为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

又见枫叶红

2017-12-03 8页 doc 21KB 29阅读

用户头像

is_105949

暂无简介

举报
又见枫叶红又见枫叶红 又见枫叶红 2011年10月13日 黑洞 黑洞是一种引力极强的天体,就连光也不能逃脱。当恒星的史瓦西半径小到一定程度时,就连垂直表面发射的光都无法逃逸了。这时恒星就变成了黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。由于黑洞中的光无法逃逸,所以我们无法直接观测到黑洞。然而,可以通过测量它对周围天体的作用和影响来间接观测或推测到它的存在。黑洞引申义为无法摆脱的境遇。 产生: 黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重力的作用下迅速地收缩,发生强力爆炸。当...
又见枫叶红
又见枫叶红 又见枫叶红 2011年10月13日 黑洞 黑洞是一种引力极强的天体,就连光也不能逃脱。当恒星的史瓦西半径小到一定程度时,就连垂直面发射的光都无法逃逸了。这时恒星就变成了黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。由于黑洞中的光无法逃逸,所以我们无法直接观测到黑洞。然而,可以通过测量它对周围天体的作用和影响来间接观测或推测到它的存在。黑洞引申义为无法摆脱的境遇。 产生: 黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重力的作用下迅速地收缩,发生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星体,同时也压缩了内部的空间和时间。但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。由于高质量而产生的力量,使得黑洞任何靠近它的物体都会被它吸进去。黑洞开始吞噬恒星的外壳,但黑洞并不能吞噬如此多的物质,黑洞会释放一部分物质,射出两道纯能量——伽马射线爆。 也可以简单理解:通常恒星的最初只含氢元素,恒星内部的氢原子时刻相互碰撞,发生聚变。由于恒星质量很大,聚变产生的能量与恒星万有引力抗衡,以维持恒星结构的稳定。由于聚变,氢原子内部结构最终发生改变,破裂并组成新的元素——氦元素。接着,氦原子也参与聚变,改变结构,生成锂元素。如此类推,按照元素周期表的顺序,会依次有铍元素、硼元素、碳元素、氮元素等生成。直至铁元素生成,该恒星便会坍塌。这是由于铁元素相当稳定不能参与聚变,和氢元素燃尽。而铁元素存在于恒星内部,导致恒星内部不具有足够的能量与质量巨大的恒星的万有引力抗衡,从而引发恒星坍塌,最终形成黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,就 再不能逃出。跟白矮星和中子星一样,黑洞可能也是由质量大于太阳质量好几倍以上的恒星演化而来的。 当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后 形成体积无限小、密度无限大的星体。 物质将不可阻挡地向着中心点进军,直至成为一个体积很无限小、密度趋向很大。而当它的半径一旦收缩到一定程度(一定小于史瓦西半径),质量导致的时空扭曲就使得即使光也无法向外射出——“黑洞”诞生了。 表现: 恒星的时空扭曲改变了光线的路径,使之和原先没有恒星情况下的路径不一样。光在恒星表面附近稍微向内偏折,在日食时观察远处恒星发出的光线,可以看到这种偏折现象。当该恒星向内坍塌时,其质量导致的时空扭曲变得很强,光线向内偏折得也更强,从而使得光线从恒星逃逸变得更为困难。对于在远处的观察者而言,光线变得更黯淡更红。最后,当这恒星收缩到某一临界半径(史瓦希半径)时,其质量导致的时空扭曲变得如此之强,使得光向内偏折得这么也如此之强,以至于光线再也逃逸不出去 。这样,如果光都逃逸不出来,其他东西更不可能逃逸,都会被拉回去。也就是说,存在一个事件的集合或时空区域,光或任何东西都不可能从该区域逃逸而到达远处的观察者,这样的区域称作黑洞。将其边界称作事件视界,它和刚好不能从黑洞逃逸的光线的轨迹相重合。 与别的天体相比,黑洞十分特殊。人们无法直接观察到它,科学家也只能对它内部结构提出各种猜想。而使得黑洞把自己隐藏起来的的原因即是弯曲的时空。根据广义相对论,时空会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但相对而言它已弯曲。在经过大密度的天体时,时空会弯曲,光也就偏离了原来的方向。 在地球上,由于引力场作用很小,时空的扭曲是微乎其微的。而在黑洞周围,时空的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑 洞而到达地球。观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。 更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的“侧面”、甚至“后背”,这是宇宙中的“引力透镜”效应。 图注一:这张红外波段图像拍摄的是我们所居住银河系的中心部位, 版权:所有银河系的恒星都围绕银心部位可能存在的一个超大质量黑洞公转。 ESO/S. Gillessen et al 北京时间1月1日消息,据美国太空网报道,一项新的研究显示,宇宙中最大质量的黑洞开始快速成长的时期可能比科学家原先的估计更早,并且现在仍在加速成长。 一个来自以色列特拉维夫大学的天文学家小组发现,宇宙中最大质量黑洞的首次快速成长期出现在宇宙年龄约为12亿年时,而非之前认为的20~40亿年。天文学家们估计宇宙目前的年龄约为137亿年。 同时,这项研究还发现宇宙中最古老、质量最大的黑洞同样具有非常快速的成长。有关这一发现的详细情况将发表在最新一期的《天体物理学报》。 1.巨型黑洞 宇宙中大部分星系,包括我们居住的银河系的中心都隐藏着一个超大质量黑洞。这些黑洞质量大小不一,从100万个太阳质量到100亿个太阳质量。 天文学家们通过探测黑洞周围吸积盘发出的强烈辐射推断这些黑洞的存在。物质在受到强烈黑洞引力下落时,会在其周围形成吸积盘盘旋下降,在这一过程中势能迅速释放,将物质加热到极高的温度,从而发出强烈辐射。黑洞通过吸积方式吞噬周围物质,这可能就是它的成长方式。 这项最新的研究采用了全世界最先进的地基观测设施,包括位于美国夏威夷莫纳克亚山顶,海拔4000多米处的北双子座望远镜,位于智利帕拉那山 的南双子座望远镜,以及位于美国新墨西哥州圣阿古斯丁平原上的甚大阵射电望远镜。 2.大质量黑洞的成长 观测结果显示,出现在宇宙年龄仅为12亿年时的活跃黑洞,其质量要比稍后出现的大部分大质量黑洞质量小10倍。但是它们的成长速度非常快,因而现在它们的质量要比后者大得多。通过对这种成长速度的测算,研究人员可以估算出这些黑洞天体之前和之后的发展路径。 该研究小组发现,那些最古老的黑洞,即那些在宇宙年龄仅为数亿年时便开始进入全面成长期的黑洞,它们的质量仅为太阳的100到1000倍。研究人员认为这些黑洞的形成和演化可能和宇宙中最早的恒星有关。 天文学家们还注意到,在最初的12亿年后,这些被观测的黑洞天体的成长期仅仅持续了1亿到两亿年。 这项研究是一个已持续7年的研究的成果。特拉维夫大学主持的这项研究旨在追踪研究宇宙中最大质量黑洞的演化,并观察它们对宿主星系产生的影响。 演化过程: 吸积 黑洞通常是因为它们聚拢周围的气体产生辐射而被发现的,这一过程被称为吸积。高温气体辐射热能的效率会严重影响吸积流的几何与动力学特性。目前观测到了辐射效率较高的薄 黑洞拉伸,撕裂并吞噬恒星盘以及辐射效率较低的厚盘。当吸积气体接近中央黑洞时,它们产生的辐射对黑洞的自转以及视界的存在极为敏感。对吸积黑洞光度和光谱的分析为旋转黑洞和视界的存在提供了强有力的证据。数值模拟也显示吸积黑洞经常出现相对论喷流也部分是由黑洞的自转所驱动的。 天体物理学家用“吸积”这个词来描述物质向中央引力体或者是中央延展物质系统的流动。吸积是天体物理中最普遍的过程之一,而且也正是因为 吸积才形成了我们周围许多常见的结构。在宇宙早期,当气体朝由暗物质造成的引力势阱中心流动时形成了星系。即使到了今天,恒星依然是由气体云在其自身引力作用下坍缩碎裂,进而通过吸积周围气体而形成的。行星(包括地球)也是在新形成的恒星周围通过气体和岩石的聚集而形成的。但是当中央天体是一个黑洞时,吸积就会展现出它最为壮观的一面。然而黑洞并不是什么都吸收 的,它也往外边散发质子。 蒸发 由于黑洞的密度极大,根据公式我们可以知道密度=质量/体积,为了 黑洞喷射物不断变亮让黑洞密度无限大,那就说明黑洞的体积要无限小,然后质量要无限大,这样才能成为黑洞。黑洞是由一些恒星“灭亡”后所形成的死星,他的质量极大,体积极小。但黑洞也有灭亡的那天,按照霍金的理论,在量子物理中,有一种名为“隧道效应”的现象,即一个粒子的场强分布虽然尽可能让能量低的地方较强,但即使在能量相当高的地方,场强仍会有分布,对于黑洞的边界来说,这就是一堵能量相当高的势垒,但粒子仍有可能出去。 毁灭 黑洞会发出耀眼的光芒,体积会缩小,甚至会爆炸。当英国物理学家史迪芬?霍金于1974年做此预言时,整个科学界为之震动。 霍金的理论是受灵感支配的思维的飞跃,他结合了广义相对论和量子理论。他发现黑洞周围的引力场释放出能量,同时消耗黑洞的能量和质量。 假设一对粒子会在任何时刻、任何地点被创生,被创生的粒子就是正粒子与反粒子,而如果这一创生过程发生在黑洞附近的话就会有两种情况发生:两粒子湮灭、一个粒子被吸入黑洞。“一个粒子被吸入黑洞”这一情况:在黑洞附近创生的一对粒子其中一个反粒子会被吸入黑洞,而正粒子会逃逸,由于能量不能凭空创生,我们设反粒子携带负能量,正粒子携带正能量,而反粒子的所有运动过程可以视为是一个正粒子的为之相反的运动过程,如一个反粒子被吸入黑洞可视为一个正粒子从黑洞逃逸。这一情况就是一个携带着从黑洞里来的正能量的粒子逃逸了,即黑洞的总能量少了,而爱因斯坦的公式E=mc^2表明,能量的损失会导致质量的损失。 当黑洞的质量越来越小时,它的温度会越 来越高。这样,当黑洞损失质量时,它的温度和发射率增加,因而它的质量损得更快。这种“霍金辐射”对大多数黑洞来说可以忽略不计,因为大黑洞辐失 射的比较慢,而小黑洞则以极高的速度辐射能量,直到黑洞的爆炸。 分类及特点: 按组成划分 按组成来划分,黑洞可以分为两大类。一是暗能量黑洞,二是物理黑洞。 暗能量黑洞 暗能量黑洞主要由高速旋转的巨大的暗能量组成,它内部没有巨大的质量。巨大的暗能量以接近光速的速度旋转,其内部产生巨大的负压足以吞噬物体,从而形成黑洞。暗能量黑洞是星系形成的基础,也是星团、星系团形成的基础。 物理黑洞 物理黑洞由一颗或多颗天体坍缩形成,具有巨大的质量。当一个物理黑洞的质量等于或大于一个星系的质量时,我们称之为奇点黑洞。暗能量黑洞的体积很大,可以有太阳系那般大。奇点黑洞比起暗能量黑洞来说体积非常小,它甚至可以缩小到一个奇点。 按物理性质划分 根据黑洞本身的物理特性质量,角动量,电荷划分,可以将黑洞分为四类。 不旋转不带电荷的黑洞。 它的时空结构于1916年由施瓦西求出称施瓦西黑洞。 不旋转带电黑洞 称R-N黑洞。时空结构于1916至1918年由赖斯纳(Reissner)和纳自敦(Nordstrom)求出。 旋转不带电黑洞 称克尔黑洞。时空结构由克尔于1963年求出。 一般黑洞 称克尔-纽曼黑洞。时空结构于1965年由纽曼求出。 双星黑洞 与其他恒星一块形成双星的黑洞。 黑洞之最: 最小的黑洞 最小的黑洞仅是太阳质量的3.8倍,其直径为24公里,仅比纽约曼哈顿岛大一些。尽管这个被称为“XTE J1650-500”的黑洞算是小个头,但它却是极具破坏性的“引擎”。它与其它黑洞一样,从伴星那里偷取气体,使自己升温,基于XTE J1650-500黑洞的质量,它释放X射线的强度呈周期性变化。天文学家通过观测这种微小的变化,能够测量这颗黑洞的质量。 最大的黑洞 迄今发现宇宙中最大质量黑洞的质量是太阳的180亿倍,是此前纪录保持者的6倍,它的质量相当于一颗小型星系。 这个庞然大物潜伏在OJ287类星体,该类星体距离地球35亿光年。2008年,天文学家通过观测一个较小黑洞(该黑洞的质量相当于太阳的1亿倍)的轨道所受这个庞然大物黑洞的引力场作用,从而测量这个超大黑洞的质量。
/
本文档为【又见枫叶红】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索