为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

智能推荐算法

2013-11-01 37页 pdf 1MB 123阅读

用户头像

is_890251

暂无简介

举报
智能推荐算法 2012-5-31 Dep. Phys., Univ. Fribourg 1 Information Filtering on Complex Networks: Prediction, Ranking and Recommendation Linyuan Lü 吕琳媛 E-mail: linyuan.lue@unifr.ch 2012-5-31 Dep. Phys., Univ. Fribourg 2 Outline z Background & Motivation z What is Li...
智能推荐算法
2012-5-31 Dep. Phys., Univ. Fribourg 1 Information Filtering on Complex Networks: Prediction, Ranking and Recommendation Linyuan Lü 吕琳媛 E-mail: linyuan.lue@unifr.ch 2012-5-31 Dep. Phys., Univ. Fribourg 2 Outline z Background & Motivation z What is Link Predicting? z How to Rank Influential Nodes? z What is Personalized Recommendation? z Real Applications z Ongoing works 2012-5-31 Dep. Phys., Univ. Fribourg 3 Background z Everyone can create information z More information are available Information Overload z Organization & Reconstruction & Prediction Confusion Motivation 2012-5-31 Dep. Phys., Univ. Fribourg 4 Prediction—complete partial information Sample networks: Prediction of existed yet unknown links ,e.g. food webs, protein-protein interaction networks, metabolic networks. Ranking—understand the significant part based on known information Evolving networks Prediction of future links, e.g. online friendship networks Recommendation— guide the information generating Subproblem of LP Target User Ask: which link will exist?—who will be friend? Ask: who is the leadership? Ask: who will be recommended to user1 as friend? 2012-5-31 Dep. Phys., Univ. Fribourg 5 Why it is significant? z Prediction——How to complete information? z Reduce experimental costs (missing links) Discovery of links/interactions of biological networks costs much. Instead of blindly checking all possible links, to predict in advance and focus on the most likely existing links can sharply reduce costs if the predictions are accurate enough. z Online friendship recommendations (future links) Recommend new friends to the users in web society. z Applications in other fields It can be applied in solving the node classification problem in partially labeled networks, improving recommendation for sparse systems, reconstrcucting noisy networks z Ranking——How to identify the important parts? z Information security: public opinions supervision, early warning and control. z Commercial value: advertisement delivery, news spreading. z Potentially enhance the activeness and adhesive capacity of the social network. z Recommendation——How to find what the users like efficiently and guide the information generating? z E-Commercial applications 2012-5-31 Dep. Phys., Univ. Fribourg 6 CS & Physics We are trying to explain why it works like this! Perspectives Methodologies 2012-5-31 Dep. Phys., Univ. Fribourg 7 What is Link Prediction? z Problem Description z Given a network G(V, E), V is the set of nodes, E is the set of links. z Estimating the likelihood of the existence of a link between two nodes, based on the observed topology. z Sort the nonexistent links in descending order according to their likelihoods, the top ones are most likely to exist. z Data z Training set as known information z Probe set for testing z Metric-AUC (area under the receiver operating characteristic curve) z Probability that a randomly chosen link in the probe set (PL) has higher likelihoods than a randomly chosen nonexistent link (NL). z Independently testing n times, and n1 PL>NL, n2 PL=NL, then [Physica A 390 (2011) 1150] 1 20.5n nAUC n += 2012-5-31 Dep. Phys., Univ. Fribourg 8 New Local Indices z Resource Allocation (RA) [Eur. Phys. J. B 71, 623-630 (2009)] z Node x can send some resource to y with their common neighbors playing the role of transmitters z Local Path (LP) [Phys. Rev. E 80, 046122 (2009)] z where A is the adjacent matrix, is a free parameter z Local random walk (LRW) [EPL 89, 58007 (2010)] z the probability that after n steps the walker happen to arrived at j. z Superposed random walk (SRW) [EPL 89, 58007 (2010)] z Reset the initial resource to node i at each time step ( ) ( ) 1 ( ) RA xy z x y s k z∈Γ Γ = ∑ ∩ 2 3S A Aε= + ε 1 1 5 4 6 12xy s = + = ( ) ( ) ( ) 2 2 ji ij ij ji kks n n n E E π π= ⋅ + ⋅ 1 ' ( ) [ ( )] n ij ij l s n s l = =∑ ijπ 2012-5-31 Dep. Phys., Univ. Fribourg 9 Experimental Results z CN: Common Neighbors z ACT: Average Commute Time [J. Math. Chem. 12 (1993) 81] z RWR: Random Walk with Restart [Comput. Netw. ISDN Syst. 30 (1998) 107] z HSM: Hierarchical Structure Model [Nature 453 (2008) 98] 2012-5-31 Dep. Phys., Univ. Fribourg 10 New Network Types z Weighted networks [EPL 89 (2010) 18001] z Directed Networks [arXiv:1202:2709] ( ) ( ) ( , ) ( , ) 2 WCN xy z x y w x z w z ys α α ∈Γ ∩Γ += ∑ ( ) ( ) ( , ) ( , ) log(1 ( )) WAA xy z x y w x z w z ys s z α α ∈Γ ∩Γ += +∑ ( ) ( ) ( , ) ( , ) ( ) WRA xy z x y w x z w z ys s z α α ∈Γ ∩Γ += ∑ Consider six minimal loop-embedded subgraphs of orders 3 and 4. 2012-5-31 Dep. Phys., Univ. Fribourg 11 {S1,S2,S3}=3-FFL, {S4}=3-Loop, {S5}=Bi-fan,{S6,S7}=Bi-parallel, {S8}=4-Loop, {S9,S10,S11,S12}=4-FFL 2012-5-31 Dep. Phys., Univ. Fribourg 12 Others z Local naïve Bayes model (LNB) [EPL 96 (2011) 48007] z Distinguish the different contributions to form a link from different common neighbors. z Classification in partially labeled networks [IJMPC 21 (2010) 813] z Predict the labels of unlabeled nodes based on the known network structure and labels z Apply LP to address the sparsity problem based on the assumption that similar nodes are more likely to be categorized into same class. z Application: Prediction of losing rate 2012-5-31 Dep. Phys., Univ. Fribourg 13 How to Rank Influential Nodes? LeaderRank Add one ground node and N bi-directed links 1 1 ( 1) ( ) N ji i jout j j A s t s t k + = + =∑ ( )( ) g ci i c s tS s t N= + PageRank if i points to j, is the number of leaders of i1ijA = outjk Resilience to spammersEffectiveness Robustness [PLoS One 6 (2011) e21202] ,0 ,0 1 1( 1) (1 ) [ (1 ) ] ( )out out j j N ji i jout k k j j A s t c c s t k N δ δ = + = + − − +∑ Experiments on Delicious dataset z Ranking in directed networks 2012-5-31 Dep. Phys., Univ. Fribourg 14 A semi-local index ( ) ( ) ( ) w u Q u N w ∈Γ = ∑ ( ) ( ) ( )L u v C v Q u ∈Γ = ∑ N(w) is the number of the nearest and next nearest neighbors Centrality indices Degree Betweenness Closeness 1 i i kD N = − ( )st i s i t st iB σσ≠ ≠= ∑ \ 1 i ij j V i C d ∈ = ∑ Small degree (4) Large CL (14008) Large degree (50) Small CL (9388) A B A B [Physica A 391 (2012) 1777] z Ranking in undirected networks 2012-5-31 Dep. Phys., Univ. Fribourg 15 z S is the set of scientists. z P is the set of papers. z if author i cites paper z if i is the author of paper p si iout P pa Q Q b k α α α∈ = ⋅∑ 1p si i i S Q Q aα α ∈ = + ⋅∑ 1iaα = p si iout P pa Q Q b k α α α∈ = ⋅∑ 1ibα = , 0.644τ = 0.784τ = CC=52 (38) AP=3 CC=19 (70) AP=158 [New J. Phys. 14 (2012) 033033] z Ranking in bipartite networks α α 2012-5-31 Dep. Phys., Univ. Fribourg 16 z Paper2: z A. Drăgulescu, Victor M. Yakovenko, Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States, Physica A 299 (2001) 213 z Paper1: z G. Caldarelli, M. Marsili and Y.-C. Zhang, A prototype model of stock exchange, EPL 40 (1997) 479 2012-5-31 Dep. Phys., Univ. Fribourg 17 Co-authorship network in econophysics The size of the circle indicates the scientist’s score. The lighter color, the fewer citations of the author. The width of the edges indicate the number of co-authorized papers. Top-150 2012-5-31 Dep. Phys., Univ. Fribourg 18 What is Personalized Recommendation? z Recommender systems use the personal information of a user (the historical record of his activities and possibly his profile) to uncover his habits and to find out what the user may like. z Recommender systems have already been successfully applied in many e- commerce web sites, such as Amazon.com. z Known information: the record of interactions between users and objects, the users’ profiles, the objects’ attributes, the content, the time stamps, the user-user relationships, etc. z Required information: whether a target user will like an unselected object, and if so, to what extent he/she likes it. Basically, a personalized recommender system should provide an ordered list of unselected objects to every target user. 2012-5-31 Dep. Phys., Univ. Fribourg 19 Evaluation Metrics z Accuracy z Overall Ranking: AUC, Ranking Score, MAE, RMSE, PCC, NDPM z Top Recommended Objects: Precision, Recall, F1-Measure z Diversity z Intra-diversity: Recommendations to a user are diverse z Inter-diversity: Recommendations to different users are diverse z Novelty z Popularity z Self-information z Coverage z Measures the percentage of objects that an algorithm is able to recommend to users in the system 2log ( / )U M kα α= J. L. Herlocker et al., ACM Trans. Inf. Syst. 22 (2004) 5; L. Lü et al., Physics Reports, doi:10.1016/j.physrep.2012.02.006 1 1( ) i R M i O N L k ML αα= ∈ = ∑ ∑ 1( ) ( , ) ( 1)i I L s o o L L α βα β≠ = − ∑ ( ) 1 ijij Q L H L = − ( ) /dCOV L N N= | |i Ti rR U E α α = − M is the number of users N is the number of objects 2012-5-31 Dep. Phys., Univ. Fribourg 20 Metrics for RS z L. Lü et al., Physics Reports, doi:10.1016/j.physrep.2012.02.006 2012-5-31 Dep. Phys., Univ. Fribourg 21 Diffusion-based methods 'f Wf= 1 1 M l l l l a a w k k α β αβ β = = ∑ 1 1 M l l l l a a w k k α β αβ α = = ∑ 1 1 1 M l l l l a a w k k k α β αβ λ λ α β − = = ∑ f is the initial resource vector, W is the transfer matrix Hybrid-PH Accuracy Inter-Diversity Novelty [T. Zhou et al., PNAS 107 (2010) 4511 ] R S H ( L ) U ( L ) 2012-5-31 Dep. Phys., Univ. Fribourg 22 Solving Diversity-accuracy Dilemma via Preferential Diffusion z At the last step (i.e., diffusing from users to objects), the amount of resource that an object received is proportional to , then the transfer matrix is z Where z indicates the mean value of over all the objects having been collected by user l k εα 1 1 M l l l a a w k k α β αβ ε β α − = = Β∑ rk ε 1 ( )N lr r l lr rr a k k a k ε ε =Β = = Ε∑ ( )lr ra k εΕ [Phys. Rev. E 83 (2011) 066119] Accurate recommend low-degree objects I(L) 2012-5-31 Dep. Phys., Univ. Fribourg 23 Solving the Sparsity Problem via Information Coarse Graining z Relevance is more important than correlation z Negative ratings play positive role Dense Sparse [EPL 88 (2009) 68008] [Physica A 390 (2011) 4486] User1 [0,1,5] User2 [0,5,1] 2012-5-31 Dep. Phys., Univ. Fribourg 24 Main challenges z Diversity vs. Accuracy z Data Sparsity z Cold Start z Vulnerability to Attacks z Value of Time z Social Filtering z Evaluation of Recommendations 2012-5-31 Dep. Phys., Univ. Fribourg 25 Real Business! 2012-5-31 Dep. Phys., Univ. Fribourg 26 Real Applications I: Mobile Nets z Collaborated with ZhuHai China Mobile Company (Heguang) z 1000 target users respectively selected by LeaderRank and degree. z Results show that LeaderRank can beat high-degree users. 2012-5-31 Dep. Phys., Univ. Fribourg 27 Book recommendation 实验组 推送人数 成功数 成功率 组1 16708 467 2.8% 组2 18415 165 0.9% z Recommend books to users who has been inactive for at least one month. z Group1: Personalized z Group2: Aggregated Analysis Group1 Group2 Improvement 300% 2012-5-31 Dep. Phys., Univ. Fribourg 28 Real Application II: A Recommender System in China z Collaborated with Baifendian Technology Serve more than 200 e-commerce companies www.baifendian.com # visiting # recommendation # users # sales 2012-5-31 Dep. Phys., Univ. Fribourg 29 Real Application III: Sina Blog z Collaborated with Sina (新浪) & 智梦创科 What we can do: i) Recommend friends ii) Recommend blogs iii) Finding leadership for marketing Topic-related & interested-based Social network 2012-5-31 Dep. Phys., Univ. Fribourg 30 Blog recommendations: social-network-based & interest-based 2012-5-31 Dep. Phys., Univ. Fribourg 31 我们正在关注 信息时代多领域数据 交叉、融合及精炼 2012-5-31 Dep. Phys., Univ. Fribourg 32 Who am I? 2012-5-31 Dep. Phys., Univ. Fribourg 33 终极目标 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 分析,集成,精炼 黑匣子 复杂+复杂+复杂 不确定+不确定+不确定 1)不是所有的数据都是有价值 的(去除冗余和噪音) 2)在一个数据集上不凸显的特 征通过整合其他数据集凸现出来 黑匣子特征:◆更小的数据量 ◆更优化的数据存 储格式 ◆更有价值的信息 (更大的信息量) 简单 确定 清晰不清晰+不清晰+不清晰 数据的交叉融合 提供更好的服务 伟大而又艰难! 2012-5-31 Dep. Phys., Univ. Fribourg 34 交叉推荐 z 如果我们在分析名鞋库的数 据时,发现用户2和用户1 具有很强的相似性,我们就 可以把用户2在果皮网购买 的产品推荐给用户1,即使 用户1对于果皮网而言是一 个全新的用户。 用户进行交叉购物的一个示意图。 解决冷启动问题! 2012-5-31 Dep. Phys., Univ. Fribourg 35 最基本的问题 z 多个网络上用户身份识别与统一 实现匹配的重要前提:用户在不同网络上行为或兴趣的一致性! 2012-5-31 Dep. Phys., Univ. Fribourg 36 Related references z L. Lü, T. Zhou, Link prediction in complex networks: A survey, Physica A 390, 1150 (2011). z L. Lü, M. Medo, C. H. Yeung, Y.-C. Zhang, Z.-K. Zhang, T. Zhou, Recommender Systems, Physics Reports (to be published). doi:10.1016/j.physrep.2012.02.006 z L. Lü, Y.-C. Zhang, C. H. Yeung, T. Zhou,Leaders in Social Networks, the delicious case, PLoS ONE 6(6): e21202 (2011). z L. Lü, Z.-K. Zhang, T. Zhou, Zip’f Law Leads to Heaps’ Law: Analyzing Their Relation in Finite-Size Systems, PLoS ONE 5(12), e14139 (2010). z L. Lü, D.-B. Chen, T. Zhou, Small world yields the most effective information spreading, New J. Phys. 13, 123005(2011). z Y.-B. Zhou, L. Lü*,M. Li, Quantifying the influence of scientists and their publications: distinguishing between prestige and popularity, New J. Phys. 14 (2012) 033033 . z L. Lü*, W. Liu, Information filtering via preferential diffusion, Phys. Rev. E 83, 066119 (2011) . z An Zeng, L. Lü*, Coarse Graining for Synchronization in Directed Networks, Phys. Rev. E 83, 056123 (2011). z L. Lü, C.-H. Jin, T. Zhou, Similarity index based on local paths for link prediction of complex network, Phys. Rev. E 80, 046122 (2009). z Z. Liu, Q.-M. Zhang, L. Lü*, T. Zhou, Link prediction in complex networks: a local naïve Bayes model, EPL 96, 48007 (2011). z L. Lü, T. Zhou, Link Prediction in Weighted Networks: The Role of Weak Ties, EPL 89, 18001 (2010). z W.-P. Liu, L. Lü*, Link Prediction based on Local Random walk, EPL 89, 58007 (2010). z M.-S. Shang, L. Lü, Y.-C. Zhang, T. Zhou, Empirical analysis of web-based user-object bipartite networks, EPL 90, 48006 (2010). z M.-S. Shang, L. Lü, W. Zeng, Y.-C. Zhang, T. Zhou, Relevance is More Significant than Correlation: Information Filtering on Sparse Data, EPL 88, 68008 (2009). z T. Zhou, L. Lü, Y.-C. Zhang, Predicting Missing Links via Local Information, Eur. Phys. J. B 71, 623-630 (2009). z D. Chen, L. Lü*, M.-S. Shang, Y.-C. Zhang, T. Zhou, Identifying influential nodes in complex networks, Physica A 391(4)1777-1787 (2012). z D. Chen, G. Cimini, M. Medo, L. Lü, Y.-C. Zhang, T. Zhou, Enhancing topology adaptation in information-sharing social networks, Phys. Rev. E 85, 046108 (2012). Review articles Research articles 2012-5-31 Dep. Phys., Univ. Fribourg 37 Thank you!Thank you! Acknowledgements to my collaborators Information Filtering on Complex Networks: � Prediction, Ranking and Recommendation Outline Background 幻灯片编号 4 Why it is significant? CS & Physics What is Link Prediction? New Local Indices Experimental Results New Network Types 幻灯片编号 11 Others How to Rank Influential Nodes? 幻灯片编号 14 幻灯片编号 15 幻灯片编号 16 Co-authorship network in econophysics��The size of the circle indicates the scientist’s score. The lighter color, the fewer citations of the author. �The width of the edges indicate the number of co-authorized papers. What is Personalized Recommendation? Evaluation Metrics Metrics for RS Diffusion-based methods Solving Diversity-accuracy Dilemma via Preferential Diffusion Solving the Sparsity Problem via Information Coarse Graining Main challenges 幻灯片编号 25 Real Applications I: Mobile Nets Book recommendation Real Application II: A Recommender System in China Real Application III: Sina Blog Blog recommendations:�social-network-based & interest-based 我们正在关注 幻灯片编号 32 终极目标 交叉推荐 最基本的问题 Related references 幻灯片编号 37
/
本文档为【智能推荐算法】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索