为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

无线网络名词

2017-09-19 18页 doc 274KB 33阅读

用户头像

is_003124

暂无简介

举报
无线网络名词POE IEEE802.3af af指的是什么? 是以太网供电规范的标准。既Power Over Ethernet(POE) 其中相关的还有802.3at 两者区别是: af  15.4W而 at可以支持更大的负载功耗(三十多瓦) 802.11b规范指定在2.4GHz通信频带,提高数据速率,超过了10Mbps的临界限度,物理层采用高速直接序列扩频技术(HR-DSSS),保持与最初802.11DSSS标准的兼容性。调制方式有两种:第一种是高效率的“补码键控”(CCK)调制方案,从而达到了11Mbps的顶端数据速率。第二种调制方...
无线网络名词
POE IEEE802.3af af指的是什么? 是以太网供电。既Power Over Ethernet(POE) 其中相关的还有802.3at 两者区别是: af  15.4W而 at可以支持更大的负载功耗(三十多瓦) 802.11b规范指定在2.4GHz通信频带,提高数据速率,超过了10Mbps的临界限度,物理层采用高速直接序列扩频技术(HR-DSSS),保持与最初802.11DSSS标准的兼容性。调制方式有两种:第一种是高效率的“补码键控”(CCK)调制,从而达到了11Mbps的顶端数据速率。第二种调制方案是“分组二进制卷积码”(PBCCTM),凭借其能够提供3dB的编码增益,延伸了通信的距离。因此作为在5.5和11Mbps速率的范围内获得更高性能的一个选择。 802.11的第二个分支被指定为802.11a。承受着风险将802.11带入了不同的频带——5.2GHzU-NII频带,并被指定高达54Mbps的数据速率。与单个载波系统802.11b不同,802.11a运用了提高频率信道利用率的正交频率划分多路复用(OFDM)的多载波调制技术。由于802.11a运用5.2GHz射频频谱,因此它与802.11b或最初的802.11WLAN标准均不能进行互操作。 802.11g中规定的调制方式有2种,包括Intersil公司的提案采用的CCK-OFDM。和TI公司提案则采用的PBCC(PacketBinaryConvolutionalCoding,分组二进制卷积码)-22(也称CCK-PBCC)调制方式,其中采用PBCC-22方式的TI提案保持了对IEEE802.11b的完全兼容,并使最高传输速率达到了22Mbps,又被称为802.11b+标准,目前已经有不少符合该标准的产品。而CCK-OFDM则作为502.11g的强制54Mbps模式,同时支持两种模式的802.11g产品便可以在与802.11b网络兼容的情况下,最高提供与802.11a标准相同的54Mbps连接速率。 其它802.11体系标准 除了以上这三种最核心的无线以太网标准外,802.11系列标准还有: ·802.11d:Regulatory Domains,定义域管理; ·802.11e:QoS (Quality of service),定义服务质量; ·802.11f:IAPP(Inter-Access Point Protocol),接入点内部协议; ·802.11g:在2.4GHz频率空间取得更高的速率; ·802.11h:5GHz频率空间的功耗管理,并关注探索802.11a 与 HiperLAN2之间的一致性,集中关注动态频率选择(Dynamic frequency selection)和传输功率控制(Transmit power control)。 ·802.11i: Security,定义网络安全性。 目前主流的无线局域网标准是802.11g标准, 但它在连接速度与安全性方面都有不尽如人意之处,人们普遍认为它最终会被连接速率更高,安全性更好的502.11a或802.11g标准所取代, 看过上面的介绍,你会发现目前存在了两种54Mbsp标准,一种是运行于5G频段的802.11a,另一种是运行于2.4G频段的802.11g,未来谁会成为54Mbps的主流标准? 光线交换机直接插光纤头就可以了,sfp模块交换机需要再交换机上插上sfp模块,再把光纤头查到sfp模块上面。 路由器交换机用直通线可连接,带光口可用光纤连接,发接收,收接发 SFP+和SFP的区别: SFP是SMALL FORM PLUGGABLE的缩写 可以简单的理解为GBIC的升级版本。SFP模块体积比GBIC模块减少一半,可以在相同的面板上配置多出一倍以上的端口数量1、SFP 和SFP+ 外观尺寸相同; 2、SFP协议规范:IEEE802.3、SFF-8472 ;SFP+光模块优点:1、SFP+具有比X2和XFP封装更紧凑的外形尺寸(与SFP尺寸相同);2、可以和同类型的XFP,X2,XENPAK直接连接;3、成本比XFP,X2,XENPAK产品低。 MIMO(多入多出技术) MIMO(多输入多输出)是一种用于无线通信的天线技术,在这种技术中,多路天线同时用于源(发射器)和目的地(接收器)。在通信回路每一端的天线都进行了组合以达到最小的误差和最优的数据传输速度。MIMO是智能天线技术几种形式中的一种,其他的几种是MISO( 多路进,一路出)和SIMO(一路进,多路出)。  在传统的无线通信中,单一一根天线在源头使用,另一根天线在目的地使用。在某些情况下,这样的设计产生了多径效应的问。当一个电磁场遇到障碍物如山峰,峡谷,建筑物,以及设施线等时,波阵面被分散,从而电磁波沿着多条路经到达目的地。信号散射部分的后到者引起了如衰减、花样(陡壁效应),以及间歇接受(尖桩篱栅)等问题。在无限互联网等数字通信系统中,它会造成数据传输速度的减慢和错误的增加。两根或多根天线的使用,配合在源和目的地的多路信号传输(一根天线传一路),消除了由多径传播造成的干扰,甚至能对这种效应的优点加以利用。  由于在数字电视、(DTV),无限局域网(WLANs),都市区域网(MANs)和手机通信中可能的应用 MIMO(Multiple-Input Multiple-Output)系统是一项运用于802.11n的核心技术。802.11n是IEEE继802.11b\a\g后全新的无线局域网技术,速度可达600Mbps。同时,专有MIMO技术可改进已有802.11a/b/g网络的性能。该技术最早是由Marconi于1908年提出的,它利用多天线来抑制信道衰落。根据收发两端天线数量,相对于普通的SISO(Single-Input Single-Output)系统,MIMO还可以包括SIMO(Single-Input Multi-ple-Output)系统和MISO(Multiple-Input Single-Output)系统。 概述 多输入多输出(Multi-input Multi-output;MIMO)是一种用来描述多天线无线通信系统的抽象数学模型,能利用发射端的多个天线各自独立发送信号,同时在接收端用多个天线接收并恢复原信息。该技术最早是由马可尼于1908年提出的,他利用多天线来抑制信道衰落(fading)。根据收发两端天线数量,相对于普通的单输入单输出系统(Single-Input Single-Output,SISO),MIMO此类多天线技术尚包含早期所谓的“智能型天线”,亦即单输入多输出系统(Single-Input Multi-Output,SIMO)和多输入单输出系统(Multiple-Input Single-Output,MISO)。 由于MIMO可以在不需要增加带宽或总发送功率耗损(transmit power expenditure)的情况下大幅地增加系统的数据吞吐量(throughput)及发送距离,使得此技术于近几年受到许多瞩目。MIMO的核心概念为利用多根发射天线与多根接收天线所提供之空间自由度来有效提升无线通信系统之频谱效率,以提升传输速率并改善通信质量。 优点 MIMO 技术的应用,使空间成为一种可以用于提高性能的资源,并能够增加无线系统的覆盖范围。 无线电发送的信号被反射时,会产生多份信号。每份信号都是一个空间流。使用单输入单输出(SISO)的系统一次只能发送或接收一个空间流。MIMO 允许多个天线同时发送和接收多个空间流,并能够区分发往或来自不同空间方位的信号。多天线系统的应用,使得多达 min(Nt,Nr)的并行数据流可以同时传送。同时,在发送端或接收端采用多天线,可以显著克服信道的衰落,降低误码率。一般的,分集增益可以高达Nt*Nr。 老接入点到老客户端 - 只发送和接收一个空间流 SIMO MIMO 接入点到 MIMO 客户端 - 同时发送和接收多个空间流 MIMO 可以看出,此时的信道容量随着天线数量的增大而线性增大。也就是说可以利用MIMO信道成倍地提高无线信道容量,在不增加带宽和天线发送功率的情况下,频谱利用率可以成倍地提高。 利用MIMO技术可以提高信道的容量,同时也可以提高信道的可靠性,降低误码率。前者是利用MIMO信道提供的空间复用增益,后者是利用MIMO信道提供的空间分集增益。实现空间复用增益的算法主要有贝尔实验室的BLAST算法、ZF(zero-forcing,迫零)算法、MMSE(minimum mean square error,最小均方差)算法、ML(maximum likelihood,最大似然)算法。ML算法具有很好的译码性能,但是复杂度比较大,对于实时性要求较高的无线通信不能满足要求。ZF算法简单容易实现,但是对信道的信噪比要求较高。性能和复杂度最优的就是BLAST算法。该算法实际上是使用ZF算法加上干扰删除技术得出的。目前MIMO技术领域另一个研究热点就是空时编码。常见的空时码有空时块码、空时格码。空时码的主要思想是利用空间和时间上的编码实现一定的空间分集和时间分集,从而降低信道误码率。 潜力 通常,多径要引起衰落,因而被视为有害因素。然而研究结果表明,对于MIMO系统来说,多径可以作为一个有利因素加以利用。MIMO系统在发射端和接收端均采用多天线(或阵列天线)和多通道,MIMO的多入多出是针对多径无线信道来说的。传输信息流s(k)经过空时编码形成N个信息子流ci(k),I=1,……,N。这N个子流由N个天线发射出去,经空间信道后由M个接收天线接收。多天线接收机利用先进的空时编码处理能够分开并解码这些数据子流,从而实现最佳的处理。 特别是,这N个子流同时发送到信道,各发射信号占用同一频带,因而并未增加带宽。若各发射接收天线间的通道响应独立,则多入多出系统可以创造多个并行空间信道。通过这些并行空间信道独立地传输信息,数据率必然可以提高。 MIMO将多径无线信道与发射、接收视为一个整体进行优化,从而实现高的通信容量和频谱利用率。这是一种近于最优的空域时域联合的分集和干扰对消处理。 系统容量是表征通信系统的最重要标志之一,表示了通信系统最大传输率。对于发射天线数为N,接收天线数为M的多入多出(MIMO)系统,假定信道为独立的瑞利衰落信道,并设N、M很大,则信道容量C近似为:C=[min(M,N)]Blog2(ρ/2) 其中B为信号带宽,ρ为接收端平均信噪比,min(M,N)为M,N的较小者。上式表明,功率和带宽固定时,多入多出系统的最大容量或容量上限随最小天线数的增加而线性增加。而在同样条件下,在接收端或发射端采用多天线或天线阵列的普通智能天线系统,其容量仅随天线数的对数增加而增加。相对而言,多入多出对于提高无线通信系统的容量具有极大的潜力。 理论容量与天线数关系: 图4-4 (1)图4-4所示的四条信道容量曲线的发射天线数量 都为4,以接收天线数量 为横轴,信噪比依次为0dB、5dB、10dB、15dB。从这四条不同的曲线我们可以得出结论: 1.发射天线数量一定,信噪比不变时信道容量随着接收天线数的增多而增大,且增大的幅度越来越小。 2.发射天线和接收天线的数量均相同,信道容量随信噪比的增大而增大。 (2)图4-5所示的四条信道容量曲线的接收天线数量 都为4,以发射天线数量 为横轴,信噪比分别为0dB、5dB、10dB、15dB。从这四条不同的曲线我们可以得出结论: 1.接收天线数量一定,信噪比不变时信道容量随着发射天线数的增多而增大,增大的幅度会越来越小。 2.当发射天线数大于接收天线数时,信道容量增大的幅度会大幅度减缓,当 >10以后,信道容量基本上就没有多大变化。 由上述结论我们可以看到信道容量随着天线数量的增大而线性增大。也就是说可以在不增加带宽和天线发送功率的情况下利用MIMO信道成倍地提高无线信道容量,证明了MIMO信道系统理论的正确性 2发展历史编辑 MIMO 实际上多输入多输出(MIMO)技术由来已久,早在1908年马可尼就提出用它来抗衰落。在20世纪70年代有人提出将多入多出技术用于通信系统,但是对无线移动通信系统多入多出技术产生巨大推动的奠基工作则是上世纪90年代由AT&TBell实验室的学者完成的。 1990年代,全世界无线通信领域均针对多天线系统进行研究,希望创作出能指向接收者之波束成型技术,亦即是所谓智慧型天线 —— 一种能使波束聪明地追踪接收者(即移动电话)的技术,如同有个人持着天线到处移动,就像一道自手电筒射出的光束可追踪一位在黑暗中移动的人一样。智慧型天线借由波束对其指向(亦即对目标接收者)的相长干涉(constructive interference)及同时间该波束对目标接收者指向以外其他方向之相消干涉(destructive interference)来增加信号增益,以实现上述智慧型天线的优点,并对于此发送单位上的多天线间,采用一较窄的天线间距来实现此波束。一般以发送信号之一半波长作为实体的天线间距,以满足空间上的采样定理且避免旁瓣辐射(grating lobes),亦即空间上的混叠。 波束成型技术的缺点乃是在都市的环境中,信号容易朝向建筑物或移动的车辆等目标分散,因而模糊其波束的集中特性(即相长干涉),丧失多数的信号增益及减少干扰的特性。然而此项缺点却随着空间分集及空间多工的技术在 1990 年代末的发展,而突然转变为优势。这些利用多径(multipath propagation)现象来增加数据吞吐量、传送距离,或减少比特错误率。这些型态的系统在选择实体的天线间距时,通常以大于被发送信号的波长的距离为实作,以确保 MIMO 频道间的低关联性及高分集阶数(diversity order)。 复合技术 MIMO 此科技与平坦衰落信道(flat fading channels)兼用时最佳,以降低接收端信道均衡器之复杂度及维持接收端的低功率耗损,也因此 MIMO 多半与 OFDM 结合为复合技术。MIMO-OFDM同时为IEEE 802.16及 IEEE 802.11n HT(High-Throughput)的采用标准之一。WCDMA 的系统,如 HSDPA,亦进行将 MIMO 技术标准化的动作。 3MIMO技术编辑 所谓的MIMO,就字面上看到的意思,是Multiple Input Multiple Output(多入多出)的缩写,大部分您所看到的说法,都是指无线网络讯号通过多重天线进行同步收发,所以可以增加资料传输率。 然而比较正确的解释,应该是说,网络资料通过多重切割之后,经过多重天线进行同步传送,由于无线讯号在传送的过程当中,为了避免发生干扰起见,会走不同的反射或穿透路径,因此到达接收端的时间会不一致。为了避免资料不一致而无法重新组合,因此接收端会同时具备多重天线接收,然后利用DSP重新计算的方式,根据时间差的因素,将分开的资料重新作组合,然后传送出正确且快速的资料流。 由于传送的资料经过分割传送,不仅单一资料流量降低,可拉高传送距离,又增加天线接收范围,因此MIMO技术不仅可以增加既有无线网络频谱的资料传输速度,而且又不用额外占用频谱范围,更重要的是,还能增加讯号接收距离。所以不少强调资料传输速度与传输距离的无线网络设备,纷纷开始抛开对既有Wi-Fi联盟的兼容性要求,而采用MIMO的技术,推出高传输率的无线网络产品。 MIMO技术大致可以分为两类:发射/接收分集和空间复用。传统的多天线被用来增加分集度从而克服信道 MIMO 衰落。具有相同信息的信号通过不同的路径被发送出去,在接收机端可以获得数据符号多个独立衰落的复制品,从而获得更高的接收可靠性。举例来说,在慢瑞利衰落信道中,使用1根发射天线n根接收天线,发送信号通过n个不同的路径。如果各个天线之间的衰落是独立的,可以获得最大的分集增益为n,平均误差概率可以减小到 ,单天线衰落信道的平均误差概率为 。对于发射分集技术来说,同样是利用多条路径的增益来提高系统的可靠性。在一个具有m根发射天线n根接收天线的系统中,如果天线对之间的路径增益是独立均匀分布的瑞利衰落,可以获得的最大分集增益为mn。智能天线技术也是通过不同的发射天线来发送相同的数据,形成指向某些用户的赋形波束,从而有效的提高天线增益,降低用户间的干扰。广义上来说,智能天线技术也可以算一种天线分集技术。 分集技术主要用来对抗信道衰落。相反,MIMO信道中的衰落特性可以提供额外的信息来增加通信中的自由度(degrees of freedom)。从本质上来讲,如果每对发送接收天线之间的衰落是独立的,那么可以产生多个并行的子信道。如果在这些并行的子信道上传输不同的信息流,可以提供传输数据速率,这被称为空间复用。需要特别指出的是在高SNR的情况下,传输速率是自由度受限的,此时对于m根发射天线n根接收天线,并且天线对之间是独立均匀分布的瑞利衰落的。 根据子数据流与天线之间的对应关系,空间多路复用系统大致分为三种模式:D-BLAST、V-BLAST以及T-BLAST。 D-BLAST D-BLAST最先由贝尔实验室的Gerard J. Foschini提出。原始数据被分为若干子流,每个子流之间分别进行编码,但子流之间不共享信息比特,每一个子流与一根天线相对应,但是这种对应关系周期性改变,如图1.b所示,它的每一层在时间与空间上均呈对角线形状,称为D-BLAST(Diagonally- BLAST)。D-BLAST的好处是,使得所有层的数据可以通过不同的路径发送到接收机端,提高了链路的可靠性。其主要缺点是,由于符号在空间与时间上呈对角线形状,使得一部分空时单元被浪费,或者增加了传输数据的冗余。如图1.b所示,在数据发送开始时,有一部分空时单元未被填入符号(对应图中右下角空白部分),为了保证D-BLAST的空时结构,在发送结束肯定也有一部分空时单元被浪费。如果采用burst模式的数字通信,并且一个burst的长度大于M(发送天线数目)个发送时间间隔 ,那么burst的长度越小,这种浪费越严重。它的数据检测需要一层一层的进行,如图1.b所示:先检测c0、c1和c2,然后a0、a1和a2,接着b0、b1和b2…… V-BLAST 另外一种简化了的BLAST结构同样最先由贝尔实验室提出。它采用一种直接的天线与层的对应关系,即编码后的第k个子流直接送到第k根天线,不进行数据流与天线之间对应关系的周期改变。如图1.c所示,它的数据流在时间与空间上为连续的垂直列向量,称为V-BLAST(Vertical-BLAST)。由于V-BLAST中数据子流与天线之间只是简单的对应关系,因此在检测过程中,只要知道数据来自哪根天线即可以判断其是哪一层的数据,检测过程简单。 (图1) T-BLAST 考虑到D-BLAST以及V-BALST模式的优缺点,一种不同于D-DBLAST与V-BLAST的空时编码结构被提出:T-BLAST。等文献分别提及这种结构。它的层在空间与时间上呈螺纹(Threaded)状分布,如图2所示。原始数据流被多路分解为若干子流之后,每个子流被对应的天线发送出去,并且这种对应关系周期性改变,与D-BLAST系统不同的是,在发送的初始阶段并不是只有一根天线进行发送,而是所有天线均进行发送,使得单从一个 MIMO 发送时间间隔 来看,它的空时分布很像V-BALST,只不过在不同的时间间隔中,子数据流与天线的对应关系周期性改变。更普通的T-BLAST结构是这种对应关系不是周期性改变,而是随机改变。这样T-BLAST不仅可以使得所有子流共享空间信道,而且没有空时单元的浪费,并且可以使用V-BLAST检测算法进行检测。 4技术分类编辑 MIMO通信技术包括以下领域: 空分 空分复用 (spatial multiplexing)工作在MIMO天线配置下,能够在不增加带宽的条件下,相比SISO系统成倍地提升信息传输速率,从而极大地提高了频谱利用率。在发射端,高速率的数据流被分割为多个较低速率的子数据流,不同的子数据流在不同的发射天线上在相同频段上发射出去。如果发射端与接收端的天线阵列之间构成的空域子信道足够不同,即能够在时域和频域之外额外提供空域的维度,使得在不同发射天线上传送的信号之间能够相互区别,因此接收机能够区分出这些并行的子数据流,而不需付出额外的频率或者时间资源。空间复用技术在高信噪比条件下能够极大提高信道容量,并且能够在“开环”,即发射端无法获得信道信息的条件下使用。Foschini等人提出的“贝尔实验室分层空时”(BLAST)是典型的空间复用技术。 空间分集 (spatial diversity):利用发射或接收端的多根天线所提供的多重传输途径发送相同的资料,以增强资料的传输品质。 波束成型 (beamforming):借由多根天线产生一个具有指向性的波束,将能量集中在欲传输的方向,增加信号品质,并减少与其他用户间的干扰。 预编码 (precoding):预编码主要是通过改造信道的特性来实现性能的提升。 以上 MIMO 相关技术并非相斥,而是可以相互配合应用的,如一个 MIMO 系统即可以包含空分复用和分集的技术。 5研究状况编辑 在MIMO系统理论及性能研究方面已有一批文献,这些文献涉及相当广泛的内容。但是由于无线移动通信MIMO信道是一个时变、非平稳多入多出系统,尚有大量问题需要研究。比如说,各文献大多假定信道为分段-恒定衰落信道。这对于宽带信号的4G系统及室外快速移动系统来说是不够的,因此必须采用复杂的模型进行研究。已有不少文献在进行这方面的工作,即对信道为频率选择性衰落和移动台快速移动情况进行研究。再有,在基本文献中,均假定接收机精确已知多径信道参数,为此,必须发送训练序列对接收机进行训练。但是若移动台移动速度过快,就使得训练时间太短,这样快速信道估计或盲处理就成为重要的研究内容。 另外实验系统是MIMO技术研究的重要一步。实际系统研究的一个重要问题是在移动终端实现多天线和多路接收,学者们正大力进行这方面的研究。由于移动终端设备要求体积小、重量轻、耗电小,因而还有大量工作要做。目前各大公司均在研制实验系统。 Bell实验室的BLAST系统[4]是最早研制的MIMO实验系统。该系统工作频率为1.9GHz,发射8天线,接收12天线,采用D-BLAST算法。频谱利用率达到了25.9bits/(Hz·s)。但该系统仅对窄带信号和室内环境进行了研究,对于在3G、4G应用尚有相当大距离。在发送端和接收端各设置多重天线,可以提供空间分集效应,克服电波衰落的不良影响。这是因为安排恰当的多副天线提供多个空间信道,不会全部同时受到衰落。在上述具体实验系统中,每一基台各设置2副发送天线和3副接收天线,而每一用户终端各设置1副发送天线和3副接收天线,即下行通路设置2×3天线、上行通路设置1×3天线。这样与“单输入/单输出天线”SISO相比,传输上取得了10~20dB的好处,相应地加大了系统容量。而且,基台的两副发送天线于必要时可以用来传输不同的数据信号,用户传送的数据速率可以加倍。 朗讯科技的贝尔实验室分层的空时(BLAST)技术是移动通信方面领先的MIMO应用技术,是其智能天线的进一步发展。BLAST技术就其原理而言,是利用每对发送和接收天线上信号特有的“空间标识”,在接收端对其进行“恢复”。利用BLAST技术,如同在原有频段上建立了多个互不干扰、并行的子信道,并利用先进的多用户检测技术,同时准确高效地传送用户数据,其结果是极大提高前向和反向链路容量。BLAST技术证明,在天线发送和接收端同时采用多天线阵,更能够充分利用多径传播,达到“变废为宝”的效果,提高系统容量。理论研究业已证明,采用BLAST技术,系统频谱效率可以随天线个数成线性增长,也就是说,只要允许增加天线个数,系统容量就能够得到不断提升。这也充分证明BLAST技术有着非常大的潜力。鉴于对于无线通信理论的突出贡献,BLAST技术获得了2002年度美国ThomasEdison(爱迪生)发明奖。 6重大历程编辑 2002年10月 世界上第一颗BLAST芯片在朗讯公司贝尔实验室问世,贝尔实验室研究小组设计小组宣布推出了业内第一款结合了贝尔实验室LayeredSpace Time (BLAST) MIMO技术的芯片,这一芯片支持最高4×4的天线布局,可处理的最高数据速率达到19.2Mbps。该技术用于移动通信,BLAST芯片使终端能够在3G移动网络中接收每秒19.2兆比特的数据,现在,朗讯科技已经开始将此BLAST芯片应用到其Flexent OneBTS家族的系列基站中,同时还计划授权终端制造商使用该BLAST芯片,以提高无线3G数据终端支持高速数据接入的能力。 2003年8月 AirgoNetworks推出了AGN100Wi-Fi芯片组,并称其是世界上第一款集成了多入多出(MIMO)技术的批量上市产品。AGN100使用该公司的多天线传输和接收技术,将现在Wi-Fi速率提高到每信道108Mbps,同时保持与所有常用Wi-Fi标准的兼容性。该产品集成两片芯片,包括一片Baseband/MAC芯片(AGN100BB)和一片RF芯片(AGN100RF),采用一种可伸缩结构,使制造商可以只使用一片RF芯片实现单天线系统,或增加其他RF芯片提升性能。该芯片支持所有的802.11 a、b和g模式,包含IEEE 802.11工作组推出最新标准(包括TGi安全和TGe质量的服务功能)。 Airgo的芯片组和目前的Wi-Fi标准兼容,支持802.11a, "b,"和"g"模式,使用三个5-GHz和三个2.4-GHz天线,使用Airgo芯片组的无线设备可以和以前的802.11设备通讯,甚至可以在以54Mbps的速度和802.11a设备通讯的同时还可以以108Mbps的速度和Airgo的设备通讯。 7MIMO应用编辑 无线宽带移动通信 为了提高系统容量,下一代的无线宽带移动通信系统将会采用MIMO技术,即在基站端放置多个天线,在移动台也放置多个天线,基站和移动台之间形成MIMO通信链路。应用MIMO技术的无线宽带移动通信系统从基站端的多天线放置方法上可以分为两大类:一类是多个基站天线集中排列形成天线阵列,放置于覆盖小区,这一类可以称为集中式MIMO;另一类是基站的多个天线分散放置在覆盖小区,可以称为分布式MIMO。 传统蜂窝移动通信系统 MIMO技术可以比较简单地直接应用于传统蜂窝移动通信系统,将基站的单天线换为多个天线构成的天线阵列。基站通过天线阵列与小区内的具有多个天线的移动台进行MIMO通信。从系统结构的角度看,这样的MIMO系统与传统的单入单出(SISO)蜂窝通信系统相比并没有根本的区别。 和传统的分布式天线系统相结合 传统的分布式天线系统可以克服大尺度衰落和阴影衰落造成的信道路径损耗,能够在小区内形成良好的系统覆盖,解决小区内的通信死角,提高通信服务质量。最近在MIMO技术的研究中发现,传统的分布式天线系统与MIMO技术相结合可以提高系统容量,这种新的分布式MIMO系统结构——分布式无线通信系统(DWCS)[8]成为MIMO技术的重要研究热点。 在采用分布式MIMO的DWCS系统中,分散在小区内的多个天线通过光纤和基站处理器相连接。具有多天线的移动台和分散在附近的基站天线进行通信,与基站建立了MIMO通信链路。这样的系统结构不仅具备了传统的分布式天线系统的优势,减少了路径损耗,克服了阴影效应,同时还通过MIMO技术显著提高了信道容量。与集中式MIMO相比,DWCS的基站天线之间距离较远,不同天线与移动台之间形成的信道衰落可以看作完全不相关,信道容量更大。总体上说,分布式MIMO系统的信道容量更大,系统功耗更小,系统覆盖性能更好,系统具有更好的扩展性和灵活性。 分布式MIMO的DWCS系统也带来了一些新问题。移动台和小区内邻近的天线建立的MIMO链路,由于基站不同天线的位置不同,它们距离移动台的距离不同,使得基站端的多个天线的信号到达移动台的延时也不同,因此带来新的研究问题。目前在这方面研究较多的是进行容量分析。除此之外的研究内容还包括:具体的同步技术、信道估计、天线选择、发射方案、信号检测技术等,这些问题有待深入研究。 无线通信领域 MIMO技术已经成为无线通信领域的关键技术之一,通过近几年的持续发展,MIMO技术将越来越多地应用于各种无线通信系统。在无线宽带移动通信系统方面,第3代移动通信合作计划(3GPP)已经在标准中加入了MIMO技术相关的内容,B3G和4G的系统中也将应用MIMO技术。在无线宽带接入系统中,正在制订中的802.16e、802.11n和802.20等标准也采用了MIMO技术。在其他无线通信系统研究中,如超宽带(UWB)系统、感知无线电系统(CR),都在考虑应用MIMO技术。 随着使用天线数目的增加,MIMO技术实现的复杂度大幅度增高,从而限制了天线的使用数目,不能充分发挥MIMO技术的优势。目前,如何在保证一定的系统性能的基础上降低MIMO技术的算法复杂度和实现复杂度,成为业界面对的巨大挑战。 雷达领域 MIMO技术同样也应用于雷达领域,主要通过多个天线发射不同的正交波形,同时覆盖较大空域,并利用长时间相干积累来获得较高的信噪比。[1]  词条图册更多图册 ◆                 电口: 电口是服务器和网络中对RJ45等各种双绞线接口的统称,其原因是这些端口都使用电作为信息的承载介 质,不过有时它也会包含同轴电缆端口。通常电口可能使用百兆以太网、千兆以太网、万兆以太网或其它种类的传输协议。 光口: 光口是服务器和网络中对各种光纤端口的统称,它是以光作为信息的承载介质。光口可能包含有从ST到SFF(小型化光纤连接器,以 MTRJ和LC为主)的各种光纤接口,因此在布线施工后期配备光纤跳线时,需要核实光口的光纤接口种类,以免在布线配置时假定的光纤跳线种类与实际使用的 要求不匹                                                                                                                                                                                                                                                                                                                                                                                    什么是3G无线路由器 3G无线路由器,也称3G路由器,是基于第三代移动(3G)通信技术的无线路由器。3G无线路由器,实际就是在普通路由器的基础上,增加一个3G拨号部分,分为内置和外置两种,内置的就是买个3G模块,内置路由器的PCB板上,在路由器上插入SIM卡,实现接收基站信号,进行上网。外置的就是将USB 3G无线上网卡接在3G路由器的的USB接口上,实现拨号上网,也就是让上网实现共享。目前,世界上有4中3G标准,分别是WCDMA、CDMA2000、TD-SCDMA和WIMAX,其中前三种已经在中国实现商用化。对应于四种3G标准,3G路由器也被分成4种类型,支持相应的网络。 3G路由器可以实现多用户共享上网,某些厂家在3G路由器中实现了WiFi功能,为实现无线局域网共享3G无线网提供了极大的方便。通过3G路由器,可以实现宽带连接,达到或超过当前ADSL的网络带宽,应用非常广泛。     3G无线路由器采用32位高性能工业级ARM9通信处理器,以嵌入式实时操作系统RTOS为软件支撑平台,系统集成了全系列从逻辑链路层到应用层通信协议,支持静态及动态路由,PPP server及PPP client,VPN(包括PPTP和IPSEC),DHCP server及DHCP client,DDNS,防火墙,NAT,DMZ主机等功能。为用户提供安全,高速,稳定可靠,各种协议路由转发的无线路由网络。 无线CPE 无线CPE就是一种接收wifi信号的无线终端接入设备,可取代无线网卡等无线客户端设备。可以接收无线路由器,无线AP,无线基站等的无线信号,是一种新型的无线终端接入设备 Redwave农村无线宽带覆盖拓扑图 CPE的英文全称为:Customer Premise Equipment 客户终端设备! 无线CPE就是一种接收wifi信号的无线终端接入设备,可取代无线网卡等无线客户端设备。可以接收无线路由器,无线AP,无线基站等的无线信号,是一种新型的无线终端接入设备。同时,它也是一种将高速4G信号转换成WiFi信号的设备,不过需要外接电源,但可支持同时上网的移动终端数量也较多。CPE可大量应用于农村,城镇,医院,单位,工厂,小区等无线网络接入,能节省铺设有线网络的费用。 1客户端CPE介绍编辑 我们总是希望无线覆盖基站的覆盖范围越大越好,但是无线系统的传输距离同时也与客户终端设备的技术指标有关。标准WiFi客户端的上行功率有限(一般为15dBm),无论无线覆盖基站的下行功率有多大,标准WiFi客户端的上行距离都受到了上行功率的限制,距离十分有限。无线CPE就是专用客户终端设备,采用天浩网线无线室外CPE距无线覆盖基站的距离可以达到标准WiFi客户端的4倍。 当然在实际应用中,难以找到视距无遮挡的应用环境,通过无线传播模型的测算和实际经验表明,采用CPE的客户端与基站的传输距离可以达到1Km-5Km AP(无线访问接入点(WirelessAccessPoint)) 如果无线网卡可比作有线网络中的以太网卡,那么AP就是传统有线网络中的HUB,也是目前组建小型无线局域网时最常用的设备。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网(这正是Access Point名称的本义)。 目前大多数的无线AP都支持多用户接入、数据加密、多速率发送等功能,一些产品更提供了完善的无线网络管理功能。对于家庭、办公室这样的小范围无线局域网而言,一般只需一台无线AP即可实现所有计算机的无线接入。 AP的室内覆盖范围一般是30m~100m,目前不少厂商的AP产品可以互联,以增加WLAN覆盖面积。也正因为每个AP的覆盖范围都有一定的限制,正如手机可以在基站之间漫游一样,无线局域网客户端也可以在AP之间漫游。 2区别编辑 无线AP与无线路由的区别 随着无线网络的快速发展,组建小型无线局域网已成为SOHO和家庭用户首选的组网方案。然而就像很多人很容易混淆无线上网卡和无线网卡一样,很多用户也分不清无线AP和无线路由。许多用户在选购产品前查询资料的时候发现无线AP和无线路由都可以实现无线上网,可等买回相对便宜的无线AP开始组建无线网络时却发现无线AP无法和ADSL一起使用,完全不能实现无线上网。无线路由就可以吗?今天这里就给大家讲讲无线AP与无线路由的区别,希望对大家有所帮助。 无线AP,即Access Point,也就是无线接入点。简单来说就是无线网络中的无线交换机,它是移动终端用户进入有线网络的接入点,主要用于家庭宽带、企业内部网络部署等,无线覆盖距离为几十米至上百米,目前主要技术为802.11X系列。一般的无线AP还带有接入点客户端模式,也就是说AP之间可以进行无线链接,从而可以扩大无线网络的覆盖范围。 单纯型AP由于缺少了路由功能,相当于无线交换机,仅仅是提供一个无线信号发射的功能。它的工作原理是将网络信号通过双绞线传送过来,经过无线AP的编译,将电信号转换成为无线电讯号发送出来,形成无线网络的覆盖。根据不同的功率,网络覆盖程度也是不同的,一般无线AP的最大覆盖距离可达400米。 扩展型AP就是我们常说的无线路由器了。无线路由器,顾名思义就是带有无线覆盖功能的路由器,它主要应用于用户上网和无线覆盖。通过路由功能,可以实现家庭无线网络中的Internet连接共享,也能实现ADSL和小区宽带的无线共享接入 。值得一提的是,可以通过无线路由器把无线和有线连接的终端都分配到一个子网,使得子网内的各种设备可以方便的交换数据。 对于扩展型AP来说,它们在短距离内是可以互联的;如果需要传输的距离比较远,那就需要无线网桥和专门的天线等设备来帮忙了。 从外观上来看,两者长的基本相似,确实不易分辨。不过相信细心的用户已经看出两者的区别,对了,那就是它们的接口不同。单纯型无线AP通常有一个接有线的RJ45网口、一个电源接口、配置口(USB口或通过WEB界面配置),并且指示灯较少;而无线路由则多了四个有线网口,除了一个WAN口用于上联上级网络设备,四个LAN口可以有线连接内网中计算机,而指示灯自然也多了一些。 WDS功能 WDS,即无线热点分布系统,它是无线AP和无线路由中一个特别的功能,简单来说就是AP的中继加桥接功能,它可以实现两个无线设备通讯,也可以起到放大信号的作用,而产品的SSID也可以不同。这是一个非常实用的功能,比如有三户邻居,每户都有一个支持WDS的无线路由或AP,这样无线信号就可以在这三户同时覆盖了,使得相互的通信更加方便。但要注意的是,每个品牌的无线路由所支持的WDS设备是有限制的(一般可以支持4-8个设备),不同品牌的WDS功能不一定可以链接成功。 无线AP拥有的功能 AP的一个重要的功能就是中继,所谓中继就是在两个无线点间把无线信号放大一次,使得远端的客户端可以接受到更强的无线信号。例如我在a点放置一个AP,而在c点有一个客户端,之间有120米的距离,从a点到c点信号已经削弱很多,于是我在中途60米处的b点放一个AP做为中继,这样c点的客户端的信号就可以有效的增强,保证了传输速度和稳定性。 AP另外一个重要的功能是桥接,桥接就是链接两个端点,实现两个无线AP间的数据传输,想要把两个有线局域网连接起来,一般就选择通过AP来桥接,例如我在a点有一个15台电脑组成的有线局域网,b点有一个25台电脑组成的有线局域网,但是ab两点的距离很远,超过了100米,通过有线连接已不可能,那么怎么把两个局域网连接在一起呢?这就需要在a点和b点各设置一个AP,开启AP桥接功能,这样ab两点的局域网就可以互相传输数据了。需要提醒的是,没有WDS功能的AP,桥接后两点是没有无线信号覆盖的。 最后一个功能是“主从模式”,在这个模式下工作的AP会被主AP或者无线路由看做是一台无线客户端,比如无线网卡或者是无线模块。这样可以方便网管统一管理子网络,实现一点对多点的连接,AP的客户端是多点,无线路由或主AP是一点。这个功能常被应用在无线局域网和有线局域网的连接中,比如a点是一个20台电脑组成的有线局域网,b点是一个15台电脑组成的无线局域网,b点已经是有一台无线路由了,如果a想接入b,在a点加一个AP,并开启主从模式,并把AP接入a点的交换机,这样所有a点的电脑就可以连接b点的了。 无线路由器的应用 无线路由器其实就是无线AP+路由功能,现在很多的无线路由器都拥有AP功能。如果你家是ADSL或小区宽带,应该选择无线路由而不是无线AP来共享网络,如果你家有路由器了,买个无线AP就行了,对于一般的家庭用户笔者强烈推荐选择无线路由器。 在SOHO办公环境中,一个无线路由就可以满足需求了。通过整合的宽带接入路由器和无线AP功能,它可以轻松实现无线网络的连接。无线路由器一般包括了网络地址转换(NAT)协议,支持网络连接共享,这对于soho办公来说非常有用。 无线路由器有基本的防火墙或者信息包过滤器来防止端口扫描软件和其他针对宽带连接的攻击。另外无线路由器的四个有线端口也很实用,它可以连接几台有线的PC,这对于管理路由器或共享打印机都是非常有用的。 CPE和AP有什么区别? CPE:客户端设备,不一定是终端. AP为Access Point简称“无线访问节点”,它主要是提供无线工作站对有线局域网和从有线局域网对无线工作站的访问,在访问接入点覆盖范围内的无线工作站可以通过它进行相互通信。 CPE一般能提供比AP更远的覆盖距离, RUIM卡是什么 R-UIM在CDMA系统中所起的作用类似于GSM系统中的SIM卡所起的作用,是一种安全机制。  通过机卡分离技术将与用户相关的信息和鉴权算法等与安全相关的信息保留在智能卡上,这个卡叫做R-UIM 可移动用户识别模块RUIM,也叫做用户识别模块(UIM),和用户识别卡(SIM)是相似的,但是它为网络设计而不是为GSM,例如CDMA.R-UIM卡支持在CDMA和GSM网络之间的漫游。 天翼手机要用中国电信CDMA的uim卡 例如133号段 CDMA系统定义了RemovableUserIdentityModule(RUIM),类似GSM系统中SIM卡的观念。 随着GSM技术在移动通信市场上的巨大成功,用户已经对通过将SIM卡插入不同的手机而任意更换手机习以为常了。然而在北美的移动通信标准体系中,无论是模拟还是CDMA移动台却是机卡一体的。中国联通公司在1999年首先提出了在CDMA系统中引入智能IC卡的概念,即所谓的机卡分离。通过机卡分离技术将与用户相关的信息和鉴权算法等与安全相关的信息保留在智能卡上,这个卡叫做R-UIM(RemovableUserIdentityModule)。机卡分离技术的实现不但使得用户能够更加灵活方便地更换CDMA手机,而且能够使用户在不同制式的网络中自由漫游的愿望得以实现(比如使用CDMA/GSM双模卡的用户可以通过更换不同制式的手机或使用双模手机在CDMA和GSM网络中漫游)。在这个概念的基础上,CDG、TIA、3GPP2等国际标准化组织以及我国的CWTS积极地开展研究工作并在1999年中期开始着手对用户标识模块(UIM)以及UIM-ME接口规范的制订工作。 机卡分离技术编辑 R-UIM在CDMA系统中所起的作用类似于GSM系统中的SIM卡所起的作用,是一种安全机制。 机卡分离技术的实现是在遵循一定的原则下进行的。首先在实现机卡分离后应该保证作为一个整体的CDMA终端(CDMA手机 UIM卡)在功能、性能上不会受到任何影响。其次考虑到目前世界上已经有多个运营商的CDMA网络投入商用,为了今后顺利开展国际漫游业务和在世界范围内推广机卡分离技术的普及和发展,应尽可能避免修改现有的空中接口标准(如IS-95A)从而使支持机卡分离的手机能够与现有CDMA网络兼容。 鉴于已有的SIM卡相关规范已十分成熟,在UIM规范的制订过程中,充分利用了SIM卡规范中的可用部分,在一定程度上UIM规范可以看成是在SIM卡规范的基础上进行扩展,增加与CDMA操作有关的参数、命令、鉴权算法而成,当然对于只支持CDMA一种系统操作的UIM卡,可以不包含与GSM相关的内容。
/
本文档为【无线网络名词】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
热门搜索

历史搜索

    清空历史搜索