为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

2PSK调制与解调系统的仿真

2019-08-05 18页 doc 70KB 30阅读

用户头像

is_995397

暂无简介

举报
2PSK调制与解调系统的仿真目录 2PSK调制与解调系统的仿真    3 1.设计任务与要求    4 2.设计原理    4 2.1调制原理    5 2.2解调原理    5 3.系统结构图    6 3.1 2PSK信号的调制原理框图如下图3所示    6 3.2 2PSK信号的调制原理框图如下图所示    7 4.仿真结果    7 5.心得体会    8 参考文献    9 2PSK调制与解调系统的仿真 摘要:用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。键控法,如对载波的相位进行键控,便可获得相移键控(PSK...
2PSK调制与解调系统的仿真
目录 2PSK调制与解调系统的仿真    3 1.任务与要求    4 2.设计原理    4 2.1调制原理    5 2.2解调原理    5 3.系统结构图    6 3.1 2PSK信号的调制原理框图如下图3所示    6 3.2 2PSK信号的调制原理框图如下图所示    7 4.仿真结果    7 5.心得体会    8 参考文献    9 2PSK调制与解调系统的仿真 摘要:用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。键控法,如对载波的相位进行键控,便可获得相移键控(PSK)基本的调制方式。由于PSK在生活中有着广泛的应用,本论文详细介绍了PSK波形的产生和仿真过程。我们可以系统的了解基本原理,以及得到数字调制波形的方法。利用MATLAB仿真可更好的认识2PSK信号波形的调制过程。 关键词:数字调制、2PSK、调制与解调、Matlab仿真 1.设计任务与要求 课程设计需要运用MATLAB编程实现2PSK调制解调过程,并且输出其调制及解调过程中的波形,讨论其调制和解调效果。 2.设计原理 数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。 数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(PSK)基本的调制方式。  图1  相应的信号波形的示例  1          0        1 2.1调制原理    数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于"同相"状态;如果其中一个开始得迟了一点,就可能不相同了。如果一个达到正最大值时,另一个达到负最大值,则称为"反相"。一般把信号振荡一次(一周)作为360度。如果一个波比另一个波相差半个周期,我们说两个波的相位差180度,也就是反相。当传输数字信号时,"1"码控制发0度相位,"0"码控制发180度相位。载波的初始相位就有了移动,也就带上了信息。 相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。在2PSK中,通常用初始相位0和π分别表示二进制“1”和“0”。因此,2PSK信号的时域表达式为 (t)=Acos t+ )  其中, 表示第n个符号的绝对相位: =                 因此,上式可以改写为   图2  2PSK信号波形 2.2解调原理 2PSK信号的解调方法是相干解调法。由于PSK信号本身就是利用相位传递信息的,所以在接收端必须利用信号的相位信息来解调信号。下图2-3中给出了一种2PSK信号相干接收设备的原理框图。图中经过带通滤波的信号在相乘器中与本地载波相乘,然后用低通滤波器滤除高频分量,在进行抽样判决。判决器是按极性来判决的。即正抽样值判为1,负抽样值判为0. 2PSK信号相干解调各点时间波形如图 3 所示. 当恢复的相干载波产生180°倒相时,解调出的数字基带信号将与发送的数字基带信号正好是相反,解调器输出数字基带信号全部出错. 图 3 2PSK信号相干解调各点时间波形 这种现象通常称为"倒π"现象.由于在2PSK信号的载波恢复过程中存在着180°的相位模糊,所以2PSK信号的相干解调存在随机的"倒π"现象,从而使得2PSK方式在实际中很少采用. 3.系统结构图 3.1 2PSK信号的调制原理框图如下图3所示 2PSK信号的调制原理框图 :2psk调制器可以采用相乘器,也可以采用相位选择器就模拟调制法而言,与产生2ASK信号的方法比较,只是对s(t)要求不同,因此2PSK信号可以看作是双极性基带信号作用下的DSB调幅信号。而就键控法来说,用数字基带信号s(t)控制开关电路,选择不同相位的载波输出,这时s(t)为单极性NRZ或双极性NRZ脉冲序列信号均可。 2PSK信号属于DSB信号,它的解调,不再能采用包络检测的方法,只能进行相干解调。 3.2 2PSK信号的调制原理框图如下图所示 2PSK信号的解调原理框图 说明:由于PSK信号的功率谱中五载波分量,所以必须采用相干解调的方式。在相干解调中,如何得到同频同相的本地载波是个关键问。只有对PSK信号进行非线性变换,才能产生载波分量。2PSK信号经过带通滤波器得到有用信号,经相乘器与本地载波相乘再经过低通滤波器得到低频信号v(t),再经抽样判决得到基带信号。 4.仿真结果 说明:基带信号经过调制系统生成PSK信号,信道中可能会有噪音干扰,经过带通滤波器过滤出有用信号。 说明:信道内的PSK信号经过带通滤波器过滤出有用信号,经过相乘器和载波信号相乘,所得信号通过低通滤波器得到低频信号,再经抽样判决得到基带信号。 5.心得体会 一周的基于MATLAB的数字调制信号仿真分析课程设计让我获益颇深。更加深入的掌握了MATLAB软件的使用,了解了数字调制的基本原理和主要过程,进一步学习了信号的传输的有关。 在这一周的时间内我经常往返于图馆,查阅相关资料,发现自己的知识水平有限,需要学习的东西还有很多很多。另外,在这次课程设计中,我充分利用了网络资源,终于让其发挥了有用的一面。 设计过程中老师主要锻炼我们的自主能力,我们查阅资料的同时,当遇到不解的时候,老师的不吝指导,我的课程设计才得以在规定的时间内高效完成。 通过这次课程设计,我学会了很多,收获了很多,并且加强了我的自主能力、动手能力和独立思考、团结协作的能力。 参考文献: [1]樊昌信        《通信原理》                                电子工业出版社 [2]王秉军等      《通信原理》                                北京:清华大学出版社 [3]曹志刚等      《现代通信原理》                            北京:清华大学出版社 [4]刘卫国        《MATLAB程序设计与应用(第二版)》        高等教育出版社 [5]王嘉梅        《基于MATLAB的数字信号处理与时间开发》    西安电子科技大学出版社 附:程序清单 2PSK基于MATLAB的程序代码: clear all; close all; fs=8e5;%抽样频率 fm=20e3;%基带频率 n=2*(6*fs/fm); final=(1/fs)*(n-1); fc=2e5; % 载波频率 t=0:1/fs:(final); Fn=fs/2;%耐奎斯特频率 %用正弦波产生方波 %========================================== twopi_fc_t=2*pi*fm*t;  A=1; phi=0; x = A * cos(twopi_fc_t + phi); % 方波 am=1; x(x>0)=am; x(x<0)=-1; figure(1) subplot(321); plot(t,x); axis([0 2e-4 -2 2]); title('基带信号'); grid on car=sin(2*pi*fc*t);%载波 ask=x.*car;%载波调制 subplot(322); plot(t,ask); axis([0 200e-6 -2 2]); title('PSK信号'); grid on; %===================================================== vn=0.1; noise=vn*(randn(size(t)));%产生噪音 subplot(323); plot(t,noise); grid on; title('噪音信号'); axis([0 .2e-3 -1 1]); askn=(ask+noise);%调制后加噪 subplot(324); plot(t,askn); axis([0 200e-6 -2 2]); title('加噪后信号'); grid on; %带通滤波 %====================================================================== fBW=40e3; f=[0:3e3:4e5]; w=2*pi*f/fs; z=exp(w*j); BW=2*pi*fBW/fs; a=.8547;%BW=2(1-a)/sqrt(a) p=(j^2*a^2); gain=.135; Hz=gain*(z+1).*(z-1)./(z.^2-(p)); subplot(325); plot(f,abs(Hz)); title('带通滤波器'); grid on; Hz(Hz==0)=10^(8);%avoid log(0) subplot(326); plot(f,20*log10(abs(Hz))); grid on; title('Receiver -3dB Filter Response'); axis([1e5 3e5 -3 1]); %滤波器系数 a=[1 0 0.7305];%[1 0 p] b=[0.135 0 -0.135];%gain*[1 0 -1] faskn=filter(b,a,askn); figure(2) subplot(321); plot(t,faskn); axis([0 100e-6 -2 2]); title('通过带通滤波后输出'); grid on; cm=faskn.*car;%解调 subplot(322); plot(t,cm); axis([0 100e-6 -2 2]); grid on; title('通过相乘器后输出'); %低通滤波器 %================================================================== p=0.72; gain1=0.14;%gain=(1-p)/2 Hz1=gain1*(z+1)./(z-(p)); subplot(323); Hz1(Hz1==0)=10^(-8);%avoid log(0) plot(f,20*log10(abs(Hz1))); grid on; title('LPF -3dB response'); axis([0 5e4 -3 1]); %滤波器系数 a1=[1 -0.72];%(z-(p)) b1=[0.14 0.14];%gain*[1 1] so=filter(b1,a1,cm); so=so*10;%add gain so=so-mean(so);%removes DC component subplot(324); plot(t,so); axis([0 8e-4 -3.5 3.5]); title('通过低通滤波器后输出'); grid on; %Comparator %====================================================== High=2.5; Low=-2.5; vt=0;%设立比较标准 error=0; len1=length(so); for ii=1:len1 if so(ii) >= vt Vs(ii)=High; else Vs(ii)=Low; end end Vo=Vs; subplot(325); plot (t,Vo), title('解调后输出信号'), axis([0 2e-4 -5 5]) grid on; xlabel('时间 (s)'), ylabel('幅度(V)'), 课程设计评语 指 导 教 师 评 语   设 计 成 绩   注      
/
本文档为【2PSK调制与解调系统的仿真】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索