为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

北航大飞机班-大型客机气动设计

2014-01-10 7页 doc 385KB 32阅读

用户头像

is_624914

暂无简介

举报
北航大飞机班-大型客机气动设计大飞机班 大型客机气动设计 结课论文 2013/12/27 1,大型客机概述 1.1​ 大型客机概念 大型客机项目是一个国家工业、科技水平和综合实力的集中体现,对增强中国的综合国力、科技实力和国际竞争力,使中国早日实现现代化具有极为重要的意义。大飞机一般是指起飞总重超过100吨的运输类飞机,包括军用大型运输机和民用大型运输机,也包括一次航程达到3000公里的军用或乘坐达到100座以上的民用客机。 从地域上讲,我国把150座以上的客机称为大客机,而国际航运体系习惯上把300座位以上的客机称作“大型客机”,这主要由各国的航空工业技...
北航大飞机班-大型客机气动设计
大飞机班 大型客机气动 结课 2013/12/27 1,大型客机概述 1.1​ 大型客机概念 大型客机项目是一个国家工业、科技水平和综合实力的集中体现,对增强中国的综合国力、科技实力和国际竞争力,使中国早日实现现代化具有极为重要的意义。大飞机一般是指起飞总重超过100吨的运输类飞机,包括军用大型运输机和民用大型运输机,也包括一次航程达到3000公里的军用或乘坐达到100座以上的民用客机。 从地域上讲,我国把150座以上的客机称为大客机,而国际航运体系习惯上把300座位以上的客机称作“大型客机”,这主要由各国的航空工业技术水平决定的。具体载客量要看机型和舱内布局。最大的客机A380如果全经济布局的话可以载800多个人。 1.2​ 大型客机研制 较军机而言,民机有许多不同之处。主要来讲,民机研制流程可以从时间角度划分为前期论证、型号研发、产品支援及客户服务三大阶段: 1)前期论证阶段:这一阶段的主要工作任务是形成产品设想和立项,一个标志性里程碑是:长周期及通用技术准备工作正式启动。 2)型号研发之可行性论证阶段:这一阶段的主要工作任务是定义满足市场需求的产品方位和层次。初步设计和详细设计阶段:这一阶段的主要工作任务是定义满足市场需求的具体产品。产品研制阶段:这一阶段的主要工作任务是形成满足市场需求的合法的产品和服务。 3)产品支援及客户服务阶段。 1.3​ 国产大飞机研制意义 中国虽然在民用飞机制造方面拥有一定经验,但与发达国家相比还存在较大差距,难以满足我国经济社会发展和快速增长的民用航空市场的需求。未来20年,是中国民用航空工业发展的重要战略机遇期。中国实施大型客机项目具有以下六大重要意义: 1)大型客机项目是一个国家工业、科技水平和综合实力的集中体现,对增强中国的综合国力、科技实力和国际竞争力,使中国早日实现现代化具有极为重要的意义。 2)航空工业产业链长、辐射面宽、连带效应强,在国民经济发展和科学技术进步中发挥着重要作用。大型客机是现代制造业的一颗明珠,是现代高新科技的高度集成。 3)发展大型客机,能够带动新材料、现代制造、先进动力、电子信息、自动控制、计算机等领域关键技术的群体突破;能够拉动众多高技术产业发展;还将带动流体力学、固体力学等诸多基础学科的重大进展,将会全面地、大幅度地提高中国科学技术水平。 4)发展大型客机,将更好地满足我国经济发展和人民出行需要,也必将成为一个潜力无限的新的经济增长点。 5)研制具有市场竞争力的大型客机,不仅可以为航空工业的发展提供突破口和新的增长点,还有利于提高中国航空工业的制造能力和管理水平,最终形成强大的航空工业。 6)中国拥有13亿人口,改革开放以来综合国力和国际地位日益提高,应该拥有自己的大飞机,这样才与我国社会主义大国的地位相称。, 2,大型客机气动布局简介 2.1 飞机气动布局 飞机的气动布局是指飞机不同气动承力面的安排形式。机翼是飞机的主要气动承力面,由平尾和立尾组成的尾翼是飞机的辅助气动承力面。简单地说,飞机机翼和尾翼的不同安排就构成了飞机的气动布局。传统飞机的气动布局有以下几种形式。 (1)正常式布局:水平尾翼位于机翼之后的布局形式,是现代飞机采用最多的布局,积累的知识和设计经验最为丰富。飞机正常飞行时,正常式布局的水平尾翼一般提供向下的负升力,保证飞机各部分的合力矩平衡,保持飞机的静稳定性。现代大型客机全部采用这种布局形式,如1957年首飞的波音707客机和1991年首飞的空客公司 A340客机气动外形比较,它们几乎没多大区别,最新型的波音787和空客 A350也采用类似布局。 (2)鸭式布局:水平尾翼位于机翼之前的布局形式。鸭式布局是飞机最早采用的布局形式,莱特兄弟设计的飞机就是鸭式布局,由于鸭翼提供的不稳定俯仰力矩造成鸭式飞机发展缓慢。随着主动控制技术的发展,鸭式布局技术日趋成熟,这种布局升力效率高,难点是鸭翼位置的选择和大迎角时俯仰力矩上仰的问题。 (3)无尾式布局:只有机翼、无平尾、有立(垂)尾的布局形式,一般采用大后掠的三角机翼,用机翼后缘的襟副翼作为纵向配平的操作面。配平时,襟副翼的升力方向向下,引起升力损失,同时力臂较短,效率不高。为解决操纵困难和配平阻力大的问题,无尾式布局的飞机通常采用机翼扭转设计。这种布局的优点是结构重量较轻、气动阻力较小。近年来,在上述3种典型布局的基础上,又发展了飞翼和三翼面布局形式。 (4)飞翼和三翼面布局:飞翼飞机只有机翼、没有平尾和立尾,一般采用翼身一体化设计,也没有明显的机身,通常在飞翼后缘装襟副翼、升降舵、阻力方向舵等多个舵面来控制飞机的飞行,具有气动效率高、升阻比大等优点。三翼面布局飞机机翼前面有前翼,后面有平尾,综合了正常式布局和鸭式布局的特点,操纵和配平特性好,允许有更大的重心移动范围,不足之处是飞机的总重有所增加。 2.2 大型客机气动布局 客机的气动布局设计实质上是飞机空气动力的总体设计,其科学依据主要是空气动力学,这自然是飞机设计的核心内容,对于实现客机的设计目标起着关键作用,但只通过气动布局设计是远不能解决所有问题的,需要有先进推进、材料、工艺等技术的支撑。发动机是未来客机的关键,发动机效率的提高直接带来油耗、废气排放、噪声方面的收益;轻质高效新材料的使用可减轻飞机结构重量,降低客机巡航飞行时的需用推力;新的结构设计和制造工艺可减少飞机结构零件和连接、紧固件数量,除降低结构重量外,还可极大改善飞机的可维护性。 1 正常式布局 现役大型客机以及几乎全部支线客机都采用正常式布局,自然想到在现有先进客机上改进设计能否满足未来25 年左右的设计要求。按照NASA 的设计目标,波音公司领导的团队以波音737 为原准机进行改进设计,正常布局的原准飞机使用超临界翼型,巡航升阻比18.2。在原准设计上综合使用自然和主动层流控制、机身使用脊状表面减阻、尾翼放宽静稳定性和增加最大升力系数、使用多功能结构/ 减少紧固件/ 减少襟翼整流罩等技术降低杂项阻力,巡航升阻比增加到20.9,但巡航马赫数M a 降低了6% ,为0.74,在此基础上综合使用先进复合材料结构、高涵道比低排放涡扇发动机、轻质涂层和舱内设施轻质化等技术得到飞机精细设计方案,使飞机油耗降低44%、噪声降16dB、氮氧化物排放减少 58%, 降低油耗的实质是减小飞机阻力,波音团队采用大展弦比机翼来提高正常式布局飞机的气动效率,得到了支撑式上单翼方案。该设计方案继续使用层流控制、机身和机翼湍流部分的脊状表面、先进超临界翼型、低干涉发动机吊舱和低阻支撑等技术,使Ma 0.74下巡航升阻比达到25.97,配装使用先进发动机技术的非常高涵道比涡扇发动机,可降低油耗46%、噪声22dB、废气排放72%。但由于翼展过长,考虑机场适应性和减重使用了斜支撑和机翼折叠,带来折叠机构的复杂性和整个机翼结构重量的不确定性。 诺斯罗普· 格鲁门公司领导的团队以波音737-500 为参照,开展了一系列研究工作。在气动布局形式选择方面,该团队经过若干布局上的创新设计,最后的首选方案回到了正常式布局。该方案主要使用层流控制、起落架整流罩(也有降噪功能)等气动设计技术。与波音737-500相比,机翼后掠角加大1°、展弦比增加61%、翼载荷减少29%,巡航升阻比接近20,但巡航高度增加到13700m。由于罗· 罗公司是团队成员,该方案重点使用了三转子超高涵道比(18)涡扇发动机以及后掠风扇叶片、压气机流动控制、形状记忆合金喷口等相关先进技术。此外,该方案使用了大型一体化编织和缝合复合材料结构、超高性能纤维、主动气弹控制、进气道隔声衬套、碳纳米管电缆等先进技术,达到了降低噪声69.6dB、油耗63.5%、废气排放90.6% 的性能指标,同时可使用1500m 的备用机场跑道,基本上达到了NASA 的设计目标,不过该方案中高性能发动机是重点,飞机出厂价格可能相当昂贵。 麻省理工学院领导的团队以波音737-800 为基准,开展了正常式布局的创新设计,气动布局主要特征为“双气泡”形宽体机身、带自然层流控制的大展弦比小后掠下单翼、双立尾顶端的高平尾、具有附面层吸出功能带隔声衬套的后置涡扇发动机,采用主动载荷减缓和起落架整流等气动技术。此外,该方案使用3 台涵道比20 的发动机、先进结构材料和结构减重设计、健康和飞行监视等技术,降低油耗70%、氮氧化物排放87%、噪声60dB,可在1500m 跑道起降,几乎达到了NASA 的设计目标。该方案创新性强,较传统正常式布局有独到之处,但其高涵道比要求发动机有更小尺寸和更高效率的核心机,可行性受到质疑。 2 翼身融合布局 高升阻比是翼身融合布局的最大优势,这是一种广义的飞翼布局形式。随着NASA 和波音公司X-48翼身融合试验无人机项目研究工作的开展,翼身融合布局受到了全球广泛关注。按照NASA 的N+3 代客机设计目标,波音公司团队也进行翼身融合布局方案设计。该方案主要采用机翼和垂尾的层流控制、机身和机翼湍流部分的脊状表面、降低杂项阻力和低干涉吊舱等气动设计技术,M a0.74 巡航马赫数下的升阻比达到26.6,高于正常式布局方案,加之非常高涵道比涡扇发动机、先进结构材料和工艺、噪声屏蔽设计等技术的应用,波音翼身融合布局方案降低油耗43.3%、排放72%、噪声37dB。但该布局存在客舱容量小、应急逃生通道安排困难、满足机场适用性采取的机翼折叠等问题。 麻省理工学院团队按照NASA设计目标,以350 座级的波音777-200 加长型为参照,完成了翼身融合布局方案设计。该方案采用无立尾带翼梢小翼的翼身融合布局形式,气动上采用前缘带弯度的升力体机身、无前缘缝翼和襟翼的机翼、发动机嵌入机身上表面后部以吸入机体部分40% 弦长的附面层并屏蔽发动机噪声、带整流罩的起落架等布局和技术方案,0.83 马赫数下的巡航升阻比达到24.2。加之平齐安装涵道比20 的高性能涡扇发动机,隔声衬套、可变喷口面积、推力矢量以及先进结构材料和设计技术的应用,使该方案降低油耗54%、氮氧化物排放81%、噪声46dB。该方案的问题仍然是小尺寸高效率发动机核心机。 3,我国客机气动布局设计发展 中国商用飞机有限责任公司的C919 客机已完成气动布局设计,采用正常式布局,在翼型、翼梢、发动机短舱、前机身等方面使用了先进的空气动力和声学设计技术,气动性能指标比现役同级别飞机有所提高。由以上讨论可以看出,要以现有成熟技术与未来可预知技术使大型客机同时满足未来25 年左右的设计目标是非常困难的,必须以发展、前瞻的眼光来看待未来客机的创新问题,为提高我国未来大型客机的设计水平及其市场竞争力,在飞机气动布局设计方面应注意以下工作: (1)加强对正常布局客机的挖潜研究、重点进行后掠机翼的层流控制、先进翼型、稳定环量控制等方面的深入研究,同时开展分布式喷口和襟翼、可收放狭板旋涡发生器、起落架整流、逆流喷口、高效进气道、隔声衬套等新技术的研究工作。 (2)重视翼身融合等新概念气动布局形式的预先研究,梳理各种非常规气动布局形式的优势和不足,探讨未来大型客机的正确发展方向。 (3)气动布局设计仅是实现未来客机设计目标的关键一环,还须加强配套技术的研究和发展。高效率发动机是满足未来客机设计要求的核心,必须高度重视和加大科研投入。此外,先进结构材料、制造工艺、先进电缆、健康检测等技术也应得到重点研究。
/
本文档为【北航大飞机班-大型客机气动设计】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索