为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > 铝锡滑动轴承合金摩擦磨损及热膨胀性能研究

铝锡滑动轴承合金摩擦磨损及热膨胀性能研究

2013-03-05 16页 pdf 57KB 23阅读

用户头像

is_875109

暂无简介

举报
铝锡滑动轴承合金摩擦磨损及热膨胀性能研究 广西大学硕士论文 铝锡滑动轴承合金摩擦磨损性能及热膨胀性能研究 - 1 - 分类号 TG146 密级 UDC 硕士学位论文 铝锡滑动轴承合金摩擦磨损性能及 热膨胀性能研究 高 岩 学科专业 材料物理与化学 指导教师 曾建民 教授 ...
铝锡滑动轴承合金摩擦磨损及热膨胀性能研究
广西大学硕士论文 铝锡滑动轴承合金摩擦磨损性能及热膨胀性能研究 - 1 - 分类号 TG146 密级 UDC 硕士学位论文 铝锡滑动轴承合金摩擦磨损性能及 热膨胀性能研究 高 岩 学科专业 材料物理与化学 指导教师 曾建民 教授 论文答辩日期 2005年 6月 3日 学位授予日期 答辩委员会主席 农亮勤(教授) 论文评阅人 刘长山(研究员);庄应烘(教授) 广西大学硕士论文 铝锡滑动轴承合金摩擦磨损性能及热膨胀性能研究 - 2 - 铝锡滑动轴承合金摩擦磨损性能及热膨胀性能研究 摘 要 铝锡合金是一种综合性能良好的轴承合金,它具有良好的抗粘咬性、 耐磨减摩性、耐腐蚀性、顺应性和嵌入性等优越性。因而正愈来愈多的 应用以代替传统的锡青铜和巴氏合金,但关于含锡合金软组织的保护作 用的最佳锡含量许多文献说法不一。本文着重研究了在锡含量从3%-30% 的情况下,铝锡合金的摩擦磨损性能;同时对目前常用 AlSn20Cu、 AlSn6Cu、AlSn30Cu三种合金在30-150℃下的热膨胀性能进行了较全面 的研究。并且采用LSM法制备了一种新型的铝锡硼化钛复合材料。 试验利用材料硬度机、金相显微镜、图像软件、摩擦试验机、 热膨胀试验仪等仪器对几种不同含锡量的铝锡轴承合金室温下硬度、摩 擦系数、减摩性、耐磨性和热膨胀性能做了较为全面的研究。 试验结果表明:(1)当锡含量达到9%时,合金的共晶组织较多, 锡开始呈网状包围着铝晶体,并且随着锡含量的增加,锡原子有偏聚的 倾向,形成球形,α(Al)铝晶粒得到细化。(2)复合材料中TiB2呈接近 等轴的颗粒状,其平均尺寸﹤1μm,均匀分布在α(Al)基体中,但在 α(Al)与共晶β(Sn)的交界处出现 TiB2颗粒偏聚富集现象,并且出现 TiB2的团聚现象。β(Sn) 相以 TiB2为核心聚集球化形成明显的 Sn 环绕 TiB2的包晶式相组织,多个 TiB2粒子被锡相包覆,使得整个包晶组织呈 现卵圆球形。(3)含锡合金的软组织成分的保护作用自9%Sn起就已经 明显显示出来。含锡量为9%时,铝锡合金减摩耐磨性能优良,具有综合 广西大学硕士论文 铝锡滑动轴承合金摩擦磨损性能及热膨胀性能研究 - 3 - 的摩擦磨损性能。(4)铝锡铜合金中随着合金元素锡含量的增加,组织 中β(Sn)相增加,合金的线膨胀系数减小。(5)高熔点的Cu元素固 溶于α(Al)相中,使α(Al)晶格常数下降,原子间结合力增强,有效 的降低合金的热膨胀系数。 广西的有色金属资源丰富,特别是锡和铝。因此本文关于铝锡合金的 研究对广西的资源利用和经济发展有着显著的意义。 关键词: 铝锡合金 摩擦磨损性能 热膨胀 铝锡硼化钛 广西大学硕士论文 铝锡滑动轴承合金摩擦磨损性能及热膨胀性能研究 - 4 - RESERCH ON FRICTION AND WEAR PROPERTIES AND THERMAL EXPASION OF AL-SN BEARING ALLOYS ABSTRACT Tin aluminum alloy is a kind of high property bearing-material. These alloys present good resist adhesion properties; good wear resisting, corrode-resist properties and excellent conform-embed properties. So, they have been substituted for such wear-resisting materials as brass and Babbitt metal. But, how much the content of tin in the kind of alloy is the best properties have different points. The present work deals with the friction-wear properties of 3%-30% Sn-content Al-based alloys at room temperature and determined the thermal expansion of Al-Sn-Cu bearing alloy-AlSn6Cu,AlSn20Cu,AlSn30Cu between 30- 150 . ℃ A new kind of 6% TiB2/Al-10Sn composite was fabricated by LSM method. The hardness, friction coefficient and friction-wear performance and thermal expansion of different Sn-content Al-based alloys were carried out on material testing system, abrasion testing machine, metallographic microscope, image-analyzer and thermal expansion equipment. The results show that: (1) 9% Sn-content Al-based alloys have fully eutectic organize, reticulate Sn surround Al crystal. With the increasing of Sn-content, Sn atoms get together into sphericity and crystals α(Al) crystals are refined. (2) The microanalyses of the TiB2/Al-10Sn composite revealed that TiB2 particles are well distributed in theα(Al) matrix, the mean size of TiB2 particles which is close to that of equiaxed polyhedron is﹤1μm. But the micro-cluster phenomenon of TiB2 particles occurs in the interface betweenα(Al) and eutectic tin. Primaryα(Al) crystals are refined. β (Sn) phases are solidified around TiB2 particles and distributed in the grain boundary as network structure. The “peritectic-type” structure of TiB2 surrounded with tin is formed by homogenization. Several TiB2 广西大学硕士论文 铝锡滑动轴承合金摩擦磨损性能及热膨胀性能研究 - 5 - particles are surrounded by tin phase and the whole organization become olivary. (3) It is shown that the friction coefficient of Al-Sn tends to decrease and the bearing capacity of alloys reduces with the increasing content of Sn. The aluminum alloys with 9% Sn content has the best wear-friction properties at room temperature. (4) with the increasing content of Sn theβ(Sn) phase increasing coefficient of expasion decrease. (5) The dramatic changes of expasion coefficient of the alloy with temperature dependence decrease with increasing of copper content which has higher melting-point .Copper dissolving in the α(Al) phase brings about α(Al) lattice dropping. Guangxi is abundant in non-ferrous mineral resources, especially in Tin and Aluminum. So the present work is significant for exploitation and utilization of resources as well as the development of economy in Guangxi. KEY WORDS: Al-Sn alloys; friction coefficient; wear-friction properties; Coefficient of Expansion; TiB2/Al-10Sn composite 广西大学硕士论文 铝锡滑动轴承合金摩擦磨损性能及热膨胀性能研究 - 6 - 目 录 摘要 ························································································································Ⅰ ABSTRACT ··············································································································Ⅲ 第一章 文献评述 ····································································································1 1.1研究背景···········································································································1 1.2滑动轴承的特点及性能要求 ··········································································2 1.2.1滑动轴承的特点···························································································2 1.2.2滑动轴承合金的工作条件及性能要求························································3 1.3滑动轴承系统的材料构成················································································5 1.3.1滑动轴承合金的组织类型············································································5 1.3.2滑动轴承系统分类························································································7 1.4滑动轴承合金的发展························································································8 1.5滑动轴承合金的种类及性能特点····································································9 1.5.1巴氏合金·······································································································9 1.5.2铜基合金·····································································································10 1.5.3铝基合金····································································································· 11 1.5.4锌基合金·····································································································13 1.6铝锡轴承合金的发展及性能特点··································································13 1.6.1低锡铝基轴承合金······················································································16 1.6.2高锡铝基轴承合金······················································································17 1.7国内外铝基轴承合金的研究现状··································································18 1.8选背景及意义·····························································································22 第二章 铝锡滑动轴承合金的成分·······························································23 2.1合金设计的理论基础······················································································23 2.1.1铝锡轴承合金的物理冶金基础 ··································································23 2.1.2合金化理论·································································································24 2.1.3固溶强化理论·····························································································25 2.1.4第二相强化·································································································27 2.1.5细晶粒强化·································································································28 2.1.6复合强化 ·····················································································································28 2.1.7强度与塑性的匹配······················································································28 2.2合金熔炼工艺研究·························································································28 2.2.1合金元素的加入顺序··················································································28 2.2.2炉料的加入次序·························································································29 2.2.3熔炼的温度和时间的控制··········································································29 2.2.4合金的精炼·································································································29 2.3试样的制备·····································································································32 2.3.1主要熔炼设备及仪器··················································································32 2.3.2实验准备工作·····························································································33 2.3.3合金的熔炼·································································································34 广西大学硕士论文 铝锡滑动轴承合金摩擦磨损性能及热膨胀性能研究 - 7 - 2.4本章小结·········································································································35 第三章 铝锡合金的显微组织及摩擦磨损性能 ···················································36 3.1铝锡合金的显微组织及硬度··········································································36 3.1.1铝锡合金的显微组织·············································································· 36 3.1.2关于合金中锡的偏析问题··········································································37 3.1.3铝锡合金硬度测试······················································································38 3.2铝锡合金的摩擦磨损性能··············································································38 3.2.1实验设备·····································································································38 3.2.2实验原理及方法·························································································38 3.2.3实验结果及讨论·························································································40 3.3本章小结·········································································································45 第四章 铝锡硼化钛复合材料的显微组织及摩擦磨损性能 ·······························46 4.1铝锡硼化钛复合材料的显微组织··································································46 4.1.1冶金原理·····································································································46 4.1.2金相组织显微分析······················································································47 4.2铝锡硼化钛复合材料的摩擦磨损性能··························································50 4.2.1低速低载荷·································································································51 4.2.2高速高载荷·································································································52 4.3本章小结·········································································································53 第五章 铝锡轴承合金热膨胀性能研究·······························································55 5.1实验原料及设备·····························································································55 5.2热膨胀系数的测定·························································································56 5.3结果与讨论·····································································································56 5.3.1热膨胀的本质·····························································································57 5.3.2合金中原子的热振动与热膨胀的关系······················································57 5.4本章小结·········································································································58 第六章 结论 ··········································································································60 参考文献 ················································································································61 致谢 ························································································································64 攻读学位期间发表论文情况 ················································································65 广西大学硕士论文 铝锡滑动轴承合金摩擦磨损性能及热膨胀性能研究 - 8 - 第一章 文献评述 1.1研究背景 滑动轴承作为各种机械、机床、液压设备上的主轴、连杆、发动机及其它动力设 备的重要构件,其材料的研制开发和应用一直以来都是世界各国滑动轴承材料领域的 工作者致力研究的一个重点。 用来制造滑动轴承内衬(轴瓦)的合金称为轴承合金。常用的滑动轴承合金有锡 基、铅基、铜基、铝基、铁基合金以及粉末冶金含油轴承等,其中锡基和铅基为低熔 点轴承合金,又称巴氏合金[1]。 锡基轴承合金为低熔点轴承合金,是历史悠久使用较广的传统轴承合金材料。锡 基合金具有很小的摩擦系数,优良的抗咬合性、嵌藏性、顺应性和对润滑油的耐腐蚀 性等。但是,这类合金的疲劳强度较低,同时由于合金的熔点低,工作温度也较低, 150℃时的硬度只有 HB6~12,所以这类轴承合金的最高工作温度不能超过 130~150 ℃[2]。虽然锡基轴承合金性能较好,但锡价格昂贵,用价廉的铅替代锡的铅基轴承合 金在工业上得到应用。铅基轴承合金具有塑性好、抗疲劳性能高、成本低廉等优点, 但合金的强度、硬度、耐蚀性和耐磨性均不如锡基合金,只能用于低速低载荷或静载 荷下的中等载荷轴承。近年来随着设备运行速度加大,负荷增高,传统的巴氏合金的 疲劳强度,承载能力等已经不能满足使用的要求,因此科研工作者又开发出巴氏合金 的替代品-铜基轴承合金和铝基轴承合金。 铜基轴承合金(锡青铜、铅青铜、和铜铅合金)与锡基、铅基合金相比较,具有 承载能力大,疲劳强度高,导热性能优良,能在更高温度下工作等优点,因此广泛用 来制造在重负荷和高的滑动线速度情况下工作的重要轴承。但它的主要缺点是轴承的 顺应性、嵌藏性比较差,合金中的铅易受酸的腐蚀,耐蚀性不如巴氏合金[1]。铜基合 金的一个最大缺点是铜的价格较高,尤其对于我们国家来说铜资源相对比较匮乏,每 年铜产品的进口额约占有色产品进口额的 50%以上,因此铝基轴承合金的研究对于 我国轴承行业具有积极的意义。 此外,铜铅合金平均含铅量高达 24~30%,铅基轴承合金含铅量更高,在材料 的浇注过程中污染问题治理困难,而且在轴瓦废弃后的二次污染也很严重,对环境危 害巨大。薄壁轴瓦2000年的新国际ISO 4383:2000滑动轴承,增加了一条重要 广西大学硕士论文 铝锡滑动轴承合金摩擦磨损性能及热膨胀性能研究 - 9 - 的“注”—“将来环境的要求将限制铅一类的某些材料的使用”[3]。并且文献[3]还 提到“在未来我们将为最后除去轴承合金中的微量铅而向其宣战,并配制一种在各方 面对环境无害的合金”,可见最终铅将在轴承合金中消失。因此少铅或无铅的滑动轴 承合金的研制是现今的一个热点[4],并在我国已经取得了一些进展。就铁道行业而言, 国产内燃机车大功率柴油机轴瓦全部为铝合金瓦,少数国外自行设计的机型,在实行 轴瓦国产化时,我们优先采用中锡含硅铝合金双层瓦来取代原用带镀层三层轴瓦的方 案。船用大功率柴油机行业,引进机型大多采用铜铅瓦,国产化依然采用铜铅瓦。其 实,由于国内电镀层质量与国外差距较大,国产铜铅的寿命也远低于进口瓦。而国内 的中锡材料承载能力又比 AlSn20Cu 有大幅度提高。建议不妨试用中锡双层瓦取代铜 铅瓦。因为,只有使用更广泛,才能更有利于推动国内轴瓦材料厂家对中锡合金材料 的不断改进和提高。环境要求最终限制铜铅瓦的使用是大势所趋,内燃机行业和轴瓦 材料行业应未雨绸缪,早作打算为宜。 鉴于巴氏合金和铜基合金在性能、经济和环境等方面的问题,各种替代材料不断 被开发出来。铝基合金是近代发展起来的优良减摩合金材料,它密度小,价廉易得, 具有较高的承载能力和疲劳强度、低的摩擦系数、高的耐磨性和抗擦伤能力、良好的 导热性、可切削加工性和耐腐蚀性等优点。其耐磨性不亚于银基合金,因此广泛的用 于汽车、拖拉机、航海、航空等高速高压重载发动机中[5]。铝基轴承合金主要包括有 Al-Sn合金、Al-Si合金和Al-Pb合金等。本论文重点研究了Al-Sn合金在高锡和低 锡情况下的摩擦磨损性能以及在30-150℃情况下不同锡含量的热膨胀性能,并研究 了一种铝锡硼化钛复合材料。 1.2 滑动轴承的特点及性能要求 1.2.1 滑动轴承的特点[6] 滑动轴承是轴承的两大基本类型之一。滑动轴承是以轴瓦直接支承轴颈、承受载 荷并保持轴的正常工作位置。滑动轴承与滚动轴承相比,具有下列优点: ⑴ 高速转动的滑动轴承,在保证液体润滑的条件下,可长时期高速运转; ⑵ 滑动轴承结构简单,能保证很高的制造精度,可获得很高的运转精度; ⑶ 滑动轴承径向尺寸小,可使机械的结构紧凑; ⑷ 对于承受重载荷的大型轴承,滚动轴承制造较难,常采用滑动轴承; 广西大学硕士论文 铝锡滑动轴承合金摩擦磨损性能及热膨胀性能研究 - 10 - ⑸ 受安装条件限制,需要采用剖分式轴承的情况下,只能采用滑动轴承; ⑹ 滑动轴承的油膜具有较好的吸振能力,因此,滑动轴承适用于承受振动,冲击 载荷的情况。 1.2.2 滑动轴承合金的工作条件及性能要求 滑动轴承主要由轴颈和轴瓦(轴套、瓦块)组成,制作轴颈的材料称为轴颈材料, 制作轴瓦的材料称为轴瓦材料,两者统称为轴承材料。轴瓦材料中包括单层(整体) 轴瓦材料、衬层材料和衬背材料。轴瓦的结构型式有:整体铜合金、整体铝合金、钢 背+减摩合金层、钢背+减摩合金层+镀层,目前国际上多采用后两种居多。其中又 都把主要精力集中在减摩层和镀层的选材上,因为它们直接决定了轴瓦的工作稳定性 和使用寿命[7]。 滑动轴承是直接与轴颈配合使用的,当轴高速转动时,轴瓦表面承受一定的周期 性交变负荷,并与轴发生摩擦。在理想的工作条件下,轴与轴瓦间有一层润滑油膜相 隔,进行理想的液体摩擦。但实际工作中,特别是在启动、停车以及负荷变动时,润 滑油膜往往遭到破坏,而进行半干摩擦甚至干摩擦。因此,根据轴承的工作条件,对 轴承材料提出了一定的组织和性能要求。 滑动轴承工作时,通常所承受的负荷有静负荷和动负荷,在动力机械中还承受一 定的冲击负荷。因此,要求轴承合金在常温和工作温度下具有足够的承压能力、冲击 韧性和疲劳强度。滑动轴承无论是在液体摩擦或是干摩擦条件下工作时,都要与轴发 生摩擦,产生磨损和摩擦热。其摩擦系数愈大,摩擦热愈大,有可能导致轴承表面熔 化烧伤,因此要求轴承合金摩擦系数小,导热性好,具有一定的熔点和硬度,而不致 于擦伤轴颈。 为了保证轴承在良好的油膜保护下工作,轴承与轴颈之间留有一定的间隙,而间 隙又不能太大,否则,不能保证轴平稳工作。所以要求轴承合金热膨胀系数要小,以 免与轴咬死。并要求轴承合金与轴颈有良好的磨合性,要能根据轴的变形情况而产生 相应变形,变形后不许有加工硬化现象。 此外,还要求轴承材料具有良好的抗蚀性,并能与钢背牢固结合,材料经济、工 艺性能好[5]。 轴承合金的性能分表面性能和机械性能两方面[8]。 广西大学硕士论文 铝锡滑动轴承合金摩擦磨损性能及热膨胀性能研究 - 11 - ⑴ 表面性能 ① 抗咬合性 即一旦油膜破裂,金属表面直接接触时,合金依靠自润滑作用具 有对抗咬合的能力。可通过连续反复进行起动停车实验来判断。巴氏合金、带表面涂 层的铜基和铝基合金都具有很好的抗咬合性。不带涂层的铜基合金和低锡铝合金抗咬 合性能较差。 ② 顺应性 由于轴颈和座孔制造误差和工作变形,使工作表面产生边缘峰值压 力,引起偏磨,顺应性好的材料弹性模数低,依靠本身的弹性变形能自动适应上述偏 移,使峰值压力得到缓和。巴氏合金、铝锡合金都是顺应性较好的材料,铜基合金顺 应性较差。 ③ 磨合性 又称跑合性,即新轴承经短时间运转后,将不适应部分磨去,达到 与轴颈均匀贴合的能力。合金的磨合性愈好,所需磨合时间愈短。巴氏合金磨合性最 好,铝基合金居中,铜基合金较差。表面涂层可使磨合性能得到改善。 ④ 嵌藏性 当杂质、金属磨屑随润滑油进入润滑间隙时,合金层依靠自身的塑 性变形能将异粒嵌藏于其中,以免划伤轴颈。嵌藏性差,滤清要求就高,对异粒十分 敏感。合金硬度低的材料嵌藏性好。巴氏合金、铝基合金具有良好的嵌藏性。铜基合 金较差,但采用涂层可使其略为改善。 ⑤ 亲油性 指合金对润滑油的吸附能力。亲油性好,容易形成吸附油膜,不易 咬合。 ⑥ 耐腐蚀性 润滑油在工作过程中氧化,分解出的酸份使合金表面腐蚀,形成 针孔状麻点,最终导致疲劳剥落。锡基巴氏合金、铝基合金具有很好的耐腐蚀性。铜 铅合金中的铅比铅青铜中的铅容易腐蚀,但通过表面涂层可得到明显的改善。铝基合 金在碱性介质中易被腐蚀,但在发动机中这种情况少见。 ⑦ 损伤敏感性 由于暂时故障,合金层会受到损伤。损伤敏感性低的材料能依 靠温度与压力的作用自动将伤口“烫平”,不影响正常运转。一旦出现导致最终破坏 的严重故障,它也能迅速熔融,保护轴颈维持到停车而不受损伤。巴氏合金、铝锡合 金损伤敏感性低。铜基合金即使带表面涂层,损伤敏感性也很高。 ⑵ 机械性能 ① 抗拉强度 合金层的裂纹通常发生在与工作表面相垂直的方向,因此材料的 抗拉强度是反映承载能力的标志之一。铜基合金抗拉强度最高,铝基合金居中,巴氏 合金较差。 广西大学硕士论文 铝锡滑动轴承合金摩擦磨损性能及热膨胀性能研究 - 12 - ② 疲劳强度 各种合金的的疲劳强度不同。铜基、低锡铝基合金都具有较高的 承载能力,20~40%铝锡合金居中,巴氏合金最差。 ③ 耐热性能 发动机工作温度不断提高,合金在高温下的机械性能十分重要。 铜基、铝基合金具有较高的耐热性,巴氏合金的耐热性极差,使其应用受到限制。 ④ 磨损特性 这是一项综合指标,包括轴颈与轴承磨损量两个方面。首先应保 证轴颈磨损尽量小,其次要求合金磨损小。巴氏合金、铝基合金对轴颈的磨损小,但 自身磨损量大,铜基合金反之,但通过提高轴颈硬度和采用表面涂层能使其磨损特性 显著改善。 各种机械设备对轴承合金材料的性能要求也不相同,实际上所有性能都理想的轴 承合金材料是难以得到的,必须根据不同机械设备所需轴承的工作条件,以几项主要 的性能指标为依据,选取合适的轴承合金材料。例如,具有好的嵌藏性、顺应性以及 与钢轴有相容性的材料,其承载能力往往很低。这就迫使人们或者在这些相互矛盾的 性能要求之间寻找折中的方案,或者发展一类具有很好相容性、嵌藏性及顺应性的材 料,然后以其它办法(如镶以钢的基底-钢背)补偿其承载能力的不足[9]。 1.3 滑动轴承系统的材料构成 1.3.1 滑动轴承合金的组织类型 为了满足轴承合金所需的特有性能,通常选择由两相或多相所组成的合金,从轴 承合金的显微组织看,可分为以下三种主要类型。 ⑴ 在软基体上弥散分布着硬质点,铅基巴氏合金与锡基巴氏合金就属于这一类。 这类合金的相容性、顺应性及嵌藏性都很好,只比未合金化的铅或锡稍微差点,但由 于存在第二相硬质点,使整体强度有明显提高。 ⑵ 在强的基体上弥散分布着一些软相,铅青铜、铝锡合金及铝铅合金就属于这 一类。其显微组织是由连续分布的铜基或铝基金属基体和弥散分布的铅或锡小块组 成。这类合金的顺应性、嵌藏性、强度和硬度是由基体决定的,而暴露于轴承合金表 面的软相能使相容性增加。 ⑶ 软相和硬相互嵌的显微组织。有一些铜铅合金属于这一类。在这些合金中, 铜和铅相是连续地互相支撑。这种合金的相容性主要取决大体积分数铅的存在。其顺 广西大学硕士论文 铝锡滑动轴承合金摩擦磨损性能及热膨胀性能研究 - 13 - 延性、嵌藏性、强度与硬度则处于铅基和铜基合金之间[10]。 成分、组织决定了这些轴承合金的整体性能,这些性能一般是以大块材料为试样 时测得的,如强度及硬度等。要强调的是,轴承合金的整体性质对于选材来说,只是 在作初步鉴别时才有意义,并不能用这些整体性质来精确预期双金属或三金属轴承 中,这些轴承合金在薄层形式下的性质。 至今轴承合金的减摩机理仍是研究的课题,但合金的设计却都是按照软相与硬相 相配合的显微组织考虑。关于该减摩机理目前有几种说法[11]: ⑴ 软基体中硬相承载机理 通常认为减摩材料的组织应当是在软的塑性基体上分布着许多硬颗粒的异质结 构,例如,锡基巴氏合金的组织是以含锑与锡固溶体为塑性基体,在该软基体上面分 布着许多硬的 Sn-Sb立方晶体和 Cu-Sn针状晶体。在正常载荷作用下, 图1-1轴承合金组织结构示意图 Fig.1-1 Sketch of silding bearing alloy’s structure 主要由突出在摩擦表面的硬相直接承受载荷,而软相起着支持硬相的作用。由于是硬 相发生接触和相对滑动,所以摩擦系数和磨损都很小。又由于硬相被支持在软基体之 上,易于变形而不至于擦伤相互摩擦的表面。同时,软基体还可以使硬相上压力分布 均匀。当载荷增加时,承受压力增大的硬相颗粒陷入软基体中,将使更多的硬颗粒承 载而达到载荷均匀分布。这是当前占主流的一种观点(如图1-1)。 ⑵ 软相承载机理 与上述观点相反,有人认为材料的减摩耐磨机理在于软相承受载荷。在这类材料 中,各种组织的热膨胀系数不同,软相的膨胀系数大于硬相。在摩擦过程中,由于摩 擦热引起的热膨胀使软相突起几个油分子的高度而承受载荷。由于软相的塑性高,因 广西大学硕士论文 铝锡滑动轴承合金摩擦磨损性能及热膨胀性能研究 - 14 - 而减摩性能良好。 ⑶ 多孔性存油机理 现代机械装备中广泛应用的粉末冶金材料是典型的多孔组织。这种材料是将金属 粉末与非金属粉末混合,并渗入各种固体润滑剂,如石墨、铅、硫及硫化物等,以改 善材料的减摩性能,再经过成型烧结等工艺而制成。粉末冶金材料的孔隙约占 10%~ 35%。将它放在热油中浸渍数小时后,孔隙中即充满润滑油。当摩擦副相对滑动时, 摩擦热使金属颗粒膨胀,孔隙容积减小。而润滑油也膨胀,其膨胀系数比金属大,因 而润滑油被溢出表面起润滑作用。巴氏合金和铅青铜等轴承材料组织结构中,各相的 热膨胀系数不同,经过工艺过程中的热胀冷缩而形成许多小孔隙。因此也具有与粉末 冶金孔隙相同的润滑效果。 ⑷ 塑性涂层机理 近年来,多层材料日益广泛地应用于轴瓦和其它摩擦副。在硬基体材料表面覆盖 一层或多层软金属涂层。常用地涂层材料有铅、锡、铟和镉等。由于表面涂层很薄, 并具有良好塑性,因而容易磨合和降低摩擦系数。 1.3.2滑动轴承系统分类[12] 不同机械中轴承的运转条件差别往往很大。有的情况下,用某种单一轴承合金就 可以大体上满足工作要求,而一些要求较高的场合,往往需要用双金属或三金属系统 才能满足相容性、嵌藏性、顺应性与强度这几方面的要求。 ⑴ 单金属轴承 所谓单金属轴承系统实际就是用单一的铜合金或铝合金制作滑动轴承。 除了普通青铜及低铅锡青铜之外,铜合金单金属轴承几乎都是在铸态下使用的。 它们可作成厚度达3.2㎜的轴套,从而有足够的强度来压入轴承座中。而普通青铜及 低铅锡青铜则多锻造成带,作为薄壁轴套来使用。低铅和无铅青铜也可以用粉末冶金 方法作成多孔轴套来使用。这种多孔轴套浸油后,在使用中将具有自润滑作用。它们 广泛用于轻载及要求自润滑的场合。 在单金属轴承系统中使用的铝轴承材料,实际上大都含有5.5~7%Sn,此外还含 有少量Cu、Ni、Si和Mg。锡弥散分布于铝基体上,从而使表面性能改善。而基体的 屈服强度还可以通过热处理等方法来提高。 ⑵ 双金属轴承系统 双金属轴承是把软的、比较弱的轴承合金薄层,用冶金学方法固接到强度较高的 广西大学硕士论文 铝锡滑动轴承合金摩擦磨损性能及热膨胀性能研究 - 15 - 轴承基底(背)上而构成的。它具有良好的表面性质,如相容性、嵌藏性及顺应性等, 又具有较高的强度,从而提高了轴承的承载能力。 目前广泛使用的轴承基底(背)是低碳钢,但也有使用合金钢、青铜、黄铜和铝 合金的。实验结果表明,在同样的钢背上,由于巴氏合金层厚度减小,铅基和锡基合 金的载承能力差不多增加 50%。类似的情况在铜合金和铝合金中也可以观察到,只 是不如铅、锡合金中明显。 ⑶ 三金属合金轴承系统 三金属轴承系统一般是由钢背、有比较高疲劳强度的中间层以及锡基或铅基合金 表面层组成的。三金属轴承系统大部分是从钢背双金属轴承演而变来的。以钢背-铅 双金属轴承为例,铜铅合金作表面层时,其顺应性及嵌藏性都较差,耐腐蚀性能也较 差,在高油温的高速内燃机中,合金表面的铅会受到腐蚀。为了改善铜铅双金属轴承 的嵌藏性、顺应性和耐腐蚀性,可在铜铅合金表面电镀一层厚约 0.25~0.50 ㎜含锡 约 12%的铅锡合金层,从而构成由钢背、铜铅中间合金与铅锡合金表面层组成的三 金属轴承。三金属轴承的疲劳强度、表面性质等综合性能较好、成本也相对低些,可 以用来承受比双金属轴承系统更高的载荷。 1.4滑动轴承合金的发展 最初的轴承合金是巴比特(I.Babbit)于1839年发明,1843年取得英国专利的锡 基合金,其成分是82~84%Sn,5~6%Cu,11~12%Sb。后来在此基础上发展了一 系列软的减摩锡基和铅基轴承合金,且都被称为巴比特合金[13]。二次大战期间锡的短 缺促进了铅基轴承的使用。初期的滑动轴承是将轴直接支承在轴承座或铸有巴氏合金 的轴承座上,后来发展成用铜合金做成单金属厚壁轴承予以使用。50年代后期,我国 开始用离心浇铸或连续浇铸的方法生产钢背巴氏合金薄壁轴承及材料。薄壁轴承具有 重量轻、相对疲劳强度高、生产成本低和轴承运输方便等优点,50年代后期,我国生 产的汽车发动机的最大轴承压力不超过8-10MN/㎡,这种轴承能够满足使用要求,到 60年代中期,我国掌握了用压力结合法生产钢-铝锡合金材料及轴承的技术,主要是 生产含锡量为20-30%的高锡铝合金材料。铝合金有着价廉、资源丰富及较巴氏合金 轴承的疲劳强度提高一倍等优被我国的发动机行业广泛应用,并逐步替代巴氏合金。 随着我国汽车行业和内燃机行业的发展,无论引进的还是自己设计和改进的发动 机都对轴承提出增大负载,提高转速和缩小结构等要求,这也是原巴氏合金和铝合金 广西大学硕士论文 铝锡滑动轴承合金摩擦磨损性能及热膨胀性能研
/
本文档为【铝锡滑动轴承合金摩擦磨损及热膨胀性能研究】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索