为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

可变气门

2019-05-13 12页 doc 38KB 47阅读

用户头像

is_015070

暂无简介

举报
可变气门可变气门 汽车发动机气门正时的机构和技术,也叫连续可变气门正时系统,当今高性能发动机普遍配备该系统。该系统通过配备的控制及执行系统,对发动机凸轮的相位或者气门生程进行调节,从而达到优化发动机配气过程的目的。 因为高转速下与低转速下,气门的正时角对发动机经济性和动力的影响是明显的,高转速下可以充分利用进气惯性而提就进气量和扫气效率,所以气门早开晚闭,低转速反之,现在的发动机大多有这个技术。 VVT-i VVT-i.系统是丰田公司的智能可变气门正时系统的英文缩写。近几十年来,基于提高汽车发动机动力性、经济性和降低排污的要求,许多...
可变气门
可变气门 汽车发动机气门正时的机构和技术,也叫连续可变气门正时系统,当今高性能发动机普遍配备该系统。该系统通过配备的控制及执行系统,对发动机凸轮的相位或者气门生程进行调节,从而达到优化发动机配气过程的目的。 因为高转速下与低转速下,气门的正时角对发动机经济性和动力的影响是明显的,高转速下可以充分利用进气惯性而提就进气量和扫气效率,所以气门早开晚闭,低转速反之,现在的发动机大多有这个技术。 VVT-i VVT-i.系统是丰田公司的智能可变气门正时系统的英文缩写。近几十年来,基于提高汽车发动机动力性、经济性和降低排污的要求,许多国家和发动机厂商、 科研机构投入了大量的人力、物力进行新技术的研究与开发。目前,这些新技术和新方法,有的已在内燃机上得到应用,有些正处于发展和完善阶段,有可能成为未 来内燃机技术的发展方向。 丰田VVT-i发动机的ECM在各种行驶工况下自动搜寻一个对应发动机转速、进气量、节气门位置和冷却水温度的最佳气门正时,并控制凸轮轴正时液压控制 阀,并通过各个传感器的信号来感知实际气门正时,然后再执行反馈控制,补偿系统误差,达到最佳气门正时的位置,从而能有效地提高汽车的功率与性能,尽量减 少耗油量和废气排放。 发动机可变气门正时技术(VVT,Variavle Valve Timing)是近些年来被逐渐应用于现代轿车上的新技术中的一种,发动机采用可变气门正时技术可以提高进气充量,使充量系数增加,发动机的扭矩和功率可以得到进一步的提高。 VTEC “最贵的东西不一定是最赚钱的,最赚钱的东西不一定是最好的。”很容易就能在汽车行业内找到这一句话的例证,大家都说日系车厂精明,是因为他们都把最好的 东西用在刀刃上。要论到最顶尖的发动机技术、最强劲的动力输出,在超级跑车的圈子里面似乎不多见日系车的身影。但要论到年产量的大小,似乎排在前几名都是 我们熟识的日系厂商标。他们把最好的资源都投入到研发更能兼顾动力和油耗的机型,以更适应消费者需求的产品来争夺市场。日系品牌众多发动机在国内有着相当 可观的保有量,而要数最经典的4款莫过于本田i-VTEC系列、丰田VVT-i系列、日产VQ系列和三菱的4G系列发动机。下文我们先对本田的i- VTEC系列发动机作深入研究。 i-VTEC技术不单只是本田的看家本领,更是各大厂家大同小异的“CVVT” 可变气门正时技术的鼻祖。自新一代飞度1.3L车型弃用i-DSI引擎转投i-VTEC阵型后,本田正式对其在国内的所有车型普及i-VTEC发动机。小 至1.3L的低排量,大到2.4L排量,无论是两厢小车还是MPV或者SUV,只要挂的是本田商标,打开引擎盖便能看到那银色的一串英文字母。到底这简单 的5个英文字母背后到底包含了什么独到技术呢? 工作原理 在中低转速时,发动机需要的混合气量并不高,以保持转速的稳定以及减少燃油消耗 和污染物排放。但到达高转速时便需要更大的进气量来满足高动力输出的需求,而发动机进气门的相位(开闭的时机)和升程(开度的大小)便是决定汽缸进气量的 最直接因素。普通的发动机在制造出来后,配气相位和气门升程就固定不变了,无法适应不同转速下发动机对进排气的需求。因此,人们希望能够有这样一种发动 机,其凸轮型线(凸轮的轮廓曲线)能够适应任何转速,不论在高速还是低速都能得到最佳的配气相位。于是,可变配气相位控制机构应运而生。本田公司在 1989年推出了自行研制的“可变气门正时和气门升程电子控制系统”,英文全“Variable Valve Timing and Valve Life Electronic Control System”,缩写就是“VTEC”,是世界上第一个能同时控制气门开闭时间及升程等两种不同情况的气门控制系统。 更多精彩视频,尽在汽车之家视频频道 与很多普通发动机一样,VTEC发动机每缸有4气门(2进2排)、凸轮轴和摇臂等,但与普通发动机不同的是凸轮与摇臂的数目及控制方法。中、低转速用小角 度凸轮,在中低转速下两气门的配气相位和升程不同,此时一个气门升程很小,几乎不参与进气过程,进气通道基本上相当于单进气门发动机。而在高转速时,通过 VTEC电磁阀控制液压油的走向,使得两进气摇臂连成一体并由开启时间最长、升程最大的进气凸轮来驱动气门,此时两进气门按照大凸轮的轮廓同步进行。与低 速运行相比,大大增加了进气流通面积和开启持续时间,从而提高了发动机高速时的动力性。这两种完全不同性能现的输出曲线,本田的师使它们在同一个发 动机上实现了。 i-VTEC=VTEC+VTC 但是VTEC系统对于配气相位的改变仍然是阶段性的,也就是说其改变配气相位只 是在某一转速下的跳跃,而不是在一段转速范围内连续可变。为了改善VTEC系统的性能,本田不断进行创新,推出了i-VTEC系统。增加了一个称为 VTC(Variable timing control“可变正时控制”)的装置——一组进气门凸轮轴正时可变控制机构,即i-VTEC=VTEC+VTC。此时,进气阀门的正时与开启的重叠时 间是可变的,由VTC控制,VTC机构的导入使发动机在大范围转速内都能有合适的配气相位,这在很大程度上提高了发动机的性能。 不过值得车友们注意的是,虽然发动机上同样打着光亮的i-VTEC标志,但东风本田思域的R18A1发动机的i-VTEC却有着另一层深意。上文的i-VTEC机构的作动目的在提高马力输出,但这颗R18A1引擎i-VTEC机构的作用是省油。 上文VTEC切换至高角度凸轮的时机,是在引擎达到4800转以上、水温高于60度,并在进气歧管内的负压指数符合原厂设定值后,便会开启VTEC电磁阀,将油压导入摇臂内以推动自由活塞,使高角度凸轮开始介入,延长进气门关闭时间,提高引擎于高转速时的进气量。 思域的R18A1发动机  在R18A1引擎上的VTEC作动时机,是设定在1000~3500rpm之间的任一转速域内,皆有介入的可能性,且超过此范围外不论转速多高VTEC机 构皆不会再作动,如此听来是不是与我们上文所述的VTEC作动时机大不相同呢?且为何提早切换至高角度凸轮,可获得节省油耗的目的呢?关键在于进气阻力的 控制。 一般汽油引擎在高速巡航低负载时,因速度不需再提高,驾驶者只会轻踩油门以保持同样速度,节气门开启角度相对缩小(也就是说高速巡航是节气门的开度很 小),减缓新鲜空气吸入量,但此时引擎内的吸气阻力,却会因节气门开度小而增加,并提高活塞于进气行程时的向下阻力,相对消耗部分活塞爆炸时的推力,进而 降低引擎输出功率,就像吸管变小,需用更多的吸力饮料才能吸到嘴里的道理是相同的。此时如果能将节气门开度变大,就能减缓活塞吸气阻力进而提高效率,使引 擎输出功率全部用在传动系统上,而不会在运转时便已消耗掉一部分,进而提升高速巡航时的燃费经济性。 R18A1发动机的i-VTEC系统就是针对该种情况,在车辆低转速高车速巡航 的时候让高角度凸轮轴介入,通过加大气门开度来减少进气阻力。文章开头提到的i-VTEC系统能够在引擎高转速时提供爆发的动力,而这款R18A1发动机 的i-VTEC系统则反其道而行在低转速时介入达到节油的效果。  除了巧妙地“反其道而行”外,思域身上的R18A1引擎上还有着多种针对油耗的技术,如活塞机油冷却喷嘴与可变长度进气歧管等,这里便不作详述了。 结语: 归根到底,本田的i-VTEC技术就是让本来“一成不变”的进排气门改为能够根据发动机及车辆工况来调节,这种改变的好处是可想而知的,就像变速箱由只有一个挡位升级到有多个挡位一样。 但是i-VTEC也有一些明显的缺点,例如发动机噪音在气门全开时噪音过大,虽 然有人认为这种明显的“VTEC”声非常吸引,但是毕竟也会对行驶舒适性造成一定影响。特别是长期运转在高角度凸轮轴的状态下油耗会明显的增高,例如国内 没有引进的高性能版的K20A发动机,虽然排量仅仅是2.0升,但其在进排气两侧均有i-VTEC控制的多角度凸轮轴可变换,导致在全速发力时的油耗已经 接近2.5~3.0排量的发动机。此外,i-VTEC系统需要复杂的ECU控制单元来配合,而且对运作部件的加工质量要求高,所以需要厂家在质量保证方面 下更多的功夫。 在这一个思路下,很多汽车厂家都研发出类似的可变气门技术,来应对油耗和动力这一对矛盾,我们下一期的主角丰田VVT-i技术便是其中的佼佼者,敬请关注。 MIVEC MIVEC全称为“Mitsubishi Innovative Valve timing Electronic Control system”,中文解释为三菱智能可变气门正时与升程管理系统。 装备MIVEC系统的发动机与普通发动机一样采用每缸四气门,两进两排的设计,但不同的是它可以控制每缸两个进气门的开闭大小。如在低速行驶 时,MIVEC系统发出指令此时两个进气门中的其中一个升程很小,这时基本就相当于一台两气门发动机。由于只有一个进气门工作,吸入的空气不会通过汽缸中 心,所以能产生较强的进气涡流,对于低速行驶,尤其是冷车怠速条件下能增大燃烧速率,使燃烧更充分从而也大大提高了经济性。在我们日常行车中,经常会遇到 这种情况,比如堵车时,这时装备了MIVEC系统的发动机比普通发动机能节省不少的燃料。 而另一种情况就是当我们需要加速或高转速行驶时,这时MIVEC系统会让两个进气门同时以同样的最大升程开启,这时的进气效率能显著提高,令发动机在高转速运转时能有充足的储备。 当然MIVEC并不是只有这两种可变的工作状态,它可以根据各传感器传来的发动机工况信号来适时调整最合理的配气正时,总而言之mivec可以令发动机时刻处在最佳燃烧状态。 Valvetronic Valvetronic中文翻译为电子气门,宝马应用Valvetronic技术的发动机是世界上第一个没有节气门发动机。这项技术用电动控制每个汽缸上进气门的提升,取代了传统节气门。这样一来,发动机能够自由地呼吸,在油耗更少的同时性能更佳。 由于消除了传统节气门造成的泵吸损失和空气流扰动,发动机更加高效,反应也更加迅捷。与传统节气门的情况相反,空气可以通过进气歧管自由流动,Valvetronic电子气门精确地调节进入汽缸的空气量。 Valvetronic电子气门使用步进马达控制装备有一系列中间摇臂的次级偏心轴,而次级偏心轴则又控制阀门提升度。作为一种控制空气供给的手段,节气门不再是必要的,但为安全考虑,仍然安装节气门作为紧急后备装置。 通过优化燃油/空气混合过程,Valvetronic电子气门最多能够节省百分之十的燃油(以ECE驾驶标准为准)。此外,Valvetronic电子气门还可改善冷起动能力,降低废气排放并提供更平稳迅捷的动力输出。 『宝马Valvetronic电子气门视频』 参考资料: 宝马官方网站-《Valvetronic电子气门》 Double-VANOS Double-VANOS:双凸轮轴可变气门正时系统。 Double-VANOS是由BMW开发的双凸轮轴可变气门正时系统,这是宝马 技术发展领域中的又一项成就:Double-VANOS双凸轮轴可变气门正时系统根据油门踏板和发动机转速控制扭矩曲线,进气和排气气门正时则根据凸轮轴 上可控制的角度按照发动机的运行条件进行无级的精准调节。   在低发动机转速时,移动凸轮轴的位置,使气门延时打开,提高怠速质量并改进功率输出的平稳性。在发动机转速增加时,气门提前打开:增强扭矩,降低油耗并减少排放。高发动机转速时,气门重新又延时打开,为全额功率输出提供条件。
/
本文档为【可变气门】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索