为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

超球体积与表面积

2013-01-06 4页 pdf 53KB 38阅读

用户头像

is_725546

暂无简介

举报
超球体积与表面积 Physics 116A Winter 2011 The volume and surface area of an n-dimensional hypersphere An n-dimensional hypersphere of radius R consists of the locus of points such that the distance from the origin is less than or equal to R. A point in an n-dimensional Euclidean ...
超球体积与表面积
Physics 116A Winter 2011 The volume and surface area of an n-dimensional hypersphere An n-dimensional hypersphere of radius R consists of the locus of points such that the distance from the origin is less than or equal to R. A point in an n-dimensional Euclidean space is designated by (x1 , x2 , . . . , xn). In equation form, the hypersphere corresponds to the set of points such that x21 + x 2 2 + · · ·+ x2n ≤ R2 . (1) To compute the volume of this hypersphere, we simply integrate the infinitesimal volume element dV = dx1dx2 · · · dxn over the region of n-dimensional space indicated by eq. (1). We wish to compute this volume Vn(R). Explicitly, Vn(R) = ∫ · · · ∫ x21+x 2 2+···+x2n≤R2 dx1dx2 · · · dxn = CnRn . (2) The factor of Rn is a consequence of dimensional analysis. The surface “area” of the n-dimensional hypersphere defined by eq. (1) will be denoted by Sn−1(R). The surface of the hypersphere corresponds to the locus of points such that x21 + x 2 2 + · · · + x2n = R2. We can construct the volume Vn(R) by adding infinitely thin spherical shells of radius 0 ≤ r ≤ R. In equation form, this reads: Vn(R) = ∫ R 0 Sn−1(r) dr . (3) It follows from the fundamental theorem of calculus that Sn−1(R) = dVn(R) dR = nCnR n−1 , (4) where we have used eq. (2). Thus, the only remaining task is to compute Cn. In order to obtain a better intuition on the meaning of Cn, let us equate the two expressions we have for Vn(R), namely eq. (2) and eq. (3). In the latter, Sn−1(r) is determined by eq. (4). Thus, ∫ · · · ∫ x21+x 2 2+···+x2n≤R2 dx1dx2 · · · dxn = nCn ∫ R 0 rn−1 dr . (5) Eq. (5) is simply the evaluation of an n-dimensional integral either in rectangular co-ordinates or hyper-spherical co-ordinates. In n-dimensions, we would write dx1 dx2 · · · dxn = rn−1 dr dΩn−1 , (6) 1 where dΩn−1 contains all of the angular factors. For example, for n = 2, dΩ1 = dθ; for d = 2, dΩ2 = sin θ dθ dφ; etc. One could explicitly define the n−1 angular variables in n-dimensions. However, if we are integrating over a spherically symmetric function, then we will simply integrate over dΩn−1. Comparing eqs. (5) and (6), we see that: ∫ · · · ∫ dΩn−1 = nCn . (7) I will present a trick for computing Cn without ever explicitly parameterizing the angles of the hyper-spherical coordinate system. Consider the function f(x1 , x2 , . . . , xn) = e −(x21+x22+···+x2n) = e−r 2 , If we integrate this function over the full n-dimensional space in both rectangular and hyper-spherical coordinates, we obtain: ∫ ∞ −∞ ∫ ∞ −∞ · · · ∫ ∞ −∞ e−(x 2 1+x 2 2+···+x2n) = ∫ ∞ 0 rn−1 dr ∫ dΩn−1e−r 2 . Since the integrand on the right hand side depends only on r (there is no angular dependence), we can immediately perform the integral over dΩn−1. Using eq. (7), ∫ ∞ −∞ e−x 2 1 dx1 ∫ ∞ −∞ e−x 2 2 dx2 · · · ∫ ∞ −∞ e−x 2 n dxn = nCn ∫ ∞ 0 rn−1 e−r 2 dr . (8) All the integrals above can be evaluated exactly: ∫ ∞ −∞ e−x 2 dx = √ π , ∫ ∞ 0 rn−1 e−r 2 dr = 1 2 Γ (n 2 ) . Inserting these results into eq. (8), we obtain: πn/2 = Cn n 2 Γ (n 2 ) = Cn Γ ( 1 + n 2 ) , where we used the property of the Gamma function, xΓ(x) = Γ(x + 1), at the final step. Solving for Cn, we obtain Cn = πn/2 Γ ( 1 + n 2 ) . (9) Although we chose a particular function f(x1 , x2 , . . . , xn) to obtain the final result for Cn, it is clear that the value of Cn is independent of this function. After 2 all, the defining equation for Cn [eq. (7)] makes no reference to any function. As a check, let us evaluate nCn for n = 2 and n = 3: 2C2 = 2π Γ(2) = 2π = ∫ 2π 0 dθ , 3C3 = 3π3/2 Γ ( 5 2 ) = 4π = ∫ 2π 0 dφ ∫ π 0 sin θ dθ . In the last computation, we used Γ ( 5 2 ) = 3 2 Γ ( 3 2 ) = (3 2 ) (1 2 ) Γ ( 1 2 ) = 3 4 √ π. Indeed, we have produced the correct values for the integration over the angular factors in two and three dimensions. We are finally ready to compute the volume and surface “area” of an n-dimensional hypersphere. Inserting eq. (9) into eqs. (2) and (4), we find: Vn(R) = πn/2 Rn Γ ( 1 + n 2 ) Sn−1(R) = nπn/2 Rn−1 Γ ( 1 + n 2 ) . The expression for Sn(R) can be slightly simplified by writing Γ ( 1 + n 2 ) = n 2 Γ ( n 2 ) . This yields Sn−1(R) = 2πn/2 Rn−1 Γ ( n 2 ) . You should check that you get the expected results for n = 2 and n = 3. For example, V3(R) = 4 3 πR3 and S2(R) = 4πR 2. Finally, it is amusing to note that limn→∞ Vn(R) = 0 and limn→∞ Sn(R) = 0. To understand this peculiar behavior, consider a hypercube in n-dimensional space measuring one unit on each side. The total volume of this hypercube is 1. We can fit a hypersphere of diameter 1 (or radius 1 2 ) inside the hypercube such that the surface of the hypersphere just touches each of the walls of the hypercube. Then 1 − Vn(12) is the volume inside the cube but outside the hypersphere. In particular, as n becomes large, 1 − Vn(12) rapidly approaches 1, which is con- sistent with the assertion that limn→∞ Vn(R) = 0. This simply means that as the number of dimensions becomes larger and larger, the amount of space outside the hypersphere (but inside the cube) is become relatively more and more important. This is already happening as you go from 2 to 3 dimensions. So you can check your intuition by inscribing a circle in a unit square and a sphere in a unit cube and com- puting the total volume in three dimensions (area in two dimensions) outside the sphere (circle) but inside the cube (square). If you take the ratio of volumes (areas) of the sphere (circle) to that of the cube (square), this ratio actually decreases as you go from 2 dimensions to 3 dimensions! 3 To illustrate the behavior described above, I have plotted 1− Vn(12) on the y-axis vs. the dimension n on the x-axis for values of n = 1, 2, 3, . . . , 10 in the figure below. 2 4 6 8 10 0.2 0.4 0.6 0.8 1 Indeed, 1−Vn(12) rapidly approaches 1 as n becomes large, which is equivalent to the statement that limn→∞ Vn(R) = 0. A related problem examines the volume of a hypersphere of radius 1. (In contrast, the radius was equal to 1/2 in the previous discussion above.) One can study the behavior of Vn(1) as n increases. Unlike the graph shown above, Vn(1) is an increasing function of n for small values of n. However, it quickly reaches a maximum, after which it steadily decreases to zero as n becomes large. This corresponds to problem 7 on homework set #5, so I will leave the rest to you. 4 << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /All /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Warning /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJDFFile false /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /ColorConversionStrategy /LeaveColorUnchanged /DoThumbnails false /EmbedAllFonts true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveEPSInfo true /PreserveHalftoneInfo false /PreserveOPIComments false /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /Unknown /Description << /FRA /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.) /JPN /DEU /PTB /DAN /NLD /ESP /SUO /ITA /NOR /SVE >> >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice
/
本文档为【超球体积与表面积】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索