为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

日立变频器

2017-09-20 18页 doc 144KB 22阅读

用户头像

is_574951

暂无简介

举报
日立变频器日立变频器 日立变频调速器 PID控制 用户指南 阅读之后请妥善保存备索 株式会社 日立产机系统 1 . 目录 1. 概述 3 2. SJ100/L100/L300P/SJ300系列变频器PID控制 3 2-1 PID控制 3 (1) P: 比例控制 4 (2) I : 积分控制 5 (3) D: 微分控制 5 (4) PID控制 5 2-2 PID增益调整 & 控制特性 6 3(应用 7 3-1 结构 & 参数 7 (1) 控制模式 7 (2) 参数 7 (3) 微分计算 8 (4) ...
日立变频器
日立变频器 日立变频调速器 PID控制 用户指南 阅读之后请妥善保存备索 株式会社 日立产机系统 1 . 目录 1. 概述 3 2. SJ100/L100/L300P/SJ300系列变频器PID控制 3 2-1 PID控制 3 (1) P: 比例控制 4 (2) I : 积分控制 5 (3) D: 微分控制 5 (4) PID控制 5 2-2 PID增益调整 & 控制特性 6 3(应用 7 3-1 结构 & 参数 7 (1) 控制模式 7 (2) 参数 7 (3) 微分计算 8 (4) 目标值输入 8 (5) 反馈输入 & PID控制范围设定 8 (6) 比例变换 9 3-2 PID控制参数综述 9 3-3 设定举例 11 (1) 频率控制模式下的参数设定 11 (2) PID设定 (目标值&设定值) 11 (3) 比例变换常数设定 12 (4) 由数字输入信号设定目标值 12 (5) PID模式选择 12 3-4 各增益调整的示例( Kp&Ti) 13 (1) 比例增益调整(Kp) 13 (2) 积分时间调整(Ti) & Kp的再次调整 13 3-5 注意事项 13 4. 实际应用示例 14 4-1 恒流量控制 14 4-2 恒温控制 15 2 1(概述 SJ100/L100/SJ300/L300P系列变频器具有内置PID控制功能.可用于风机&泵类应用的恒流量控制等,PID控制具有如下特点: , 目标值不但可通过数字操作器给定而且可通过外部数字信号给定(多段速方 式:可设定16个不同的目标值).另外,也可通过模拟量输入信号设定 (0~10V,4~20mA). , 反馈信号可通过模拟电压输入 ( 0~10V)或模拟电流输入信号(4~20mA)给定. , 对于反馈信号,控制有效范围可单独定义。例如0~5V,4~20mA或其它. , 通过使用比例变换功能,可显示/设定气体流量,水的流量或温度等反馈值/目 标值的实际值(物理量). 请阅读本指南以正确使用L100/SJ100/L300P/SJ300具有的方便的PID功能。 2(/L100/L300P/SJ300系列变频器PID控制 2-1 PID控制 PID控制中的“P”代比例,“I”代表积分,“D”代表微分。这些控制的组合使用就叫PID控制。PID控制广泛应用于不同领域,例如气体流量,液体流量,压力,温度等过程控制。它根据对目标值和反馈值的偏差的PID运算来控制变频器的输出频率。控制框图如下图Fig.2-1所示。 偏差 风机,泵类等 被控对象 比例控制 负载 目标值 电机 积分控制 逆变器 传感器 & 变送器 微分控制 频率命令 反馈( 流量,压力或温度等 ) 内置于SJ100/L100/SJ300/L300P Fig.2-1 PID控制框图 SJ100/L100/SJ300/L300P系列变频器具有内置PID控制功能,如上图中方框内所示。 3 可通过设定目标值和提供反馈信号的方式使用PID控制。 下图Fig.2-2是一个风机应用中风量控制的连接框图。 变频器 反馈信号 变送器 目标值 (DC0~10V,4~20mA) 4位数字输入信号 流量传感器 风机 电机 Fig.2-2 风量控制接线示例 (1) P: 比例控制 比例控制使得输出频率与偏差呈比例关系。偏差与输出频率(由%表示)之间的比值叫“ 比例增益”(Kp). 此参数由[A071]设定。 Fig.2-3表示了偏差与输出频率之间的关系。如果Kp的值设定的大,则系统对偏差变化的响应就快。但如果Kp设定过大,系统会变得不稳定。 最大频率 输出频率 (%) 偏差(%) Fig.2-3 偏差与输出频率的关系 上图中输出频率的100%相等于最大输出频率。参数[A071]中Kp的选择范围是0.2~5.0。 4 (2) I :积分控制 积分控制通过对偏差的积分来校正输出频率。在比例控制的情况下,一个大的偏差将使输出频率有大的调整,如果偏差较小,则输出频率的调整也将变小。然而它不能使偏差为零。积分控制就可用来解决此问题。 输出频率的积分校正通过对过去的偏差进行累积来实现最终的零偏差。积分增益(Ki)决定多久偏差被积分一次。积分增益的倒数就是积分时间常数( Ti : Ti=1/Ki ) 积分时间常数的设定范围是0.5~150s. 当设定为“0.0”秒时积分控制无效 (3) D:微分控制 微分控制通过对偏差的微分来校正输出频率。因为P控制基于目前的偏差,I控制基于过去的偏差,因此控制系统经常出现时滞。微分控制就可用来解决此问题。 输出频率的微分控制使输出频率与偏差的变化率呈比例关系。因此,当偏差变化较快时,D控制将较快的调整输出频率。微分增益(Kd)决定偏差多久被微分一次。 微分增益Kd的设定范围是0~100. 增益是(Fmax/10)*[A074]的设定值对偏差变化率 (4) PID控制 PID控制是比例,积分,微分控制的组合。通过调整P-增益,I-增益,D-增益三个参数可获得最佳控制。通过P-控制可实现没有冲击的平滑控制;通过I-控制可校正稳态偏差;通过D-控制可实现对突来扰动(可影响反馈值)的快速响应。P-控制可抑制大的偏差。I-控制可校正小的偏差。 (注) 因为D-控制是基于对偏差的微分,故它是非常敏感的控制。因此它可能对外部的信号或噪声有反应。D-控制对流量,压力,和温度等过程控制一般情况下是不 必要的。 5 2-2 PID增益调整 & 控制特性 PID的最佳增益值因系统和条件的不同而不同。也就是说必须依据不同系统状况来设定这些参数。下面的特性是一个好的PID控制系统必须具备的。 , 性能稳定 , 响应快速 , 稳态误差小 调整Kp,Ti,Kd各参数可使系统工作在稳定性能区域。通常,当增大增益( Kp,Ki,Kd )( = 减小积分时间:Ti)时,可获得快速响应。但如果增大的过大控制将变得不稳定,因为反馈值是连续地增加和减少的,这将导致控制的振荡。最坏情况下,将导致系统处于发散状态。(参考Fig.2-4) 下面是调整个参数的步骤: (1) 改变目标值之后 响应慢 --- 增大P-增益( Kp) 响应快但不稳定 --- 减小P-增益( Kp) (2) 目标值与反馈值 不能相等 --- 减少积分时间( Ti) 经过不稳定的振荡后可相等 --- 增大积分时间( Ti) (3) 即使增大Kp后 响应仍然很慢 --- 增大D-增益(Kd) 仍然不稳定 --- 减少D-增益(Kd) 目标值 目标值 被控对象 被控对象 NG: 发散NG: 衰减的振荡 被控对象 时间 时间 目标值 目标值 被控对象 被控对象 良好的控制 NG: 响应慢,稳态误差大 时间 时间 Fig.2-4 控制特性示例 6 3(应用 3-1 结构 & 参数 (1) 控制模式 标配的操作器 A71: 00/01 DOP软件,DRW F43: PID SW ON/OFF 日立变频器具有如下两种控制模式: , 频率控制模式 , PID控制模式 控制模式可通过“PID功能选择(A071/A71)” 选择。 频率控制模式是变频器的典型控制模式,此时可通过操作面板,模拟电压/电流输入,或 控制端子的4位数字命令向变频器发出频率命令。 PID控制模式下,输出频率是自动设定的以便使目标值与反馈值间的偏差为零。 (2) 参数 图Fig.3-1 给出了PID控制的控制框图与各参数间的关系。图中所示功能代码是基 于变频器的操作器的功能代码。 比例 目标值监示: 因子 目标值 F001 A075 由A001 选择 操作器 P增益:A072 比例因子的多段速设定 倒数 最大频率为100% -1 A075 I增益:A073 频率命令 电位器 模拟电压输入 D增益:A074 模拟电流输入 10V(20mA)为100% 操作器 多段速设定 认为最大频率为 100% 100% 反馈值 A012 比例 反馈值监示: 因子 模拟电压输入 d004 A011 A075 模拟电流输入 0 A013 A014 电压/电流选择由 A076设定 Fig. 3-1 PID控制框图 7 (3) 偏差计算 日立变频器的PID控制中的每个计算都是基于 “%”的,这样就可以方便地应 23用于如压力(N/m),流量(m/min),温度(?)等各种不同的应用中和适配不同的测量元件。例如,目标值与反馈值的比较就是基于目标值的%和反馈值满量程的% 然而,我们也有一个非常有用的功能叫“比例转换功能(A075)。如果使用该功能,就可用工程中的实际物理量来设定目标值,和/或监视目标值与反馈值。同样,”PID的有效范围”设定功能(A011~A014)允许定义反馈信号的区域。详情参阅图Fig.3-2与Fig.3-3. (4) 目标值输入 目标值输入方式只可从下述方式中选择一种: , 操作器 ( 标配操作器,或DOP,DRW ) , 控制端子的4位数字输入 , 模拟输入端子( O-L端子或OI-L端子) 当目标值通过端子由数字方式输入时,必须在功能代码A021~A035中预先设定所需的目标值,这样就允许定义多个目标值。然后可根据4位数字输入信号的组合从中选择出一个所需的目标值。这与频率控制模式中的多段速控制是一个道理。 (5) 反馈输入 & PID控制范围设定 反馈信号从下述方式中选择: , 模拟电压输入端子(O端子:10V最大) , 模拟电流输入端子(OI端子:20mA最大) 反馈输入方式通过A076设定 。 反馈信号可如下图Fig.3-2和Fig.3-3定义,这样就可实现各个不同系统的最佳性能。纵轴上所示的100%是基于内部计算的最大值。 (a) A013=20% (b) A013=0% (c) A013=25% A014=100% A014=50% A014=75% Fig.3-2 有效范围设定(A011=0, A012=0): 例1 8 (d) A013=20% (e) A013=0% (f) A013=25% A014=100% A014=50% A014=75% A011=25% A011=0% A011=25% A012=100% A012=75% A012=75% Fig.3-3 有效范围设定 : 例2 如图Fig.3-3所示,如果参数A011和A012的设定不是“0”,就应当 把目标值设定在纵轴的有效范围内。否则就不可能实现稳定的运行因为此时没有反馈值。也就是说变频器或者输出最大频率或者停机,或者以设定的下限频率连续运行。 (6) 比例变换 使用此功能,可用过程变量的实际物理量单位设定和显示目标值,显示反馈值。单独地设定相对于100%反馈值的参数。 出厂时的默认设定情况下,输入和监示值是基于0-100%的。 示例:当如图Fig.3-3中(a)的情况下,20mA的反馈对应于PID内部计算的100%。例 3 如,如果在反馈是20mA时的实际流量是60[m/min], 把功能代码A075设定为0.6(=60/100),则就可用系统的实际物理量来设定目标值。 反馈值 反馈值 目标值 目标值 变DC 4-20mA DC 4-20mA 频3单位=[%] 单位=[m/min] 器 监示d001= 监示d001= 3 0-60m/min 0-100% 监示F001= 监示F001= 3 0-60m/min 0-100[ % ] 风机 电机 (b) A075=0.6 (a) 出厂设定 Fig.3-4 比例变换示例 9 3-2 PID控制参数综述 在日立变频器中,相同的功能代码既可用于频率控制模式也可用于PID控制模 式。各功能代码的名称是基于通常使用的频率控制模式而定义的。因此,本手册中 有些功能会有易令人误解的解释。 为了避免混淆,请参阅下表3-1中频率控制模式和PID控制模式的功能名称比较。 表3-1 频率控制模式 & PID控制模式的关系 功能代码功能名称 操作器显示DOP, DRW频率控制模式下的名称PID控制模式下的名称D004监示模式无PID反馈监示F001输出频率设定目标值设定,监示 A001频率命令输入方式设定目标值输入方式设定 A011外部频率设定起点 (Hz )反馈有效范围下限的反馈值设定(%)A012外部频率设定终点 (Hz )反馈有效范围上限的反馈值设定(%) F31 A013外部频率起始变化率 (%)反馈有效范围下限设定 单位(%) A014外部频率终止变化率 (%)反馈有效范围上限设定 单位(%) A021~A035F11多段速0-15设定多段目标值0-15设定A071无PID功能选择A072无P-增益调整A073无I-增益调整 F39 A074无D-增益调整A075无比例变换因子 A076无反馈信号选择 10 3-3 设定举例 (1) 频率控制模式下的参数设定 在使用PID控制模式驱动应用系统前,各参数的设定是在频率控制模式下进行 的。请注意如下几个方面: , 加速和减速斜率 PID计算的输出(图Fig.3-1)不可能立刻成为变频器的输出频率。变频器的 实际输出频率将根据设定的加减速斜率达到计算的输出频率。也就是说即使设 定了较高的D-增益,实际输出频率的变化仍由设定的加减速斜率限制。这可导 致控制的不稳定。 为实现稳定的PID控制,除了设定三个增益(A072,A073,A074)外,还应当 把加减速时间设定为系统所允许的最小值。 改变加减速时间后请务必重新调整PID参数。 , 跳跨频率/范围 设定跳跨频率所要求的条件是当频率跳跨时反馈值无变化。如果在跳跨范围内存在稳定的工作点,在跳跨范围的两端将会有冲击和波动。 (2) PID 设定 ( 目标值& 反馈值) 在PID控制模式下,目标值和反馈值的信号输入方式可依据下表(表3-2)设定。 表3-2 如何设定目标值和反馈值的输入方式 目标信号输入方式 多段目标值 操作器上模拟电压模拟电流操作器 (端子) 的电位器 输入(O-L) 输入(OI-L) 电压输入 A001=02 A001=00 A001=01 反馈A076=01 A076=01 A076=01 (O-L: 0-10V) 信号 输入A001=02 电流输入 A001=00 A001=01 A076=00 方式 A076=00 A076=00 (OI-L: 4-20mA) (1) 不可以把两个输入信号设置为同一个模拟输入端子。 (2) 在PID控制模式下当变频器收到停止命令后,将以设定的减速斜率减速至停止。 11 (3) 比例变换因子设定 请根据各自的系统:如流量,压力,温度等来设定比例变换因子。详细说明请参阅第9页的第(6)项. (4) 由数字输入方式设定目标值 当通过数字输入方式(最多4位)改变目标值时请参考下述。 (a) 输入端子设定 请先定义“CF1”,“CF2”, “CF3”,“CF4”功能到变频器的智能输入 端子上。此定义是通过设定各端子对应的功能代码C001~C008来实现的。 (b) 各目标值设定 下一步,根据下表(表3-3)设定所需的目标值。通过设定参数A021~A035来 设定0~15各目标值。A020和F001对应于目标值0。请注意:如果设定了 频率变换因子,请在这里设定变换后的目标值。 表3-3 多段目标值输入( 1:ON, 0:OFF ) 注: 如果仅需要4个目标值,只需使用CF1和CF2. 目标值编号 (需输入的功能代码) 目标值0 (A020或F001) ( 5 ) PID模式选择 目标值1 (A021) 设定PID模式选择A071为“01”。也可先选择此 目标值2 (A022) 功能。 目标值3 (A023) 目标值4 (A024) 目标值5 (A025) 3-4 各增益调整示例(Kp & Ti) 目标值6 (A026) , 当目标值每改变一步,应当检查反馈信号的响应或变频器的输出频率。 目标值7 (A027) (参阅Fig.2-4) 目标值8 (A028) 目标值9 (A029) , 使用示波器或其它测量仪器来观察反馈信号的波形或变频器的输出频率 目标值10 (A030) (频率监示) 目标值11 (A031) , 事先准备两个可通过数字输入切换的目标值,以便可用步进的方式改变 目标值12 (A032) 目标值13 (A033) 目标值。 目标值14 (A034) , 在进行之前,控制系统必须稳定。 目标值15 (A035) (1) 比例增益的调整(Kp:功能代码 A072) 仅用P-控制开始驱动,不使用I-控制和D-控制( 设置为0). 首先,P-增益设定为最小值,观察其工作状况。根据其结果,逐步地增大 P-增益。重复此过程直到获得好的控制性能。( 也可设定一个最大的P-增益, 12 观察其工作状况。如果系统不稳定,就减小此值并观察运行状况。重复此步 骤….) 如果系统不稳定,降低P-增益。 如果系统的稳态误差在可接受的范围内,就完成了P-增益的调整。 (2) 积分时间调整(Ti: 功能代码A073) & Kp的再次调整 首先把积分时间设定为最小值。如果调整很困难,请尝试降低P-增益。当 偏差不能收敛时,请降低积分时间。如果此时控制变得不稳定,请降低P-增益。 重复此步骤来设置合适的参数。 (注) 在使用手册中,功能代码A073叫做“积分增益(Ki)”。但实际上这里使用的是“积分时间(Ti)”,它和积分增益成反比。当设定参数时请注意此区别。 3-5 注意事项 (1) PID控制中,当设定AVR功能为“DOFF”时( 减速时AVR功能无效),在一些应 用中电机可能会出现波动。这是因为每次AVR功能作用是电机都重复的加减 速,这将导致电机运行的不稳定。 解决方法: 在此情况下,AVR功能常设定为“OFF” ( 无效) 4.实际应用举例 在本章中你可以看到一些典型的实际应用的参数设定事例。 13 4-1 恒流量控制 变 反馈值 频变送器 目标值 4-20mA 器 当20mA 时500m3/min 4位数字信号 流量传感器 33流量:150m/min 或300m/min恒定 泵 电机 Fig.4-1 恒流量控制示例 3此例中( 目标值是150m/min & 3300m/min)设定值如下所述 功能代码PID控制模式下的功能名称输入数据备注操作器DOP,DRW 3直接输入“150[m/min]F001目标值0150监示数据因为比例变换因子已设定A001目标值输入方式设定2操作器A01100%反馈有效范围下限的反馈值设定(%) A012100100%反馈有效范围上限的反馈值设定(%)F31A0132020%反馈有效范围下限设定 单位(%) A014100100%反馈有效范围上限设定 单位(%) 3A021F11目标值1300150[m/min]A071PID控制选择01PID控制有效A072P-增益调整 根据各自应用设定A073I-增益调整F39A074D-增益调整 3A075PID比例变换因子设定5.0100%反馈时,流量500[m/min]A076反馈信号输入方式选择00OI-L端子 4-2 恒温控制 在上节讲述的恒流量控制中,如果反馈值小于目标值变频器的输出频率将增加,如果反馈值大于目标值其输出频率将减小。然而,在恒温控制中,则恰恰相反。例 14 如:当反馈温度信号大于目标温度时变频器将增大输出频率来驱动冷却风机加强冷却能力。下面举例说明如何设置此类应用。 温度:20?或30?恒定 变 变送器 频 温度传感器 目标值 反馈值 器 0-10V 多段目标值 (10V时50?) 风机 电机 50? Fig.4-2 恒温控制示例 30? 在此例中(目标值20&30?),设定 20? 如下: 功能代码PID控制模式下的功能名称输入数据备注操作器DOP,DRW 直接输入“20?"F001目标值020监示数据因为比例变换因子已设定A001目标值输入方式设定2操作器A011100100%反馈有效范围下限的反馈值设定(%) A01200%反馈有效范围上限的反馈值设定(%)F31 A01300%反馈有效范围下限设定 单位(%) A014100100%反馈有效范围上限设定 单位(%) A021F11目标值13030?A071PID控制选择01PID控制有效A072P-增益调整 根据各自应用设定A073I-增益调整F39 A074D-增益调整 A075PID比例变换因子设定0.5100%反馈时,温度50?A076反馈信号输入方式选择01O-L端子 15
/
本文档为【日立变频器】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索