年德国西门子的Erenst Vemer就获得了动圈式喇叭的专利,不过真空管迟至一九0七年才正式运用,而爱迪生最早的唱机是唱针直接带动振膜而后经号角放大发声,所以西门子的专利一直没有用上。一九二0年美国奇异公司的Chester Rice与Edward Kerrog还有爱迪生贝尔P.G.Hokuto才首度发展出实用的动圈式喇叭,七十多年来,除了材料不断改良外,你记为喇叭科技真的有进步吗,((但若从设计原理来分的话,又分成<扩散式喇叭><号角式喇叭><同轴式喇叭>, 我们一般常见的喇叭皆是第一种喇叭,号角式喇叭及同轴式较不多见。))下面是几种常见的喇叭发声方式: 一、 动圈式。基本原理来自佛莱明左手定律,把一条有电流的道线与磁力线垂直的放进磁铁南北极间,道线就 会受磁力线与电流两者的互相作用而移动,在把一片振膜依附在这根道线上,随着电流变化振膜就产生前后的 运动。目前百分之九十以上的锥盆单体都是动圈式的设计。 二、电磁式。在一个U型的磁铁的中间架设可移动斩铁片(电枢),当电流流经线圈时电枢会受磁化与磁铁产 生吸斥现象,并同时带动振膜运动。这种设计成本低廉但效果不佳,所以多用在电话筒与小型耳机上。 三、电感式。与电磁式原理相近,不过电枢加倍,而磁铁上的两个音圈并不对称,当讯号电流通过时两个电枢 为了不同的磁通量会互相推挤而运动。与电磁是不同处是电感是可以再生较低的频率,不过效率却非常的低。 四、静电式。基本原理是库伦(Coulomb)定律,通常是以塑胶质的膜片加上铝等电感性材料真空汽化处理, 两个膜片面对面摆放,当其中一片加上正电流高压时另一片就会感应出小电流,藉由彼此互相的吸引排斥作用 推动空气就能发出声音。静电单体由于质量轻且振动分散小,所以很容易得到清澈透明的中高音,对低音动力 有未逮,而且它的效率不高,使用直流电原又容易聚集灰尘。目前如Martin-Logan等厂商已成功的发展出静 电与动圈混合式喇叭,解决了静电体低音不足的问题,在耳机上静电式的运用也很广泛。 五、平面式。最早由日本SONY开发出来的设计,音圈设计仍是动圈式为主题,不过将锥盆振膜改成蜂巢结 构的平面振膜,因为少人空洞效应,特性较佳,但效率也偏低。 六、丝带式。没有传统的音圈设计,振膜是以非常薄的金属制成,电流直接流进道体使其振动发音。由于它的 振膜就是音圈,所以质量非常轻,瞬态响应极佳,高频响应也很好。不过丝带式喇叭的效率和低阻抗对扩大机 一直是很大的挑战,Apogee可为代表。另一种方式是有音圈的,但把音圈直接印刷在塑胶薄片上,这样可以 解决部分低阻抗的问题,Magnepang此类设计的佼佼者。 七、号角式。振膜推动位于号筒底部的空气而工作,因为声音传送时未被扩散所以效率非常高,但由于号角的 形状与长度都会影响音色,要回放低频也不太容易,现在大多用在巨型PA系统或高音单体上,美国Klipsch 就是老字号的号角喇叭生产商。 八、其它还有海耳博士在一九七三年发展出来的丝带式改良设计,称为海耳喇叭,理论上非常优秀,台湾使用 者却很稀少。压电式是利用钛酸等压电材料,加上电压使其伸展或收缩而发音的设计,Pioneer曾以高聚合体 改良压电式设计,用在他们的高音单体上。离子喇叭(Ion)是利用高压放电使空气成为带电的质止,施以交 流电压后这些游离的带电分子就会因振动而发声,目前只能用在高频以上的单体。飞利浦也曾发展主动回授式 喇叭(MFB),在喇叭内装有主动式回授线路,可以大幅降低失真。这些设计目前都不是主流,我们有机会再 来探讨。 接下来谈喇叭音箱内部的一些架构,由背部将音箱的背板拆下,看到一些电线及分频器<负责将高中低音往不同的单体送>,若分频器有二个的话称二音路喇叭, 三个分频器的话称三音路喇叭,可能达到四音路或五音路设计吗,<只要你喜欢有什么不可以,但不一定需要如此多音路设计>,除此之外还有会塞一些吸音绵,并看到音箱的隔间,有些会有一个圆孔<正面,背面都可能>称扩散孔,而无扩散孔的称密闭式喇叭,讲了这么多有关喇叭的名词,各位看倌是否有些不 知所云了呢, 其实单单一个喇叭我们只在乎价格及性能,那管那么多名词呢,但笔者以为若凡事 不求通晓精细,那又如何会进步呢, 简易的的喇叭选择方法,先看音箱材质,塑料的最差,因我们由喇叭发音原 理中知道单体靠共振来发音的,而塑料外壳的共振声最差。木质音箱会比较好些 ,若是甘蔗板作的音箱也不好,密集板的音箱会有较好的表现,原木木板是不太可用于低价喇叭的,否则会比以上 都好些,简单的说硬度要够,用手指敲击全部外壳声音越平均的音箱越佳,那代表音箱的构造密度较平均,故共振干扰较少。 简易的改善喇叭音质的方法,有人用吸音绵来改善声音,有人用角椎来垫在喇叭下面,换较粗的喇叭线,更换内部配线<用较好的铜线来更换原来的配线>,换输出入端子的插座为镀金的,摆位的角度变化求出最佳角度, 换被动 式喇叭加上一台扩大机,以上方法皆有效果的,但另有一个较少人知的方法是贴一元的硬币,我大略的介绍方法,用手指敲喇叭音箱找出共振声音最大声的点,计左右背上下五个地方,用快干将五个一元硬币贴在点上【若贴在外侧不好看,可贴在内部看不到的地方】,如此花二十元不到的施工,可以提升至少几倍的效果,一对仟元左右的喇叭会比两仟元的喇叭好上许多。 当您看完以上简介后,要大略判断喇叭好坏还是有一些问题的,至少您要看完以下的数据才可能达到基本要求,主动式计算机喇叭常看不到规格标示,是不是我们玩电的都是音响白痴呢,或是我们不用懂这些基本功夫呢, 例如这对喇叭音频是多少呢,<20-20000H赫兹>,阻抗是多少呢,<4,6,8奥姆>, 分频点是多少呢,<低频至中频是多少HZ,中频至高频是多HZ>,输出功率是多少瓦呢,瞬间输出功率呢,讯噪比是多少db呢, 为何我们家用的喇叭是800瓦大功率的,声音像玩具八音盒呢,这些问题我保留给各位先进朋友去省思 KTV音箱 于KTV来说,音响的效果就是其吃饭的工具,如何选择适合的音响想必都是每个KTV老板关心的问题,今天我们就和大家一起探讨在挑选K房音箱的几个要求,希望可以对感兴趣的朋友提供一个参考。 首先看清楚音箱各个配件是否吻合(接线盒,音箱铁网,面板等)如果缝太大的话有可能会漏气一但漏气的话就会产生气流声对原有的音色有所影响,还会制造不必要的杂音。用手摸音箱后面的各个拼板处看接缝大小,接缝大小直接影响吊装的安全性。 然后再用大动态的音乐播放5分钟左右看单元的功率承受能力,仔细听清楚音箱在不失真的情况下是否产生杂音,是否感觉到很烦躁很刺耳很闷,如果出现杂音就有可能是单元有问题或者单元设计不合理(比如音圈擦圈,音圈打低,打边等)如果感觉到很烦躁很刺耳很闷那就是音箱分频点设置不好,各单元灵敏度配合不上高中低频涵接不好。 如果上面几点都没有什么问题出现的话就试飞咪和歌唱效果了,首先用咪正对音箱正中距离1米慢慢调试咪音量直至出现飞米再慢慢往回调一点点到刚好不飞咪的位置然后自己高歌一首喜欢的歌曲,边唱边听感觉一下唱得吃不吃力,轻松不轻松,大动态时感觉自己的声音有没有出现裂声,变声等躁音,唱得轻松大动态没有任何躁音不会变声不会飞咪就是好的音箱 K房设计方案 KTV的K房设计方案 音响系统为建声与电声结合,音响与室内声学有着十分重要的关系,根据室内声学理论,声音在房间传播由直达声、早期反射声和混响声三部分组成。 ?直达声是从声源(即音箱)发出直接到达听音者的声音,是声音的主要信息。在音响系统中,未经过处理的声音信号也称为直达声。在传播过程中,直达声不受室内反射界面的影响,距声源的距离每增加一倍,直达声的声压级衰减6分贝,音色非常纯正,但听起来发干,现代音响声场设计要求充分利用从音箱发出的直达声,合理控制反射声,音箱吊挂是获得直达声的最好方案。 ?混响声是早期反射声后到达的、经房间界面多次反射的声音。合适的混响声可以使声音具有环境感,有利于提高声音的丰满度,过强的混响声会破坏声音的清晰度。混响声与直达声的比例,决定着听音时声源的距离感,混响声比例大时感觉声源距离较远,比例小时感觉声源距离较近。早期反射声亦称近次反射声,为直达声后50毫秒以内到达的、经一次或两次反射到达听音者的声音。在声场中,合适的早期反射声可以使声音加厚、加重,甚至可以加强声音的响度,但如果它过强就会破坏声像定位,影响声音的清晰度。在建筑声学设计中,要合理利用和控制界面的早期反射声的强度和延时时间量,以获得最佳声音效果。 ?考虑到KTV包厢的实际使用功能,即要有自己的特色,又要符合科学规律和先进的系统设计思想,按照音响为主、建声为辅的原则,应该尽量多的考虑一次)二次反射声音,这两次回音对演唱者产生的旋律包围感极强,特别是演唱者自己的歌声得到充实美化,感觉越唱越想唱,越唱越有味,这样的音响设计就算成功了。 针对10??20?的KTV包厢,音箱到沙发的距离在4m内可以采用如下配置图: 针对23??30?的KTV包厢,音箱到沙发的距离在大于4m的可以采用如下配置图: 也就是说KTV多音箱系统的新理念,突破传统的两音箱老套,使演唱者有更好的声音包围感,声压更均匀,唱歌更轻松;适合纯K的KTV包厢;前面的音箱用10〞音箱,后面的采用5〞,8〞的音箱,视房间的大小而定。 针对33??45?的KTV包厢,音箱到沙发的距离在大于4m的可以采用如下配置图: 本配置增加了一个中置音箱,麦克风关闭时出伴奏音乐,打开麦克风时自动关闭音乐放唱歌人声,使唱歌人声更突出,同时增加了一支15〞低音炮,增加了音乐的低频厚度,使唱歌更舒服。 音箱外观设计基本知识 在设计一款音箱产品的外观时,首先要注意,最主要是要遵守声学原理,尤其是低音系统。目前音箱都有分频系统,X.1系统是电子分频,高档2.0基本都是无源分频。低音的下限频率和反应速度主要由箱体尺寸、扬声器口径、导风口规格,箱体结构决定,不同的设计,声音表现也不一样。装机市场大部分是以木质低音箱加塑料卫星箱为主。塑料可现更多的造型和色彩搭配,自然能更好配合机箱、显示器等的设计,而颜色搭配方面主要以白、黑色作为首选。 个性市场则比较复杂,全木质2.1系统及塑料卫星箱搭配木质低音炮的产品都有,它们主要应用于听音乐、看影碟和打游戏。消费者若看重音质,则会选全木箱结构,当然造型会比较保守,但也可以做出个性,如:麦博的梵高330采用复古设计风格,适合那些有些小资情调,喜欢听老歌、品咖啡的消费者。个性张扬的人会选择塑料微型箱,它的造型、色彩等都会有很大突破。比如用黑白或鲜明的彩色搭配、喷涂金属漆、模拟一些热门游戏中的人、物、景的某些的造型甚至把游戏的画面印在产品上等,都是为了能展示个性,有些产品还模仿NOKIA手机做出了可换色的外壳。 目前有些用户认为塑料音箱的音质不好,其实这并不科学。我们熟悉的BOSE小音箱基本都是塑料材质的,它造型经典,声音也很出色。定位中高端的产品虽不像国外产品那样有优良的设计和用料,但音质也不会较木质箱有太大差别,所以这个市场发展得很快。 个性市场的竞争是最激烈的,销量远比高端产品大,而利润又比装机配套市场丰厚,所以产品也很多。这个市场的细分程度也最高,有些甚至成了定向开发产品,如:CS专用音箱。因此,这个市场是个性化的,没有任何一种外观和色彩能绝对吸引消费者。 如果要设计一款2.1音箱,2.1系统中的3个音箱在比例上没有限制。低音箱要和选用扬声器的口径搭配,目前流行的是4英寸,5英寸,5.25英寸扬声器。卫星箱的音效和箱体容积没太大关系,因此体积可大可小,但必须保证能把防磁扬声器放进去。好的2.5英寸或3英寸防磁扬声器都会有很大的磁钢来驱动振盆,因此这类箱体的厚度相对较大。 音箱设计忌讳5“不” 作为一个外观设计师,不仅要考究音箱外形,还要研究相关材质的运用、色彩的搭配,内部喇叭、电路的设置和外观的协调、整体的配合。在音箱设计时,忌讳5“不”: 1.箱体设计不符合声学原理。在设计的时候,首先要了解这是一个音箱箱体的设计。作为一个音箱箱体的设计,尤其是低音箱体的设计,必须考虑喇叭和空间的配合。音箱的结构,必须和箱体尺寸、扬声器口径、导风口规格等配合。例如,箱体选用不同规格尺寸的喇叭,就必须设计不同的气流的空间。如果在这些方面考虑不够,制造出来的音箱音质就会不尽如人意。 2.设计不符合工业设计原理。一个音箱箱体的设计,是必须以能够制造、销售并且赢得市场为前提的。如果设计出来的音箱外形令人惊艳,也很有创意,但是无法投入生产和销售。或者是即使能够制造出来,但是成本巨大,而且远远超过市场和大众的心理接受程度,这样的设计就永远只能在纸上看看而无法付诸实现。音箱设计必须是感性和理性结合的过程,是商业和艺术碰撞的火花。 3.构图不够清晰有力。其实一个音箱产品究竟怎样,在没有实际生产出来以前,都是依kao图纸来表现和让人认知。所以,画图是很重要的。画图要从多个侧面,多个角度体现,在尺寸上也要拿捏准确,充分展现音箱。另外, 在作品中,图形的配色、背景的烘托,主体的突出,细节的刻画也是非常重要的,一个好的设计要想被人注意,就必须注意这些。 4.创意不鲜明、模仿痕迹重。音箱设计,如果明显地带有模仿痕迹、缺乏创意,没有新鲜感,就会大大削弱整体的优势。不过这里要说明是,借鉴和模仿是不同的,两者有本质的区别,怎么样把握好这个度,就在于个人的功力了。 5.整体考虑不够周全。音箱是一个整体,所以在设计的时候,要全面考虑到音箱的零器件如接线的设置、支架的配合和音箱配合电脑的摆放的空间和位置,而不能认为光设计好箱体就已经足够,要考虑实际使用时是什么环境。不同的音箱,如2.1、2.0这些多媒体音箱或者是家庭影院系统等配合大屏幕使用的音箱,也要充分考虑将来配合的对象的特点。如多媒体音箱因为是配合电脑使用的音箱,所以卫星箱的尺寸上一般较小等等。 音箱设计3个理念 作为一款应用于市场的音箱设计,需要针对市场和厂家的特点来进行设计。 第一,领先市场半步。若开发的是过时产品,只能微利销售,而过于超前就会让产品长期处于推广期,由于设计理念新颖,利润可能会很高,但销量却不一定高,而公司还要用很多资源去引导用户接受这个产品; 第二,符合工厂的制造工艺和成本要求,设计出的产品必须是在工厂中能做出来的,能够投入大批量生产的。 第三,建立并尊重传统。一个公司的产品一定有它的特点,就像宝马车、IBM电脑,我们一眼就能认出来。设计师设计产品,必须把它当成定向开发,音箱设计是一个有连续性的开发过程。 音箱的七大主要指标详细解析 现在市场上的音箱贵的上千,便宜的三十元就能买到,那么到底怎样的音箱才算是一套真正的好音箱呢,尤其是对音箱不太懂的“菜鸟”级朋友,只能看看外观,听听商家给放一小段震耳欲聋的音乐,只能感官感受一下;至于从技术指标角度来讲,就不知该从哪里入手判断音箱的优劣。不要着急,笔者下面就和大家谈谈音箱的相关性能指标,希望这些内容能给您在选购音箱时提供一些参考。 1( 频响范围 频响范围的全称叫频率范围与频率响应。前者是指音箱系统的最低有效回放频率与最高有效回放频率之间的范围;后者是指将一个以恒电压输出的音频信号与系统相连接时,音箱产生的声压随频率的变化而发生增大或衰减、相位随频率而发生变化的现象,这种声压和相位与频率的相关联的变化关系称为频率响应,单位分贝(dB)。声压与相位滞后随频率变化的曲线分别叫做“幅频特性”和“相频特性”,合称“频率特性”。这是考查音箱性能优劣的一个重要指标,它与音箱的性能和价位有着直接的关系,其分贝值越小说明音箱的频响曲线越平坦、失真越小、性能越高。如:一音箱频响为60Hz~18kHz+/-3dB。这两个概念有时并不区分,就叫做频响。从理论上来讲,构成声音的谐波成分是非常复杂的,并非频率范围越宽声音就好听,不过这对于中低档的多媒体音箱来讲还是基本正确的。现在的音箱厂家对系统频响普遍标注的范围过大,高频部分差的还不是很多,但在低音端标注的极为不真实,所以敬告大家低频段声音一定要耳听为实,不要轻易相信宣传单上的数值。 2( 灵敏度 该指标是指在给音箱输入端输入1W/1kHz信号时,在距音箱喇叭平面垂直中轴前方一米的地方所测得的声压级。灵敏度的单位为分贝(dB)。音箱的灵敏度每差3dB,输出的声压就相差一倍,普通音箱的灵敏度在85,90dB范围内,85dB以下为低灵敏度,90dB以上为高灵敏度,通常多媒体音箱的灵敏度则稍低一些。 3( 功率 该指标说简单一点就是,感觉上音箱发出的声音能有多大的震撼力。根据国际,功率有两种标注方法:额定功率与最大承受功率(瞬间功率或峰值功率PMPO)。而额定功率是指在额定频率范围内给扬声器一个规定了波形的持续模拟信号,扬声器所能发出的最大不失真功率,而最大承受功率是扬声器不发生任何损坏的最大电功率。通常商家为了迎合消费者心理,通常将音乐功率标的很大,所以在选购多媒体音箱时要以额定功率为准。音箱的最大承受功率主要由功率放大器的芯片功率决定,此外还跟电源变压器有很大关系。掂一掂主副音箱的重量差就可以大致知道变压器的重量,通常越重功率越大。但音箱的功率也不是越大越好,适用就是最好的,对于普通家庭用户的20平方米左右的房间来说,真正意义上的50W功率是足够的了,没有必要去过分追求高功率。 4( 失真度 音箱的失真度定义与放大器的失真度基本相同,不同的是放大器输入的是电信号,输出的还是电信号,而音箱输入的是电信号,输出的则是声波信号。所以音箱的失真度是指电声信号转换的失真。声波的失真允许范围是10%内,一般人耳对5%以内的失真不敏感。大家最好不要购买失真度大于5%的音箱。 5( 信噪比 该指标指音箱回放的正常声音信号与噪声信号的比值。信噪比低,小信号输入时噪音严重,在整个音域的声音明显变得浑浊不清,不知发的是什么音,严重影响音质。信噪比低于80dB的音箱(包括低于60dB的低音炮)建议不购买。 6( 阻抗 该指标是指输入信号的电压与电流的比值。音箱的输入阻抗一般分为高阻抗和低阻抗两类,一般高于16欧姆的是高阻抗,低于8欧姆的是低阻抗,音箱的标准阻抗是8欧姆。市场上音箱的标称阻抗有4欧姆、5欧姆、6欧姆、8欧姆、16欧姆等几种,虽然这项指标与音箱的性能无关,但是最好不要购买低阻抗的音箱,推荐值是标准的8欧姆,这是因为在功放与输出功率相同的情况下,低阻抗的音箱可以获得较大的输出功率,但是阻抗太低了又会造成欠阻尼和低音劣化等现象。 7( 音效技术 硬件3D音效技术现在较为常见的有SRS、APX、Q-SOUND和Virtaul Dolby等几种,它们虽各自实现的方法不同,但都能使人感觉到明显的三维效果,其中又以第一种最为常见。它们所应用的都是扩展立体声(Extended Stereo)理论,这是通过电路对声音信号进行附加处理,使听者感到声响方位扩展到了两音箱的外侧,以此进行声响扩展,使人有空间感和立体感,产生更为宽阔的立体声效果。此外还有两种音效增强技术:有源机电伺服技术和BBE高清晰高原音重放系统技术,对改善音质也有一定效果。 多媒体音箱功放分类介绍 电子管放大器:俗称“胆机”。采用电子管作为放大级,主要优点是:动态范围大,线性好,音色甜美、悦耳温顺。电子管与晶体管的传输特性不同,两者有一定差异,如因信号过大发生激励(信号刺激超过承受范围)时,电子管波形变化较和缓,晶体管的则不大平滑,直接影响音质,又如电子管的放大多激发“偶次谐波”,这些“偶次谐波”与音质无损,而晶体管放大器多激发“奇次谐波”,会引起听感的不适。 但电子管功放也存在两个问题,一是内阻大导致放大器阻尼系数小,影响瞬态特性,二是电子管需高压供电,离不开变压器,变压器不仅功耗大,还会导致失真,而且体积大,由于在汽车里面使用环境较为恶劣(高温、振动、电源等问题)从而很大程度限制了胆机在汽车音响系统中的使用,因此在市场上流通率并不高。 晶体管放大器:它克服了电子管功放的两个缺点,一是阻尼系数可做得很高,有良好的瞬态特性,在声音的节奏感,力度上要比胆机明快、爽朗、有力;二是无需变压器,不仅节省成本,缩小体积,而且避免了由变压器所引起的失真。晶体管放大器是现时市场上汽车音响功率放大器的主流产品,品种繁多,档次齐全,是车主选用的主要产品。 最后一种是集成电路放大器,它的最突出优点是可靠性高,外围电路简单,组装方便,不足之处是电声指标(功率、频响、失真度、信噪比等)和音质皆不如分立组件组成的放大器,主要应用在主机的功放级上。 按电路工作状态分类 甲类放大器,这种功放的工作原理是输出器件(晶体管或电子管)始终工作在传输特性曲线的线性部分,在输入信号的整个周期内输出器件始终有电流连续流动,这种放大器失真小,但效率低,约为50%,功率损耗大,一般应用在家庭的高档机较多。 乙类放大器,两只晶体管交替工作,每只晶体管在信号的半个周期内导通,另半个周期内截止。该机效率较高,约为78%,但缺点是容易产生交越失真(两只晶体管分别导通时发生的失真)。 甲乙类放大器,兼有甲类放大器音质好和乙类放大效率高的优点,被广泛应用于家庭、专业、汽车音响系统中。 按放大器功能分类 前级放大器,主要作用是对信号源传输过来的节目信号进行必要的处理和电压放大后,再输出到后级放大器。 后级功放,对前级放大器送出的信号进行不失真放大,以强劲的功率驱动扬声器系统。除放大电路外,还设计有各种保护电路,如短路保护、过压保护、过热保护、过流保护等。前级功率放大器和后级功率放大器一般只在高档机或专业的场合采用。 合并式放大器,将前级放大器和后级放大器合并为一台功放,兼有前二者的功能,通常所说的放大器都是合并式的,应用的范围较广。 电子管和晶体管功放分类及工作方式 1、a类功放(又称甲类功放) a类功放输出级中两个(或两组)晶体管永远处于导电状态,也就是说不管有无讯号输入它们都保持传导电流,并使这两个电流等于交流电的峰值,这时交流在最大讯号情况下流入负载。当无讯号时,两个晶体管各流通等量的电流,因此在输出中心点上没有不平衡的电流或电压,故无电流输入扬声器。当讯号趋向正极,线路上方的输出晶体管容许流入较多的电流,下方的输出晶体管则相对减少电流,由于电流开始不平衡,于是流入扬声器而且推动扬声器发声。 a类功放的工作方式具有最佳的线性,每个输出晶体管均放大讯号全波,完全不存在交越失真(switching distortion),即使不施用负反馈,它的开环路失真仍十分低,因此被称为是声音最理想的放大线路设计。但这种设计有利有弊,a类功放放最大的缺点是效率低,因为无讯号时仍有满电流流入,电能全部转为高热量。当讯号电平增加时,有些功率可进入负载,但许多仍转变为热量。 a类功放是重播音乐的理想选择,它能提供非常平滑的音质,音色圆润温暖,高音透明开扬,这些优点足以补偿它的缺点。a类功率功放发热量惊人,为了有效处理散热问题,a类功放必须采用大型散热器。因为它的效率低,供电器一定要能提供充足的电流。一部25w的a类功放供电器的能力至少够100瓦ab类功放使用。所以a类机的体积和重量都比ab类大,这让制造成本增加,售价也较贵。一般而言,a类功放的售价约为同等功率ab类功放机的两倍或更多。 2、b类功放(乙类功放) b类功放放大的工作方式是当无讯号输入时,输出晶体管不导电,所以不消耗功率。当有讯号时,每对输出管各放大一半波形,彼此一开一关轮流工作完成一个全波放大,在两个输出晶体管轮换工作时便发生交越失真,因此形成非线性。纯b类功放较少,因为在讯号非常低时失真十分严重,所以交越失真令声音变得粗糙。b类功放的效率平均约为75%,产生的热量较a类机低,容许使用较小的散热器。 3、ab类功放 与前两类功放相比,ab类功放可以说在性能上的妥协。ab类功放通常有两个偏压,在无讯号时也有少量电流通过输出晶体管。它在讯号小时用a类工作模式,获得最佳线性,当讯号提高到某一电平时自动转为b类工作模式以获得较高的效率。普通机10瓦的ab类功放大约在5瓦以内用a类工作,由于聆听音乐时所需要的功率只有几瓦,因此ab类功放在大部分时间是用a类功放工作模式,只在出现音乐瞬态强音时才转为b类。这种设计可以获得优良的音质并提高效率减少热量,是一种颇为合乎逻辑的设计。有些ab类功放将偏流调得甚高,令其在更宽的功率范围内以a类工作,使声音接近纯a类机,但产生的热量亦相对增加。 4、c类功放(丙类功放) 这类功放较少听说,因为它是一种失真非常高的功放,只适合在通讯用途上使用。c类机输出效率特高,但不是hi-fi放大所适用。 5、d类功放(丁类功放) 这种设计亦称为数码功放。d类功放放大的晶体管一经开启即直接将其负载与供电器连接,电流流通但晶体管无电压,因此无功率消耗。当输出晶体管关闭时,全部电源供应电压即出现在晶体管上,但没有电流,因此也不消耗功率,故理论上的效率为百分之百。d类功放放大的优点是效率最高,供电器可以缩小,几乎不产生热量,因此无需大型散热器,机身体积与重量显着减少,理论上失真低、线性佳。但这种功放工作复杂,增加的线路本身亦难免有偏差,所以真正成功的产品甚少,售价也不便宜。 有一些d类功放集成块音色音质很好,不过它们现在还只应用在汽车音响中,一些有兴趣的diy高手把它们改制到了家用音响中。 一部功放从外表虽然不能断定音质,但如能观察到供电变压器和滤波电容的大小,便已先对此机的性能或素质略知一二。a类功固然需要巨大的供电器,即使ab类机也是愈大愈好。今日许多优质功放都采用环形变压器,取其效率较方型变压器高而漏磁少。滤波电容等于水塘,储水量越多,供水量越足,功放的供电充足稳定,才能保证输出晶体管输出最大时仍有取之不尽的电能。 许多英国制造的合并式功放虽然功率并不太大,但却有一个非常充沛的供电器,配合简单的讯号通道可以达成优异的声音。有些产品的面板上除了音量、平衡、讯源选择和电源掣外,其它的控制全部取消,令讯号通道尽量缩短。为追求声音纯美,不惜牺牲控制功能。 电子管功放俗称胆机,素以声音阴柔见长;晶体管功放俗称石机,则以阳刚着称。晶体管机的长处在于大电流、宽频带、低频控制力、处理大场面时的力、层次感和明亮度要比电子管功放优越,但电子管机的高音较平滑,有足够的空气感,具有一种相当一部分人所喜欢的声染色,尽管声音细节和层次少了些,但那种柔和而稍带模糊的 声音却是美丽的 1、按功放中功放管的导电方式不同,可以分为甲类功放(又称A类)、乙类功放(又称B类)、甲乙类功放(又称AB类)和丁类功放(又称D类)。 甲类功放是指在信号的整个周期内(正弦波的正负两个半周),放大器的任何功率输出组件都不会出现电流截止(即停止输出)的一类放大器。甲类放大器工作时会产生高热,效率很低,但固有的优点是不存在交越失真。单端放大器都是甲类工作方式,推挽放大器可以是甲类,也可以是乙类或甲乙类。 乙类功放是指正弦信号的正负两个半周分别由推挽输出级的两“臂”轮流放大输出的一类放大器,每一“臂”的导电时间为信号的半个周期。乙类放大器的优点是效率高,缺点是会产生交越失真。 甲乙类功放界于甲类和乙类之间,推挽放大的每一个“臂”导通时间大于信号的半个周期而小于一个周期。甲 乙类放大有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。 丁类功放也称数字式放大器,利用极高频率的转换开关电路来放大音频信号,具有效率高,体积小的优点。许 多功率高达1000W的丁类放大器,体积只不过像VHS录像带那么大。这类放大器不适宜于用作宽频带的放大 器,但在有源超低音音箱中有较多的应用。 2、按功放输出级放大组件的数量,可以分为单端放大器和推挽放大器。 单端放大器的输出级由一只放大组件(或多只组件但并联成一组)完成对信号正负两个半周的放大。单端放大 机器只能采取甲类工作状态。 推挽放大器的输出级有两个“臂”(两组放大组件),一个“臂”的电流增加时,另一个“臂”的电流则减小, 二者的状态轮流转换。对负载而言,好象是一个“臂”在推,一个“臂”在拉,共同完成电流输出任务。尽管 甲类放大器可以采用推挽式放大,但更常见的是用推挽放大构成乙类或甲乙类放大器。 3、按功放中功放管的类型不同,可以分为胆机和石机。 胆机是使用电子管的功放。 石机是使用晶体管的功放。 4、按功能不同,可以前置放大器(又称前级)、功率放大器(又称后级)与合并式放大器。 功率放大器简称功放,用于增强信号功率以驱动音箱发声的一种电子装置。不带信号源选择、音量控制等附属 功能的功率放大器称为后级。 前置放大器是功放之前的预放大和控制部分,用于增强信号的电压幅度,提供输入信号选择,音调调整和音量 控制等功能。前置放大器也称为前级。 将前置放大和功率放大两部分安装在同一个机箱内的放大器称为合并式放大器,我们家中常见的功放机一般都 是合并式的。 4、按用途不同,可以分为AV功放,Hi-Fi功放。 AV功放是专门为家庭影院用途而设计的放大器,一般都具备4个以上的声道数以及环绕声解码功能,且带有 一个显示屏。该类功放以真实营造影片环境声效让观众体验影院效果为主要目的。 Hi-Fi功放是为高保真地重现音乐的本来面目而设计的放大器,一般为两声道设计,且没有显示屏。 1、A类功放(又称甲类功放) A类功放输出级中两个(或两组)晶体管永远处于导电状态,也就是说不管有无讯号输入它们都保持传导 电流,并使这两个电流等于交流电的峰值,这时交流在最大讯号情况下流入负载。当无讯号时,两个晶体管各 流通等量的电流,因此在输出中心点上没有不平衡的电流或电压,故无电流输入扬声器。当讯号趋向正极,线 路上方的输出晶体管容许流入较多的电流,下方的输出晶体管则相对减少电流,由于电流开始不平衡,于是流 入扬声器而且推动扬声器发声。 A类功放的工作方式具有最佳的线性,每个输出晶体管均放大讯号全波,完全不存在交越失真 (Switching Distortion),即使不施用负反馈,它的开环路失真仍十分低,因此被称为是声音最理想的放大线路 设计。但这种设计有利有弊,A类功放放最大的缺点是效率低,因为无讯号时仍有满电流流入,电能全部转为 高热量。当讯号电平增加时,有些功率可进入负载,但许多仍转变为热量。 A类功放是重播音乐的理想选择,它能提供非常平滑的音质,音色圆润温暖,高音透明开扬,这些优点足以 补偿它的缺点。A类功率功放发热量惊人,为了有效处理散热问题,A类功放必须采用大型散热器。因为它的 效率低,供电器一定要能提供充足的电流。一部25W的A类功放供电器的能力至少够100瓦AB类功放使用。 所以A类机的体积和重量都比AB类大,这让制造成本增加,售价也较贵。一般而言,A类功放的售价约为同 等功率AB类功放机的两倍或更多。 2、B类功放(乙类功放) B类功放放大的工作方式是当无讯号输入时,输出晶体管不导电,所以不消耗功率。当有讯号时,每对输出管各放大一半波形,彼此一开一关轮流工作完成一个全波放大,在两个输出晶体管轮换工作时便发生交越失真,因此形成非线性。纯B类功放较少,因为在讯号非常低时失真十分严重,所以交越失真令声音变得粗糙。B类功放的效率平均约为75%,产生的热量较A类机低,容许使用较小的散热器。乙类功放通常的工作方式分为OCL和BTL,BTL可以提供更大的功率,目前绝大部分的功率集成电路都可以用两块组成BTL电路。 3、AB类功放 与前两类功放相比,AB类功放可以说在性能上的妥协。AB类功放通常有两个偏压,在无讯号时也有少量电流通过输出晶体管。它在讯号小时用A类工作模式,获得最佳线性,当讯号提高到某一电平时自动转为B类工作模式以获得较高的效率。普通机10瓦的AB类功放大约在5瓦以内用A类工作,由于聆听音乐时所需要的功率只有几瓦,因此AB类功放在大部分时间是用A类功放工作模式,只在出现音乐瞬态强音时才转为B类。这种设计可以获得优良的音质并提高效率减少热量,是一种颇为合乎逻辑的设计。有些AB类功放将偏流调得甚高,令其在更宽的功率范围内以A类工作,使声音接近纯A类机,但产生的热量亦相对增加。 4、C类功放(丙类功放) 这类功放较少听说,因为它是一种失真非常高的功放,只适合在通讯用途上使用。C类机输出效率特高,但不是HI-FI放大所适用。 5、D类功放(丁类功放) 这种设计亦称为数码功放。D类功放放大的晶体管一经开启即直接将其负载与供电器连接,电流流通但晶体管无电压,因此无功率消耗。当输出晶体管关闭时,全部电源供应电压即出现在晶体管上,但没有电流,因此也不消耗功率,故理论上的效率为百分之百。D类功放放大的优点是效率最高,供电器可以缩小,几乎不产生热量,因此无需大型散热器,机身体积与重量显着减少,理论上失真低、线性佳。但这种功放工作复杂,增加的线路本身亦难免有偏差,所以真正成功的产品甚少,售价也不便宜。 目前绝大部分的多媒体音箱都是采用B类(乙类)功放,而且由于成本和空间原因,多媒体音箱的功放电路多采用集成电路方式,而且电源变压器和滤波电容不可能做的很大。这就直接影响的多媒体箱的音质质和动态。当然采用电子管功放的多媒体音箱(如大极典)的功放是工作在甲类的,但是音箱的价格不是绝大部分人可以接受的。 j 重放低音是一件非常棘手的事情,它给扬声器设计师和音响发烧友添了不少麻烦。但这也是一种挑战,潜在的回报充分,努力改善低音重放是值得的。 问题的核心在于,扬声器不是在孤立的环境中运行,但许多扬声器设计师和Hi-Fi音响爱好者却往往忽视这一点,设计师们总是借助与实际环境隔离的消声室来开发他们的产品。实践证明,扬声器的音质与实际听音室之间有着非常密切的相互影响关系,在低音频段这种关系尤为密切。大家知道,人耳听音的频率范围大约是从20Hz最低音至20000Hz最高音,其跨度约为10个八度音阶,钢琴的中央C音就位于从最低音算起的第四个八度的中央。因此,低音区本身几乎被局限在最低的八度音阶(20Hz~40Hz)及其上面的第二个八度音阶(40~80Hz)范围内,虽然单纯的低音在实际生活中听得不是太多,但它对营造音乐的真实感和力度却起着很重要的作用。 如果不使用超低音音箱而完全靠普通音箱来营造低音,则这种音箱不仅体积庞大,而且非常笨重。超低音音箱具有体积小巧、摆放在室内不引人注意、箱内装有自己的放大器和滤波器因而对系统无额外要求等等诸多优点。系统中有了专门重放低音的超低音音箱,其它声道就可以使用体积较小的音箱,整个系统的配置和使用都更加灵活、方便。一般说来,营造低音需要使用体积较大的音箱,但只要将一对普通的小型音箱摆放在墙边上,就足以使重放的声音下潜到中低音范围。其部分原因是摆放在墙边有助于提升50Hz~100Hz的低音,另一部分原因则是房间的形状和尺寸引起的“驻波共振”提供了“房间增益效应”。大多数市售超低音音箱的通病是低端滚降频率不能下潜到50Hz以下,其频率响应不能与其它声道的普通音箱达到理想的匹配,而且它们的部分频率响应还往往构成有害的重叠现象。 ?驻波的影响 每个房间,无论是音乐厅还是普通家庭的客厅,都存在驻波现象,它是引起低音重放问题的主要根源。驻波频率与房间的尺寸有密切的关系。在室内空间很大的音乐厅里,驻波频率发生在最低沉的低音区和次声区,低于低音乐器的最低频率,因而不会对低音重放造成不良影响。但在普通家庭的小客厅里,由于房间的尺寸和空间都很小,产生的驻波频率就会较高并进入音乐的低音区,并与后者重叠起来,使音质变差。驻波在提供“房间增益”的同时,还会使低音区的频率响应变得很不平坦,即它会提升其中某些频率的响应而抵消其它某些频率的响应。此外,不同的房间具有不同的驻波模式,而且它与房间中的墙面材料、家具陈设、听音位置和音箱的摆放位置等诸多因素有关,很难对它进行准确地预测。 ?在室内营造低音 大家知道,要使扬声器发出声音,就必须借助音盆的振动来移动空气分子,在空气中激起频率与音盆振动频率相同的声波。由于低音的频率很低,低音扬声器音盆的振动速度也很慢,因此要在室内产生强劲的低音,就必须使音盆在单位时间里移动大量的空气分子。为达此目的,超低音扬声器通常采用大振膜、小冲程的音盆或小振膜、大冲程的音盆。后者的音盆口径小,有利于减小整个低音音箱的体积,并具有功率大和响度高等优点,已成为现代超低音音箱的主流。 然而,将超低音扬声器装在一只庞大的音箱里,虽然可以重现电影中某些令人震撼的爆炸声和山崩地裂声等特殊音响效果,但在聆听音乐时,重放大量的高强度重低音会令人感到很不愉快。此外,研究和实践结果都证明,使超低音音箱的响度大于系统中的其它音箱并没有多大实际意义。这些正是现代超低音音箱的体积做得较小的原因所在。 ?超低音音箱的摆位和连接 室内驻波固有的多变性和不可预见性使人们除容忍它们而外,别无它法。尽管某些计算机软件提供了一些令人感兴趣的控制驻波的方法,但并不能彻底解决驻波问题。好在低音的波长远大于普通房间的尺寸,低音实际上没有方向性。利用这一特性,一般用户只需使用单独的超低音音箱,即可获得几乎是无限的自由来试验低音音箱在室内的最佳摆放位置。虽然它的摆放位置不如主音箱那样重要,但不同的摆位仍然具有不同的音响效果。下面介绍三种超低音音箱的摆位方式,它们各有自己的优点和缺点,读者可根据实验结果予以选用。 将超低音音箱摆放在墙角处(图1)。这种方式有助于避开室内的声反射,使重放的声音显得更加清晰和鲜明。但此时室内模式获得更强的激励,会使低音响应变得不够平坦。由于整个系统中超低音音箱距听音位置最远,听到的低音会比主扬声器的声音稍有延迟。摆放时,超低音音箱应与墙壁至少保持10cm距离。 从左至右:图1-超低音箱摆放在墙角、图2-超低音音箱与主音箱摆放在一条线上、图3-超低音箱摆放在听音区 将超低音音箱与主音箱摆放在同一条线上(图2)。此时超低音音箱和主音箱与听音位置之间的距离相等,因而来自三只音箱的直达声几乎是同时到达听音者的耳朵,不会出现时间差。这种摆位的缺点是室内反射声增多,这些延迟的反射声会降低重放声音的清晰度。 将超低音音箱摆放在靠近听音区的位置(图3)。这种方式值得一试,对某些难以获得最佳音响效果的房间更是如此,因为它将室内模式的激励程度减到了最小,还大大缩短了直达声的转送路径和低音到达听音者耳朵的时间,但同时也使室内反射声变得更加模糊。 另一种不太科学的摆位方法是,先将超低音音箱摆放在平时听音的座位上并让它播放音乐,再在其周围缓慢移动并同时仔细聆听音乐声,直到找到低音音质最佳的一点为止。该点就是摆放超低音音箱的最佳位置,最后将它摆放在该处即可。 现代家庭影院AV放大器除具有连接左、右主声道音箱的两组高电平(扬声器电平)输出端子外,还具有一只低电平(线路电平)输出端子,有源超低音音箱则具有与之对应的输入端子。为了使系统在播放音乐和电影节目时都具有最佳音响效果,除将超低音音箱的两组扬声器电平输入端子分别接到AV放大器的对应输出端子外,还应将二者的线路电平端子也对应地连接起来,如图4所示。这样连接的好处是,系统在播放双声道立体声音乐和5.1声道电影两种不同的节目时,低音都能有效地得到增强。 ?某些有关低音的争议 目前,人们对低音的作用和效果还存在一些争议。其中比较容易理解的一个观点是,“超低音音箱可以增强音响系统的低音力度。”然而,许多人认为:“增加额外的低音还能改善中音、甚至高音频段的特性和音质”、“使用超低音音箱可以改善立体声声场的深度”、“增加低音扩展可以打乱主音箱原有的作用,如果故意选择低音与高音的相对电平,还可使它们在中音频段的两侧相互抵消”„„等等,这些观点就令人颇难理解了。对这些观点虽然目前还难以提出科学的解释,但却有许多“证据”在广泛流传。某些心理声学现象也常常令人难以理解,而且历史表明,在高保真技术的发展进程中,某些主观看法往往比理论假设更具权威性和影响力。由此看来,音响领域的许多问题尚有待人们去进行更深入的探索。 图4 超低音箱的连接 什么是超重低音,未接触过真正超重低音的人士往往误认为一般音响系统必能放出重低音,其实,真正的超重低音即使存在,也是不容易听到的,因为我们听到那震荡人心的低音只是200Hz左右的中低音,真正的超重低音是指频率低于100Hz的音频,如直升机螺旋桨的声音,爆炸时产生的震动声„„这些声音你会感到一种似乎不属于声音的振动,这就是超重低音了,如果整个系统你只开重低音或许你会觉得只是一种不属于声音的振动。但是在欣赏电影故事片,特别是一些情节紧张,场面激烈的战斗、打斗片,如果缺乏重低音的宣染,现场逼真的震撼感将无法真正去重现,更欠缺荡气回肠的感染力,可见重低音的重要性。 M5114P是日本三菱公司专门为AV影音系统开发的专用重低音检测加强电路,该IC采用20脚双列直插封装, 其内部包括:频率检测、调整器、电平检测、低通滤波运放、VCA压控放大器等。工作原理是采用数码滤波 方式检测输入信号中的低频成分的电平高低,加强相应低频成分并进行低频动态扩展(由压控放大器完成), 由此看出,其工作原理与一般的低通滤波器形式的重低音加强电路是不同的,一般的低通滤器电路提供的重低 音信号听感上软绵无力,而M51134P提供的重低音效果有强烈的震撼感,特别是雷声、炮声、爆炸声等方面 尤显优点。另外,M51134P只检测低于120Hz的信号,如果输入信号中无低于120Hz的成分,则该电路无任 何输出,这一点在使用中要注意,不属故障。 M51134P工作电压7-18V(型值12V),输出噪音低(-93dBV)。图1是笔者根据其应用资料而设计的应用电路,实际应用时接一个5W以上、次级12V以上的变压器即可工作,图2是制作超重低音炮的连接方案(作低音炮的扬声器口径要大且功率也大,箱体要坚固,板材要厚才能获得效果,箱体外型及尺寸视个人喜好而自行设计)。版面所限,关于那超重低音震撼的宣染,荡气回肠的感染力等试听效果让发烧友们自己去实践,去感受吧~
/
本文档为【2&#46;1喇叭的发声原理aa&#40;精编&#41;】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索