为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

[材料科学]金属硬度检测、对照表及其简单的增加硬度处理方式

2017-09-15 48页 doc 91KB 96阅读

用户头像

is_977556

暂无简介

举报
[材料科学]金属硬度检测、对照表及其简单的增加硬度处理方式[材料科学]金属硬度检测、对照表及其简单的增加硬度处理方式 一(硬度怎样检测 硬度是评定金属材料力学性能最常用的指标之一。硬度的实质是材料抵抗另一较硬材料压入的能力。硬度检测是评价金属力学性能最迅速、最经济、最简单的一种试验方法。硬度检测的主要目的就是测定材料的适用性,或材料为使用目的所进行的特殊硬化或软化处理的效果。对于被检测材料而言,硬度是代表着在一定压头和试验力作用下所反映出的弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。由于通过硬度试验可以反映金属材料在不同的化学成分、组织结构和热处理工艺条件下性能的差异...
[材料科学]金属硬度检测、对照表及其简单的增加硬度处理方式
[材料科学]金属硬度检测、对照表及其简单的增加硬度处理方式 一(硬度怎样检测 硬度是评定金属材料力学性能最常用的指标之一。硬度的实质是材料抵抗另一较硬材料压入的能力。硬度检测是评价金属力学性能最迅速、最经济、最简单的一种试验方法。硬度检测的主要目的就是测定材料的适用性,或材料为使用目的所进行的特殊硬化或软化处理的效果。对于被检测材料而言,硬度是代表着在一定压头和试验力作用下所反映出的弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。由于通过硬度试验可以反映金属材料在不同的化学成分、组织结构和热处理工艺条件下性能的差异,因此硬度试验广泛应用于金属性能的检验、监督热处理工艺质量和新材料的研制。 金属硬度检测主要有两类试验方法。一类是静态试验方法,这类方法试验力的施加是缓慢而无冲击的。硬度的测定主要决定于压痕的深度、压痕投影面积或压痕凹印面积的大小。静态试验方法包括布氏、洛氏、维氏、努氏、韦氏、巴氏等。其中布、洛、维三种试验方法是应用最广的,它们是金属硬度检测的主要试验方法。这里的洛氏硬度试验又是应用最多的,它被广泛用于产品的检验,据统计,目前应用中的硬度计70%是洛氏硬度计。另一类试验方法是动态试验法,这类方法试验力的施加是动态的和冲击性的。这里包括肖氏和里氏硬度试验法。动态试验法主要用于大型的,不可移动工件的硬度检测。 检测方法 硬度是衡量金属材料软硬程度的一项重要的性能指标,它既可理解为是材料抵抗弹性变形、塑性变形或破坏的能力,也可表述为材料抵抗残余变形和反破坏的能力。硬度不是一个简单的物理概念,而是材料弹性、塑性、强度和韧性等力学性能的综合指标。硬度试验根据其测试方法的不同可分为静压法(如布氏硬度、洛氏硬度、维氏硬度等)、划痕法(如莫氏硬度)、回跳法(如肖氏硬度)及显微硬度、高温硬度等多种方法。 布氏硬度以HB[N(kgf/mm2)]表示(HBS\HBW)(参照GB/T231,1984),生产中常用布氏硬度法测定经退火、正火和调质的钢件,以及铸铁、有色金属、低合金结构钢等毛胚或半成品的硬度。 洛氏硬度可分为HRA、HRB、HRC、HRD四种,它们的测量范围和应用范围也不同。一般生产中HRC用得最多。压痕较小,可测较薄的材料和硬的材料和成品件的硬度。 维氏硬度以HV表示(参照GB/T4340-1999),测量极薄试样。 典型的金属材料的硬度检测方法 一、无缝钢管的硬度计检测方法 1、无缝钢管常用的硬度指标 无缝钢管一般常用布氏、洛氏、维氏三种硬度指标来衡量其硬度。 1)布氏硬度 在无缝钢管标准中,布氏硬度用途最广,往往以压痕直径来表示该材料的硬度,既直观,又方便。但是对于较硬的或较薄的钢材的钢管不适用。 2)洛氏硬度 无缝钢管洛氏硬度试验同布氏硬度试验一样,都是压痕试验方法。不同的是,它是测量压痕的深度。洛氏硬度试验是目前应用很广的方法,其中HRC在钢管标准中使用仅次于布氏硬度HB。洛氏硬度可适用于测定由极软到极硬的金属材料,它弥补了布氏法的不是,较布氏法简便,可直接从硬度机的表盘读出硬度值。但是,由于其压痕小,故硬度值不如布氏法准确。 3)维氏硬度 无缝钢管维氏硬度试验也是一种压痕试验方法,可用于测定很薄的金属材料和表面层硬度。它具有布氏、洛氏法的主要优点,而克服了它们的基本缺点,但不如洛氏法简便,维氏法在钢管标准中很少用。 2、无缝钢管硬度检测方法 不锈钢的硬度检测要考虑到它的力学性能,这关系到以不锈钢为原料而进行的变形、冲压、切削等加工的性能和质量。因此,所有的无缝钢管要进行力学性能测试。力学性能测试方法主要分两类,一类是拉伸试验,一类是硬度试验。 拉伸试验是将无缝钢管制成试样,在拉伸试验机上将试样拉至断裂,然后测定一项或几项力学性能,通常仅测定抗拉强度、屈服强度、断后伸长率和断面收缩率。拉伸试验是金属材料最基本的力学性能试验方法,几乎所有的金属材料,只要对力学性能有要求,都规定了拉伸试验。特别是那些形状不便于进行硬度试验的材料,拉伸试验成为唯一的力学性能检测手段。 硬度试验是将一个硬质压头按规定条件缓慢压入试样表面、然后测试压痕深度或尺寸,以此确定材料硬度的大小。硬度试验是材料力学性能试验中最简单、最迅速、最易于实施的方法。硬度试验是非破坏性的,材料硬度值与抗拉强度值之间有近似的换算关系。材料的硬度值可以换算成抗拉强度值,这一点具有很大的实用意义。 由于拉伸试验不便于测试,并且由硬度换算到强度很方便,因此人们越来越多地只测试材料硬度而较少测试其强度。特别是由于硬度计制造技术的不断进步和推陈出新,一些原来无法直接测试硬度的材料,如无缝钢管、不锈钢板和不锈钢带等,现在都已经可能直接测试硬度了。所以,存在一个硬度试验逐渐代替拉伸试验的趋势。 在不锈钢材料的国家标准中大多数都同时规定了拉伸试验和硬度试验。对于那些不便于进行硬度试验的材料,例如无缝钢管就只规定了拉伸试验。在不锈钢标准中,一般都规定了布、洛、维三种硬度试验方法,测定HB、HRB(或HRC)和HV硬度值,规定三种硬度值只测其一即可。特别是本公司最新研制的便携式表面洛氏硬度计、管材洛氏硬度计,可以对薄至0.05mm的不锈钢板、不锈钢带以及细至,4.8mm的无缝钢管进行快速、准确的硬度检测,使得过去在国内难以解决的问题迎刃而解。 3、无缝钢管硬度检测工具 无缝钢管的内径在6.0mm以上,壁厚在13mm以下的退火无缝钢管材,可以采用W-B75型韦氏硬度计,它测试非常快速、简便,适于对无缝钢管材做快速无损的合格检验。无缝钢管内径大于30mm,壁厚大于1.2mm的无缝钢管,采用洛氏硬度计,测试HRB、HRC硬度。无缝钢管内径大于30mm,壁厚小于1.2mm的无缝钢管,采用表面洛氏硬度计,测试HRT或HRN硬度。内径小于0mm,大于4.8mm的无缝钢管,采用管材专用洛氏硬度计,测试HR15T硬度。当无缝钢管内径大于26mm时,还可以用洛氏或表面洛氏硬度计测试管材内壁的硬度 二、焊管的硬度检测 焊管是用钢板或钢带经过弯曲成型,然后经焊接制成。按焊缝形式分为直缝焊管和螺旋焊管。按用途又分为一般焊管、镀锌焊管、吹氧焊管、电线套管、公制焊管、托辊管、深井泵管、汽车用管、变压器管、电焊薄壁管、电焊异型管和螺旋焊管。一般焊管:一般焊管用来输送低压流体。用Q195A、Q215A、Q235A钢制造。也可采用易于焊接的其它软钢制造。钢管要进行水压、弯曲、压扁等实验,对表面质量有一定要求,通常交货长度为4-10m,常要求定尺(或倍尺)交货。 焊管的规格用公称口径表示(毫米或英寸)公称口径与实际不同,焊管按规定壁厚有普通钢管和加厚钢管两种,钢管按管端形式又分带螺纹和不带螺纹两种。 下面简单的介绍几种焊管的应用: 1、一般焊管用于水、煤气、空气、油和取暖蒸汽等一般较低压力流体的输送。 2、普通碳素钢电线套管(GB3640-88)是工业与民用建筑、安装机器设备等电气安装中用于保护电线的钢管。 3、直缝电焊管(YB242-63)是焊缝与钢管纵向平行的钢管。通常分为公制电焊管、电焊薄壁管、变压器冷却油管等等。 4、承压流体输送用螺旋缝埋弧焊管(SY5036-83)是以热轧钢带卷作管坯,经常温螺旋成型,用双面埋弧焊法焊接,用于承压流体输送的螺旋缝钢管。钢管承压能力强,焊接性能好,经过各种严格的科学检验和测试,使用安全可靠。钢管口径大,输送效率高,并可节约铺设管线的投资。主要用于输送石油、天然气的管线。 5、承压流体输送用螺旋缝高频焊管(SY5038-83)是以热轧钢带卷作管坯,经常温螺旋成型,采用高频搭接焊法焊接的,用于承压流体输送的螺旋缝高频焊钢管。钢管承压能力强,塑性好,便于焊接和加工成型;经过各种严格和科学检验和测试,使用安全可靠,钢管口径大,输送效率高,并可节省铺设管线的投资。主要用于铺设输送石油、天然气等的管线。 6、一般低压流体输送用螺旋缝埋弧焊钢管(SY5037-83)是以热轧钢带卷作管坯,经常温螺旋成型,采用双面自动埋弧焊或单面焊法制成的用于水、煤气、空气和蒸汽等一般低压流体输送用埋弧焊钢管。 焊管可以采用布、洛、维三种硬度试验方法,测定HB、HRB(或HRC)和HV硬度值,三种硬度值只测其一即可。本公司最新研制的便携式表面洛氏硬度计、管材洛氏硬度计,可以进行快速、准确的硬度检测,使得过去在国内难以解决的问题迎刃而解。 三、马口铁的硬度检测 1、什么是马口铁, 马口铁是表面镀有一层锡的铁皮,它不易生锈,又叫镀锡铁。将铁片浸到熔化的液体锡中而制得。锡是比铁不活泼的金属,既不被空气氧化又不与水反应, 所以有相当强的抗腐蚀能力。铁片上镀了一薄层锡可起良好的保护作用。但镀层一旦被破坏后发生电化学腐蚀时,由于铁比锡活泼,铁将作为原电池的负极发生氧化反应而损耗,锡的存在将加快铁的腐蚀速度,所以马口铁与白铁不同,它只能在镀层完好的情况下才有保护铁的作用。 马口铁最早产于波希米亚(今捷克和斯洛伐克境内)。该地自古就盛产金属,工艺先进,且懂得利用水力从事机器制造,从14世纪起就开始生产马口铁。在很长一段时期内,这里一直是世界上马口铁的主要产地。当时马口铁主要用来制造餐具和饮具。 17世纪,英、法、瑞典都曾希望建立自己的马口铁工业,但由于需要大笔资金,所以迟迟未得到发展。直到1811年,布莱恩.唐金和约翰.霍尔开办马口铁罐头食品之后,马口铁制造才大规模发展起来。如今全世界每年产锡约25万吨,1,3以上用来制造马口铁,其中大部分用于罐头食品业。 2、马口铁的硬度测试 马口铁的硬度测试以往大多采用台式表面洛氏硬度计,采用普通钢质平测砧,测试HR30T硬度。 近年来,由于关于马口铁的国家标准GB/T2520-2000开始采用了国际上通用的HR30Tm硬度表示方法,因此国内已开始采用金刚石测砧、测试马口铁的HR30Tm硬度值。 但是,测试HR30Tm硬度需要一个金刚石测砧,而国产的洛氏硬度计很少有这种配件可以选购。由于合适的金刚石测砧难以买到,台式的表面硬度计又比较贵。因此,HR30Tm硬度表示方法在国内马口铁行业的应用还不普遍。特别是在马口铁的使用厂家方面,尽管人们也意总识到马口铁的硬度很重要,它要关系到加工产品的质量,关系到生产效率和企业效益。但是多数企业都没有对购进的马口铁材进行硬度复检。 现在情况不同了,沈阳天星试验仪器有限公司已经生产出了PHR系列便携式表面洛氏硬度计,它的重量只有台式机的百分之一,价格只有台式机的一半,精度与台式机相同,都符合关于洛氏硬度试验方面的国家标准GB/T 230.1-2004的规定。作为选购件,沈阳天星公司还可提供用于测试HR30Tm硬度的金刚石点砧座,它的价格只有国内同类产品的五分之一。 测试马口铁的硬度,可以选用PHR-1S型表面洛氏硬度计,它的重量只有0.7kg,可以测试厚度为0.05~25mm的板带材料,测试内径26mm以上的管材内壁 硬度,测试内径30mm以上的管材外壁硬度。配上金刚石点砧座就可以测试马口铁的HR30Tm硬度。这种仪器可以方便地带到生产现场、销售现场和材料仓库去使用。可以用于马口铁生产厂的在线质量控制,也可以用于马口铁使用厂的材料复检,还可以带到钢材市场去选购材料。如果配上一个选购件支承座,还可以放到一个平台上(例如办公桌)进行精确测试。 PHR-1S型表面洛氏硬度计非常适于测试马口铁的硬度,它的采用必定会给马口铁的生产和使用厂家带来明显效益。 四、模具硬度及模具钢硬度的检测方法 模具钢是模具工业的主体材料,根据模具的服役条件、环境和状态的不同,模具钢应具备不同的特性。在工业生产中,模具使用寿命和制成零件的精度、质量、外观性能,除与模具的设计技术、制造精度,以及机床精度和制造操作有关外,正确地选用模具材料和正确地执行热处理工艺也是至关重要的,资料显示,模具早期失效因材料选择不当和材料内部缺陷引起的大约点10%左右,而由热处理不当引起的约占49%。 硬度是模具材料和成品模具的重要性能指标。模具在工作时的受力状态是复杂的,如热作模具通常是在交变的温度场下承受交变应力作用,因此它应具有良好的阻止模具转变成较软或塑性状态的能力,并且在长期工作环境下仍保持模具的形状和尺寸精度不变。一般成品模具的硬度,冷作模具常选择在59-60HRC,热作模具常选择在48HRC左右。 耐磨性也是成品模具的重要性能指标。零件成形时金属和模具型腔表面发生相对运动,磨损了型腔表面,至使模具的尺寸形状、精度和表面粗糙度发生变化而失效。模具的耐磨性是由模具的热处理,特别是表面热处理决定的,评估模具耐磨性好坏的主要依据是硬度。 模具钢的硬度测试主要针对三种情况,即模具钢材料的硬度检测,经过热处理的半成品模具的检测硬度及要求高耐磨性的模具表面热处理后的表面硬度的检测。 供货状态的模具钢主要是经过锻造的钢板、钢块或钢棒,一般以退火状态供货。某些塑料模具钢还以预硬状态(调质处理)供货,用户可直接加工成模具而不必进行后续热处理。 模具钢按钢种分类可分为碳素工具钢、合金工具钢和高速工具钢,中国标准对于各种模具钢都规定了出厂硬度要求,要求对钢材的退火硬度和试样淬火硬度进行检验。 中国标准GB/T1298-1986《碳素工具钢技术条件》规定,退火状态供货钢材,对于T7-T13各种不同牌号,硬度值应分别小于187-217HBS,试样淬火硬度大于62HRC。 中国标准GB/T1299-2000《合金工具钢》规定,退火状态供货的钢材,对于不同的牌号,硬度值应小于某个数值或在某个硬度区间内,例如:9SiCr硬度为197-241HBW,Cr12硬度为217-269HBW,Cr5Mo1V硬度?255HBW。试样淬火硬度根据不同的牌号,一般在53-64HRC之间。 中国标准GB/T9943-1988《高速工具钢棒技术条件》规定,退火钢材硬度应小于255-285HBS,淬火回火钢材硬度应大于63-66HRC。 按照标准的要求,出厂状态的模具钢应使用布氏硬度计,测试HBS(钢球压头)或HBW(硬度合金压头)硬度,并且只要材料具有足够的尺寸,应尽量采用3000kg力和10mm球的试验条件。然而模具钢材料尺寸通常都比较大,无法直接在布氏硬度计上测试,常用的办法是在钢材上截取一块样品,经适当加工之后在布氏硬度计上测试。在少数要求不高的场合,也有人用简易便携式布氏硬度计或锤击式布氏硬度计测试,但是,这些仪器误差太大,技术指标中给出的误差是?8%,实际应用中的误差常常超过10%,只能给出一个粗略的结果。 近年来,里氏硬度计被广泛应用,它测试快速,方便,测试值可自动转换成布氏硬度值,因此得到一定程度的应用。但是里氏硬度计采用的是动态硬度测试原理,影响仪器准确性的因素较多,对材料表面光洁度的要求也很高,硬度值转换的误差也较大,因此,其精度尽管常常高于简易便携式布氏硬度计和锤击式布氏硬度计,但是还要远低于常规的布氏和洛氏硬度计。好在模具钢材对硬度测试的精度要求也不高。 当模具钢块的厚度大于150mm或300mm时,仪器的测试头还可以取下来当作锤击式布氏硬度计使用。它只要接触钢块的一侧就可以测试,可以测试任意大的模具钢块。测试精度远高于现有的锤击式布氏硬度计。 完成了机械加工的模具钢材料要进行淬火回火处理,再经过精磨和抛光就可成为成品模具。淬火回火处理后的模具硬度检测更为重要,因为这时的材料硬度是一个非常重要的质量指标,它在很大程度上决定了成品模具的使用寿命。 淬火回火的模具钢材料要求使用洛氏硬度计、测试HRC洛氏硬度。模具钢成品需要具有足够的硬度,同时还要有一定的韧性,而硬度和韧性是一对矛盾,为了在具有合理韧性的条件下,便模具具有较高的硬度,最佳的硬度值就会被限制在一个比较窄的范围内,通常只有2-3个HRC单位。 半成品模具的硬度测试是一个难于解决的问题。一直没有一个较为理想的解决。只有少数体积和重量较小的模具可以搬到台式洛氏硬度计上测试。而大多数情况下的通常做法是,在近似相同的工艺条件下制作一个工艺试片,用工艺试片的硬度代表模具的硬度,然而二者之间常常还存在较大的差异,这种方法也不够理想。 里氏硬度计为半成品模具的硬度测试提供了一个解决方案,可以通过测试模具的里氏硬度,然后换算成HRC洛氏硬度。尽管里氏硬度计误差较大,但是还是目前模具行业应用最为普遍的硬度测试方法,据了解,里氏硬度计应用最广泛的领域就是模具行业。如前面所述,半成品模具合理的硬度范围是比较窄的,里氏硬度计不能满足这样的精度要求。但是这就是目前模具行业的现状,没有更好的解决办法。 许多模具真正需要测试硬度的型腔距模具边缘要有一定的距离,为了适应模具行业的这一特点,PHR系列大型洛氏硬度计在设计时特别加大了C型框架的深度,最大深度可达到300mm,这样只要模具的型腔距模具边缘的距离小于300mm,就都可以使用这种仪器。 一些要求心部具有较高的韧性,表面不要具有效高硬度和耐磨性的模具,要进行表面的渗碳或渗氮处理,表面硬化处理的模具需要测试模具的表面硬度。 渗碳层通常较厚。当渗碳层厚度大于0.8mm时,可直接用洛氏硬度计,测试HRC硬度。当渗碳层厚度在0.5-0.8mm时,可以采用洛氏硬度计的A标尺。A标尺的试验力较小,只有60kg(C标尺试验力是150kg),可以在模具表面压一个较浅的压痕,不至于将硬化层压透,硬度测试更准确。测得的HRA硬度值可方便地通过查表换算成HRC硬度值。 渗碳层较薄时,例如0.2-0.6mm,可以采用表面洛氏硬度计,表面洛氏硬度计的试验力只有15kg、30kg或45kg,可以在模具表面压一个更浅的压痕,测得的硬度值也可以换算成HRC硬度值。 渗氮层通常较薄,渗层厚度大于0.2mm的模具可以用表面洛氏硬度计,厚度小于0.2mm的模具就只能利用工艺试片了,在近似相同的工艺条件下做一块试片, 以试片的硬度代表渗氮层的硬度。这个试片可以在小负荷维氏硬度计上测出表层硬度。 硬度是模具钢最重要的性能。模具的热处理质量和使用性能通常都是以硬度作为判断的依据。为了照顾到韧性等其他性能,模具硬度的最佳范围是一个比较窄的区间,通常只有2-4个HRC单位。因此,如何能在现场使用便携式仪器快速、精确地测试模具硬度在模具制造和使用单位具有十分重要的意义。它可以提升模具产品的质量,提升模具制造的技术水平,延长模具寿命。 五、带钢硬度的现场检测方法 带钢包括冷轧带钢、光亮带钢、不锈钢带、镀锌钢带、镀锡钢带等,这些带钢产品在冷轧之后都要进行退火处理,多数产品还要根据退火程度按硬度进行分级,不同的后续加工需要采用不用硬度级别的带钢材料。退火硬度的检测在这些带钢产品生产和使用中具有十分重要的意义。 以往带钢硬度的检测都是要在带钢卷上截取样品后送到进行硬度检测。这种方法麻烦,费时并且远离现场。 六、热处理工件硬度的检测方法 表面热处理分为两大类,一类是表面淬火回火热处理,另一类是化学热处理,其硬度检验方法如下: 1、表面淬火回火热处理 表面淬火,回火热处理通常用感应加热或火焰加热的方式进行。主要技术参数是表面硬度、局部硬度和有效硬化层深度。硬度检测可采用维氏硬度计,也可采用洛氏或表面洛氏硬度计。试验力(标尺)的选择与有效硬化层深度和工件表面硬度有关。这里涉及到三种硬度计。 维氏硬度计是测试热处理工件表面硬度的重要手段,它可选用0.5,100kg的试验力,测试薄至0.05mm厚的表面硬化层,它的精度是最高的,可分辨出热处理工件表面硬度的微小差别。另外,有效硬化层深度也要由维氏硬度计来检测,所以,对于进行表面热处理加工或大量使用表面热处理工件的单位,配备一台维氏硬度计是有必要的。 表面洛氏硬度计也是十分适于测试表面淬火工件硬度的,表面洛氏硬度计有三种标尺可以选择。可以测试有效硬化深度超过0.1mm的各种表面硬化工件。尽管表面洛氏硬度计的精度没有维氏硬度计高,但是作为热处理工厂质量管理和合 格检查的检测手段,已经能够满足要求。况且它还具有操作简单、使用方便、价格较低,测量迅速、可直接读取硬度值等特点,利用表面洛氏硬度计可对成批的表面热处理工件进行快速无损的逐件检测。这一点对于金属加工和机械制造工厂具有重要意义。 当表面热处理硬化层较厚时,也可采用洛氏硬度计。当热处理硬化层厚度在0.4,0.8mm时,可采用HRA标尺,当硬化层厚度超过0.8mm时,可采用HRC标尺。 维氏、洛氏和表面洛氏三种硬度值可以方便地进行相互换算,转换成标准、图纸或用户需要的硬度值。相应的换算表在国际标准ISO、美国标准ASTM和中国标准GB/T中都已给出。在沈阳天星网站的技术资料栏目中这三种换算表都可以找到。 2、化学热处理 化学热处理是使工件表面渗入一种或几种化学元素的原子,从而改变工件表面的化学成分、组织和性能。经淬火和低温回火后,工件表面具有高的硬度、耐磨性和接触疲劳强度,而工件的芯部又具有高的强韧性。 化学热处理工件的主要技术参数是硬化层深度和表面硬度。硬化层深度还是要用维氏硬度计来检测。检测从工件表面到硬度降到50HRC那一点的距离。这就是有效硬化深度。 化学热处理工件的表面硬度检测与表面淬火热处理工件的硬度检测相近,都可以用维氏硬度计、表面洛氏硬度计或洛氏硬度计来检测,只是渗氮厚的厚度较薄,一般不大于0.7mm,这时就不能再采用洛氏硬度计了。 3、局部热处理 零件如果局部硬度要求较高,可用感应加热等方式进行局部淬火热处理,这样的零件通常要在图纸上标出局部淬火热处理的位置和局部硬度值。零件的硬度检测要在指定区域内进行。硬度检测仪器可采用洛氏硬度计,测试HRC硬度值,如热处理硬化层较浅,可采用表面洛氏硬度计,测试HRN硬度值。 七、铝型材硬度的检测方法 铝型材硬度一般用韦氏硬度计检测。国家标准GB5237-2004规定6063铝型材硬度应大于8HW,6061铝型材硬度应大于10HW。中国有色金属标准YB/T420-2000规定了铝型材韦氏硬度检测方法。 用于铝型材检测的W,20型韦氏硬度计是一种小型便携式仪器,用于快速方便地测量铝型材、管材、板材的硬度。特别适用于在生产现场、销售现场或施工现场对铝型材产品进行快速非破坏性的硬度检查。本仪器已通过国家技术监督部门的性能试验,获得计量器具制造许可证。许可证编号:辽制01030012。 W,20型韦氏硬度计是中国有色金属行业标准YS/T420,2000认可的两种仪器之一,该仪器已应用于国内大多数铝型材厂和许多门窗幕墙企业、铝型材使用单位及工程质检技术监督部门。 1、用途 1)确定铝型材有无热处理,检查热处理效果,判定铝型材力学性能是否合格 2)确定铝型材是否为不适当的合金加工而成,判定铝型材合金成分是否合格。 3)测量不便送到实验室的过长、过重工件或装配件。 4)用于铝型材生产检验、验收检验和质量监督检验。 2、主要特点 1)体积小,重量轻,可单手操作,便于携带。 2)能测量多种铝型材外形。 3)操作简单,操作技能对读数无影响。 4)读数方便,可方便地换算成其它硬度值。 3、测量范围 主要用于测量铝型材和铝合金材料,也可测量铜合金材料。其测量范围相当于: 铝型材:24,110HRE 铜合金:60,90 HRF 八、铸件的硬度检测方法 铸造业是机械行业的一个重要分支,由于石墨的存在赋予铸铁优良的铸造性能、切削加工性能、减磨性能、减振性能以及低的缺口敏感性。而且铸造生产设备简单, 制造成本低,因而在工业生产中得到广泛应用。在各类机械产品中,按质量计算,铸件所占比例高达50%以上。 铸造件第一位的质量指标就是力学性能,测试工件力学性能的方法主要有两个,其一是拉伸试验,其二是硬度试验。拉伸试验测试的是工件的抗拉强度,屈服强度和伸长率,而硬度试验反映的是在各自规定的条件下材料弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。在美国铸件标准中几乎每一种产品都规定了拉伸试验。多数产品规定了硬度试验。 拉伸试验设备复杂,投资较高,需要专业人员,需要制备试样,试验效率低,成本高。硬度试验设备简单,易于掌握,压痕很小,可视为无损检测,可直接测试成品或半成品工件。测试效率高,可用于对成批工件的逐件检测。随着硬度计制造技术的进步,各种便携式仪器,特别是高精度便携式仪器不断出现,使得硬度测试实现了简单、快捷和精确。使现场硬度检测,生产线上的硬度控制及大工件的精确硬度检测成为可能。 硬度试验和拉伸试验基本上都是检测金属抵抗塑性变形的能力。两种试验在某种程度上是检测金属相似的特性。二者的试验结果是完全可以相互比较的,对于多数金属材料,硬度值和抗拉强度值是可以通过查表相互换算的。因此在测试材料力学性能时,人们越来越多地选择采用硬度试验,而较少选用拉伸试验。 本文主要有两部分内容,第一,美国标准ASTM中典型铸造产品关于硬度要求方面的规定。第二,在铸造产品检测中硬度计的选用方法。 1、美国标准ASTM中关于铸件硬度的要求 1)灰口铁铸件(ASTM A48-92) 适用于主要考虑抗拉强度的一般工程用灰口铁铸件,铸件根据不同铸造试棒的抗拉强度分级。在此类铸铁件中,化学成分相对于抗拉强度来说是次要的。 铸件在订货或生产时,根据单独铸造的试样性能分成若干个等级,每一等级采用一个数字后接一字母表示,数字表示单独铸造试棒的最小抗拉强度,字母表示试棒的规格。例如: 灰口铁铸件,ASTM A48,30B级表示按标准ASTM A48生产的,最小抗拉强度为30千磅/英寸2(207MPa),试棒的公称直径为1.2英寸(30.5mm)。 标准述及“在生产厂和购买方达成书面时,要求铸件满足硬度、化学成分、显微组织、压漏、X线检验无缺陷、尺寸、表面精度等要求是必要的”。 2)机动车用灰口铁铸件(ASTM A159-88) 适用于以砂模铸造的,在汽车、拖拉机及相关工业中使用的灰口铁铸件。 订货应包括如下条款: 是否需要特殊热处理。 进行硬度试验的表面。 所要求的表面硬化深度和表面硬度。 硬度要求: 铸造厂应采取必要的控制和检验技术以保证铸件符合所规定的硬度范围,? 布氏硬度按ASTM E10试验方法,? 在铸件表面已经去除足够厚度的材料后测试,? 以保证硬度读数的代表性。除另有协议外,? 应采用10毫米的钢球和3000公斤负荷。在铸件上检测硬度的面积及其位置应由供需双方商定,? 并在图纸上标? 出。 合金灰口铁机动车凸轮轴的牌号为G4000d,铸件硬度——按照供需双方的商定,在支撑面上测定的硬度为241-321HB。 3)球墨铸铁铸件(ASTM A536-84) 适用于由球墨铸铁制作的铸件,这种铸铁含有球状石墨,基本上没有其他形式的石墨。 铸件牌号按“抗拉强度——屈服强度——延伸率”来表示,例如: 牌号:80-55-06 代表抗拉强度80000磅/英寸(2552MPa),屈服强度55000磅/英寸2(379MPa),延伸率6.0%(2英寸或50mm)。 铸件应进行适当的热处理,如退火、正火、淬火并回火等。 在合同或订货单中有规定时,铸件应满足硬度、化学成分、显微组织„„等要求。 4)奥氏体球墨铸铁铸件(ASTM A439-89) 适用于主要用于耐热、耐腐蚀和耐磨的奥氏体球墨铸铁件。铸件应进行消除应力、稳定性处理或退火等热处理。 5)等温淬火球墨铁铸件(ASTM A897M-90) 适用于需要进行等温淬火热处理的球墨铁铸件。等温淬火可以使同一铸件的不同部位或同一炉铁水铸成的不同铸件间的力学性能差异缩小。应用等温淬火热处理可以扩大在球墨铸铁件上可得到的性能范围。 6)高温用铁素体球墨铸铁承压铸件(ASTM A395 M-88) 适用于高温承压用的球墨铸铁制造的阀门、法兰盘、管配件、泵和其他管道配件。 订货合同中应包括热处理要求。 铸件的硬度要求如下: 铸件和试样的硬度应在下列范围: 布氏硬度、3000kg力/10mm球,HB143-187。 7)珠光体可锻铸件(ASTM A220 M-88) 适用于从常温到400?条件下工作的一般工程用珠光体可锻铸铁铸件。 如果购货合同要求进行硬度试验,则应说明可以接受的硬度范围,试验部位应清晰地示于附图上。 只要有可能,就应采用ASTM E10规定的布氏硬度试验方法。并且应尽量采用3000kg力/10mm球的试验条件,如果由于工件尺寸或形状不允许,则可采用1500kg力/10mm球。在不能采用布氏硬度计的特殊情况下,可按照ASTM E18的规定,采用洛氏硬度试验方法来代替。 8)铁素体可锻铸铁铸件(ASTM A47M-90) 适用于常温到400?条件下工作的一般工程用铁素体可锻铸铁铸件。 典型零件抗拉试验及硬度要求如下: 拉伸试验要求典型硬度 级别抗拉强度最小 MPa 屈服强度最小 MPa 伸长率(50毫米标距),最小,% 最大硬度 HB 压痕直径毫米 22010 340 220 10 156 4.8 9)汽车用可锻铸铁铸件(ASTM A602-87) 适用于汽车工业和同类型工业产品所用的铁素体、珠光体、回火珠光体和回火马氏体级的可锻铸铁铸件。铸件应进行热处理。 硬度要求 铸件应实行必要的控制和检验工序以保证符合规定的硬度范围。硬度读数应按照ASTM E10,从铸件表面清除足够厚度的材料之后测取,以保证硬度值的代表性。应由供需双方协商一致并按图纸所示,确定铸件检查硬度的表面或区域。 10)耐磨铸铁(ASTM A532/A532M-87) 本标准适用于一组合金化的白口铸铁,以保证在采矿、选矿、泥土装卸和制造工业中应用时的高耐磨性。 ?级和?级合金经常按热处理状态订货,最大硬度为400HB。 硬度测试可在铸件原始表面的任何部位进行。压痕可在铸件的原始表面上做出,或深入原始表面1/8英寸。 硬度按照下列ASTM标准规定的方法进行测试。 优先选用的方法是采用碳化钨球和3000公斤力的ASTM E10布氏试验法。 作为任选方法,可采用ASTM E18标准中的洛氏方法,采用洛氏C标尺,金刚石圆锥压头和150公斤力。采用下列公式将HRC测量值换算成HB当量值。 HB=0.363(HRC) 2-22.215(HRC)+717.8 2、硬度计在铸造件上的应用 1)布氏硬度计 铸造件的硬度检测首选布氏硬度计,特别是晶粒比较粗大的灰口铁铸件,只能采用布氏硬度计,并且要尽量选用3000kg力,10mm球的试验条件,当铸件尺寸较小时,也可选用洛氏硬度计。 在铸造件硬度检测方面优先选用布氏硬度计的原因在于以下两点: a、铸铁件通常组织不均匀,晶粒较大,含有的碳、硅和其他杂质也比钢材多,在不同的微小区域内或不同的点上硬度的大小会有所不同。而布氏硬度计的压头尺寸较大,压痕面积较大,可以测出某一范围内材料硬度的平均值,因此使用布氏硬度计测试精度较高,硬度值的分散性较小,测得的硬度值更能代表工件硬度的实际状况。所以布氏硬度计在铸造行业被广泛应用。 b、抗拉强度是铸件第一位的力学性能指标,几乎所有的铸造件标准中都有关于抗拉强度的要求。而铸件的布氏硬度值和抗拉强度值具有非常密切的关系,二者的数值可以相互换算。 灰铸铁的抗拉强度可以由以下公式计算: σb=1.82(HB)1.85 二者关系也可以通过查表得到。通过测试布氏硬度值可以快速、方便地得到工件的抗拉强度值。从而提高检测效率、降低试验成本。 2)洛氏硬度计 洛氏硬度计也常用于铸铁的硬度试验。凡是晶粒较细的工件,如果没有足够的面积作布氏硬度试验,也可以进行洛氏硬度试验,对于珠光体可锻铸铁,冷硬铸铁和铸钢件,可以采用HRB或HRC标尺,如果材质不均匀,应测出几个读数,取其平均值。 洛氏硬度计测试快速,方便,压痕小,可以直接测试成品工件,适于对成批生产的成品或半成品工件的逐件检测。 3)肖氏硬度计 在个别情况下,一些型体较大的铸造件,不允许切割试样,也不能另外铸造用于硬度测试的试验块,这时硬度检测会遇到困难。对于这种情况,常用的办法是,在铸件进行精加工之后在光洁的表面上用便携式的肖氏硬度计测试硬度。例如冶金行业广泛应用的轧辊标准中就规定要使用肖氏硬度计测试硬度。 肖氏硬度计由于采用了动态硬度检测原理,影响硬度测试结果的因素较多,测试精度远低于采用静态的压痕硬度测试原理的布氏硬度计和洛氏硬度计。由于这个原因,在轧辊标准中还推荐采用一种硬度对比辊,硬度对比辊起到一个标样的作用,其硬度值是依靠切割试样的办法得到精确测试的。使用肖氏硬度计测试轧辊之后,要在对比辊上核对肖氏硬度计的检测精度。 4)里氏硬度计 目前,在铸造件硬度检测上里氏硬度计被广泛使用。里氏硬度计是对肖氏硬度计的改进。它也是采用动态硬度测试原理,利用计算机技术实现了硬度计的小型化,电子化,使用简单方便,测试结果可方便地换算成布氏硬度值,因而得到广泛欢迎。 但是,同肖氏硬度计一样,里氏硬度计的精度也不高,影响测试精度的因素较多,要求工件表面具有较高的光洁度,并且缺乏权威的硬度换算表,硬度换算也会带来较大误差。因此里氏硬度计的测量结果常常被人们作为参考值在国内使用,里氏硬度计主要用于对工件硬度要求范围较宽的场合。另外,里氏硬度计作为非正规的硬度检测方法,在国际标准化组织中没有得到广泛认可,在国外铸造件的产品标准中也没有被采用。在国际贸易中,里氏硬度计的测量结果不会被多数外商接受。 许多铸造件都是中大型工件、有些重达几吨,无法搬到台式的硬度计上测试。铸件的精确硬度测试主要采用单独铸造的试验棒或铸件上附带的试验块。然而,无论是试验棒还是试验块都无法完全代替工件本身,即使是同一炉铁水,铸造工艺和热处理条件也相同,因为尺寸大小的巨大差异,会造成二者加热速度,特别是冷却速度不同,很难让二者具有完全相同的硬度,由于这个原因许多客户更关心和相信工件本身硬度。这样就要求有一种便携式的精确硬度计来测试铸件硬度。 5)便携式布氏硬度计 早期使用的便携式硬度计是锤击式布氏硬度计。这种仪器简单、方便、价廉,但是精度不高。只能在要求较低时,作为半定量检测方法来使用。 6)便携式大型洛氏硬度计 便携式洛氏硬度计可用于珠光体可锻铸铁、冷硬铸铁及铸钢工件的现场精确硬度检测。其测试误并小于1.5HRC,与台式的洛氏硬度计相同,符合洛氏硬度计的国家标准。测试精度之高,可测试的工件尺寸之大,在国内外都是独一无二的。 九、不锈钢带硬度的检测方法 不锈钢带的厚度大于1.2mm采用洛氏硬度计,测试HRB、HRC硬度。厚度为0.2,1.2mm的不锈钢带采用表面洛氏硬度计测试HRT、HRN硬度。厚度小于0.2mm的不锈钢带,采用表面洛氏硬度计配金刚石砧座,测试HR30Tm硬度。 在不锈钢带的生产过程中,有一个十分重要的工序,这就是退火,精整处理。不锈钢的退火,精整处理通常是在连续退火机组上进行的,不锈钢带以某一速度连续运动,不锈钢带的硬度主要依靠改变运动速度或调节精整压下率来调整。不锈钢带材的硬度是一项十分重要的质量指标,它关系到以不锈钢带为原料的冲压、焊管及其他变形或非变形加工的产品质量和工作效率。如何能在不停机的条件下,在生产现场快速无损地检测不锈钢带的硬度,通过现场调整工艺参数保证最终产品的硬度在规定范围之内。这是不锈钢带生产,以及冷轧钢带生产中一项亟待解决的难题。 十、不锈钢板硬度的检测方法 不锈钢板的厚度大于1.2mm采用洛氏硬度计,测试HRB、HRC硬度。厚度为0.2,1.2mm的不锈钢板采用表面洛氏硬度计测试HRT、HRN硬度。厚度小于0.2mm的不锈钢板,采用表面洛氏硬度计配金刚石砧座,测试HR30Tm硬度。 在美国的金属材料标准中,关于硬度试验,有一个突出的特点,就是优先采用洛氏硬度试验,辅之以布氏硬度试验,很少采用维氏硬度试验,美国方面认为,维氏硬度试验主要应该用于金属研究和薄小零件的测试。中国和日本的标准都是三种硬度试验同时采用,用户可根据材料的厚度和状态以及自身条件选用其中一种来测试不锈钢材料。 日本不锈钢标准中关于拉伸试验和硬度试验方面的规定与中国相应标准表格相同,数值相近,这里能看到中国标准参照采用日本标准的痕迹。 在不锈钢硬度检测方面,洛氏硬度计是一个值得优先采用的仪器,它设备简单,易于操作,无需专业检验员,可以直接读出硬度值,试验效率高,十分适合工厂使用。 关于采用洛氏硬度计进行不锈钢硬度的检测,在不锈钢标准中一般只规定了HRC和HRB两个标尺。对于退火的不锈钢材料,一般都对应于每一个牌号的不锈钢品种规定了硬度值应不大于某一个HRB值,一般在88,96HRB范围内。而对于淬火回火的马氏体不锈钢,一般都对应于每一个牌号的不锈钢品种,规定了硬度值不小于某一个HRC值,一般在32,46HRC范围内。 在不锈钢标准中只规定了采用洛氏硬度计HRB和HRC标尺。其实表面洛氏硬度计也完全可以应用于检测不锈钢。因为它的原理与洛氏硬度计完全相同,只是试验力较小而已。并且其硬度值可以很方便地换算成HRB、HRC或者布氏硬度HB、维氏硬度HV。相应的换算表在本公司的网站中可以找到,这些换算表来源于美国标准ASTM或国际标准ISO。对于薄壁细不锈钢管、薄不锈钢板、薄不锈钢带、细不锈钢丝等,采用表面洛氏硬度计会非常方便。特别是本公司最新研制的便携式表面洛氏硬度计、管材洛氏硬度计,可以对薄至0.05mm的不锈钢板、不锈钢带以及细至,4.8mm的不锈钢管进行快速、准确的硬度检测,使得过去在国内难以解决的问题迎刃而解。 下面分别介绍各种不同形状不锈钢的硬度检测方法。 1、不锈钢板、不锈钢带 不锈钢板包括热轧板和冷轧板。厚度大于1.2mm的不锈钢板或不锈钢带的硬度测试采用洛氏硬度计,测试HRB、HRC硬度。厚度在0.2,1.2mm 的不锈钢板或不锈钢带采用表面洛氏硬度计测试HRT或HRN硬度。厚度小于0.2mm的不锈钢板或不锈钢带,采用表面洛氏硬度计配合金刚石点砧座,测试HR30Tm硬度。对于厚度0.3,13mm的退火不锈钢板、不锈钢带,也可以采用W-B75型韦氏硬度计,这种仪器测试非常快速简便,十分适于对退火不锈钢材料进行快速合格检验。 2、不锈钢管 不锈钢管包括接焊不锈钢管和冷拔不锈钢管。内径大于,30mm,壁厚大于1.2mm的不锈钢管,采用洛氏硬度计,测试HRB、HRC硬度。内径大于,30mm,壁厚小于1.2mm的不锈钢管,采用表面洛氏硬度计,测试HRT或HRN硬度。内径小于,30mm,大于,4.8mm的不锈钢管,采用管材专用洛氏硬度计,测试HR15T硬度。当管材内径大于,26mm时,还可以用洛氏或表面洛氏硬度计测试管材内壁的硬度。对于内径在,6.0mm以上,壁厚在13mm以下的退火不锈钢管材,可以采用 W,B75型韦氏硬度计,它测试非常快速、简便,适于对不锈钢管材做快速无损的合格检验。 3、不锈钢棒 对于直径小于,50的不锈钢棒可以采用洛氏硬度计,测试HRB或HRC硬度。 4、不锈钢丝 对于直径大于2.0mm的不锈钢丝,可以采用表面洛氏硬度计测试HRT或HRN硬度。 二(金属材料硬度对照表 布氏硬度(HB)、洛氏硬度(HRA,HRB,HRC)、维氏硬度(HV),其值表示材料表面抵抗坚硬物体压入的能力。而里氏硬度(HL)、肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小。因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。 1、钢材的硬度 :金属硬度(Hardness)的代号为H。按硬度试验方法的不同, ?常规表示有布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)硬度等,其中以HB及HRC较为常用。 ?HB应用范围较广,HRC适用于表面高硬度材料,如热处理硬度等。两者区别在于硬度计之测头不同,布氏硬度计之测头为钢球,而洛氏硬度计之测头为金刚石。 ?HV-适用于显微镜分析。维氏硬度(HV) 以120kg以内的载荷和顶角为136?的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)。 ?HL手提式硬度计,测量方便,利用冲击球头冲击硬度表面后,产生弹跳;利用冲头在距试样表面1mm处的回弹速度与冲击速度的比值计算硬度,公式:里氏硬度HL=1000?VB(回弹速度)/ VA(冲击速度)。 便携式里氏硬度计用里氏(HL)测量后可以转化为:布氏(HB)、洛氏(HRC)、维氏(HV)、肖氏(HS)硬度。或用里氏原理直接用布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)、肖氏(HS)测量硬度值。 2、HB - 布氏硬度; 布氏硬度(HB)一般用于材料较软的时候,如有色金属、热处理之前或退火后的钢铁。洛氏硬度(HRC)一般用于硬度较高的材料,如热处理后的硬度等等。 布式硬度(HB)是以一定大小的试验载荷,将一定直径的淬硬钢球或硬质合金球压入被测金属表面,保持规定时间,然后卸荷,测量被测表面压痕直径。布式硬度值是载荷除以压痕球形表面积所得的商。一般为:以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 3、洛式硬度是以压痕塑性变形深度来确定硬度值指标。以0.002毫米作为一个硬度单位。当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120?的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 另外: 1.HRC含意是洛式 硬度C标尺, 2.HRC和HB在生产中的应用都很广泛 3.HRC适用范围HRC 20,,67,相当于HB225,,650 若硬度高于此范围则用洛式硬度A标尺HRA。 若硬度低于此范围则用洛式硬度B标尺HRB。 布式硬度上限值HB650,不能高于此值。 4.洛氏硬度计C标尺之压头为顶角120度的金刚石圆锥,试验载荷为一确定值,中国标准是150公斤力。 布氏硬度计之压头为淬硬钢球(HBS)或硬质合金球(HBW),试验载荷随球直径不同而不同,从3000到31.25公斤力。 5.洛式硬度压痕很小,测量值有局部性,须测数点求平均值,适用成品和薄片,归于无损检测一类。 布式硬度压痕较大,测量值准,不适用成品和薄片,一般不归于无损检测一类。 6.洛式硬度的硬度值是一无名数,没有单位。(因此习惯称洛式硬度为多少度是不正确的。) 布式硬度的硬度值有单位,且和抗拉强度有一定的近似关系。 7.洛式硬度直接在表盘上显示、也可以数字显示,操作方便,快捷直观,适用于大量生产中。 布式硬度需要用显微镜测量压痕直径,然后查表或计算,操作较繁琐。 8.在一定条件下,HB与HRC可以查表互换。其心算公式可大概记为:1HRC?1/10HB。 硬度试验是机械性能试验中最简单易行的一种试验方法。为了能用硬度试验代替某些机械性能试验,生产上需要一个比较准确的硬度和强度的换算关系。 实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。 金属材料硬度对照表 硬度试验是机械性能试验中最简单易行的一种试验方法。为了能用硬度试 验代替某些机械性能试验,生产上需要一个比较准确的硬度和强度的换算关 系。 实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的 相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材 料的强度越高,塑性变形抗力越高,硬度值也就越高。 下面是本站根据由实验得到的经验公式制作的快速计算器,有一定的实用 价值,但在要求数据比较精确时,仍需要通过试验测得。 抗拉强度维氏硬度 布氏硬度 洛氏硬度 N/mm2 Rm HV HB HRC 250 80 76.0 270 85 80.7 285 90 85.2 305 95 90.2 320 100 95.0 335 105 99.8 350 110 105 370 115 109 380 120 114 400 125 119 415 130 124 430 135 128 450 140 133 465 145 138 480 150 143 490 155 147 510 160 152 530 165 156 545 170 162 560 175 166 575 180 171 595 185 176 610 190 181 625 195 185 抗拉强度维氏硬度 布氏硬度 洛氏硬度 N/mm2 640 200 190 660 205 195 675 210 199 690 215 204 705 220 209 720 225 214 740 230 219 755 235 223 770 240 228 20.3 785 245 233 21.3 800 250 238 22.2 820 255 242 23.1 835 260 247 24. 850 265 252 24.8 865 270 257 25.6 880 275 261 26.4 900 280 266 27.1 915 285 271 27.8 930 290 276 28.5 950 295 280 29.2 965 300 285 29.8 995 310 295 31.0 1030 320 304 32.2 1060 330 314 33.3 1095 340 323 34.4 1125 350 333 35.5 1115 360 342 36.6 1190 370 352 37.7 抗拉强度维氏硬度 布氏硬度 洛氏硬度 N/mm2 1220 380 361 38.8 1255 390 371 39.8 1290 400 380 40.8 1320 410 390 41.8 1350 420 399 42.7 1385 430 409 43.6 1420 440 418 44.5 1455 450 428 45.3 1485 460 437 46.1 1520 470 447 46.9 15557 480 (456) 47. 1595 490 (466) 48.4 1630 500 (475) 49.1 1665 510 (485) 49.8 1700 520 (494) 50.5 1740 530 (504) 51.1 1775 540 (513) 51.7 1810 550 (523) 52.3 1845 560 (532) 53.0 1880 570 (542) 53.6 1920 580 (551) 54.1 1955 590 (561) 54.7 1995 600 (570) 55.2 2030 610 (580) 55.7 2070 620 (589) 56.3 2105 630 (599) 56.8 2145 640 (608) 57.3 2180 650 (618) 57.8 抗拉强度维氏硬度 布氏硬度 洛氏硬度 N/mm2 660 58.3 670 58.8 680 59.2 690 59.7 700 60.1 720 61.0 740 61.8 760 62.5 780 63.3 800 64.0 820 64.7 840 65.3 860 65.9 880 66.4 900 67.0 920 67.5 940 维氏硬度 布氏硬度 洛氏硬度 HV HB HRC 80 76 - 85 80.7 - 90 85.2 - 95 90.2 - 100 95 - 105 99.8 - 110 105 - 115 109 - 120 114 - 125 119 - 130 124 - 135 128 - 140 133 - 145 138 - 150 143 - 155 147 - 160 152 - 165 156 - 170 162 - 175 166 - 180 171 - 185 176 - 190 181 - 195 185 - 200 190 - 205 195 - 210 199 - 215 204 - 220 209 - 225 214 - 230 219 - 235 223 - 240 228 20.3 245 233 21.3 250 238 22.2 255 242 23.1 260 247 24 265 252 24.8 270 257 25.6 275 261 26.4 280 266 27.1 285 271 27.8 290 276 28.5 295 280 29.2 300 285 29.8 310 295 31 320 304 32.2 330 314 33.3 340 323 34.4 350 333 35.5 360 342 36.6 370 352 37.7 380 361 38.8 390 371 39.8 400 380 40.8 410 390 41.8 420 399 42.7 430 409 43.6 440 418 44.5 450 428 45.3 460 437 46.1 470 447 46.9 480 -456 47.7 490 -466 48.4 500 -475 49.1 510 -485 49.8 520 -494 50.5 530 -504 51.1 540 -513 51.7 550 -523 52.3 560 -532 53 570 -542 53.6 580 -551 54.1 590 -561 54.7 600 -570 55.2 610 -580 55.7 620 -589 56.3 630 -599 56.8 640 -608 57.3 650 -618 57.8 660 58.3 670 58.8 680 59.2 690 59.7 700 60.1 720 61 740 61.8 760 62.5 780 63.3 800 64 820 64.7 840 65.3 860 65.9 880 66.4 900 67 920 67.5 940 68 三(提高硬度的简单方法 氮化处理技术 气体渗氮在1923年左右,由德国人Fry首度研究发展并加以工业化。由於经本法处理的製品具有优异的耐磨性、耐疲劳性、耐蚀性及耐高温,其应用范围逐渐扩大。例如钻头、螺丝攻、挤压模、压铸模、鍜压机用鍜造模、螺桿、连桿、曲轴、吸气及排气活门及齿轮凸轮等均有使用。 一、氮化用钢简介 传统的合金钢料中之铝、铬、钒及鉬元素对渗氮甚有帮助。这些元素在渗氮温度中,与初生态的氮原子接触时,就生成安定的氮化物。尤其是鉬元素,不仅作為生成氮化物元素,亦作為降低在渗氮温度时所发生的脆性。其他合金钢中的元素,如镍、铜、硅、锰等,对渗氮特性并无多大的帮助。一般而言,如果钢料中含有一种或多种的氮化物生成元素,氮化后的效果比较良好。其中铝是最强的氮化物元素,含有0.85,1.5,铝的渗氮结果最佳。在含铬的铬钢而言,如果有足够的含量,亦可得到很好的效果。但没有含合金的碳钢,因其生成的渗氮层很脆,容易剥落,不适合作為渗氮钢。 一般常用的渗氮钢有六种如下: (1)含铝元素的低合金钢(标準渗氮钢) (2)含铬元素的中碳低合金钢 SAE 4100,4300,5100,6100,8600,8700,9800系。 (3)热作模具钢(含约5,之铬) SAE H11 (SKD – 61)H12,H13 (4)肥粒铁及麻田散铁系不锈钢 SAE 400系 (5)奥斯田铁系不锈钢 SAE 300系 (6)析出硬化型不锈钢 17 - 4PH,17 – 7PH,A – 286等 含铝的标準渗氮钢,在氮化后虽可得到很高的硬度及高耐磨的表层,但其硬化层亦很脆。相反的,含铬的低合金钢硬度较低,但硬化层即比较有韧性,其表面亦有相当的耐磨性及耐束心性。因此选用材料时,宜注意材料之特徵,充分利用其优点,俾符合零件之功能。至於工具钢如H11(SKD61)D2(SKD – 11),即有高表面硬度及高心部强度。 二、氮化处理技术: 调质后的零件,在渗氮处理前须澈底清洗乾净,兹将包括清洗的渗氮工作程序分述如下: (1)渗氮前的零件表面清洗 大部分零件,可以使用气体去油法去油后立刻渗氮。但在渗氮前之最后加工方法若採用拋光、研磨、磨光等,即可能產生阻碍渗氮的表面层,致使渗氮后,氮化层不均匀或发生弯曲等缺陷。此时宜採用下列二种方法之一去除表面层。第一种方法在渗氮前首先以气体去油。然后使用氧化铝粉将表面作abrassive cleaning 。第二种方法即将表面加以磷酸皮膜处理(phosphate coating)。 (2)渗氮炉的排除空气 将被处理零件置於渗氮炉中,并将炉盖密封后即可加热,但加热至150?以前须作炉内排除空气工作。 排除炉内的主要功用是防止氨气分解时与空气接触而发生爆炸性气体,及防止被处理物及支架的表面氧化。其所使用的气体即有氨气及氮气二种。 排除炉内空气的要领如下: (1)被处理零件装妥后将炉盖封好,开始通无水氨气,其流量尽量可能多。 (2)将加热炉之自动温度控制设定在150?并开始加热(注意炉温不能高於150?)。 (3)炉中之空气排除至10,以下,或排出之气体含90,以上之NH3时,再将炉温升高至渗氮温度。 (3)氨的分解率 渗氮是铺及其他合金元素与初生态的氮接触而进行,但初生态氮的產生,即因氨气与加热中的钢料接触时钢料本身成為触媒而促进氨之分解。 虽然在各种分解率的氨气下,皆可渗氮,但一般皆採用15,30,的分解率,并按渗氮所需厚度至少保持4,10小时,处理温度即保持在520?左右。 (4)冷却 大部份的工业用渗氮炉皆具有热交换几,以期在渗氮工作完成后加以急速冷却加热炉及被处理零件。即渗氮完成后,将加热电源关闭,使炉温降低约50?,然后将氨的流量增 加一倍后开始啟开热交换机。此时须注意观察接在排气管上玻璃瓶中,是否有气泡溢出,以确认炉内之正压。等候导入炉中的氨气安定后,即可减少氨的流量至保持炉中正压為止。当炉温下降至150?以下时,即使用前面所述之排除炉内气体法,导入空气或氮气后方可啟开炉盖。 三、气体氮化技术: 气体氮化系於1923年由德国AF ry 所发表,将工件置於炉内,利NH3气直接输进500,550?的氮化炉内,保持20,100小时,使NH3气分解為原子状态的(N)气与(H)气而进行渗氮处理,在使钢的表面產生耐磨、耐腐蚀之化合物层為主要目的,其厚度约為0.02,0.02m,m,其性质极硬Hv 1000,1200,又极脆,NH3之分解率视流量的大小与温度的高低而有所改变,流量愈大则分解度愈低,流量愈小则分解率愈高,温度愈高分解率愈高,温度愈低分解率亦愈低,NH3气在570?时经热分解如下: NH3 ?〔N〕Fe + 2/3 H2 经分解出来的N,随而扩散进入钢的表面形成。相的Fe2 - 3N气体渗氮,一般缺点為硬化层薄而氮化处理时间长。 气体氮化因分解NH3进行渗氮效率低,故一般均固定选用适用於氮化之钢种,如含有Al,Cr,Mo等氮化元素,否则氮化几无法进行,一般使用有JIS、SACM1新JIS、SACM645及SKD61以强韧化处理又称调质因Al,Cr,Mo等皆為提高变态点温度之元素,故淬火温度高,回火温度亦较普通之构造用合金钢高,此乃在氮化温度长时间加热之间,发生回火脆性,故预先施以调质强韧化处理。NH3气体氮化,因為时间长表面粗糙,硬而较脆不易研磨,而且时间长不经济,用於塑胶射出形机的送料管及螺旋桿的氮化。 四、液体氮化技术: 液体软氮化主要不同是在氮化层裡之有Fe3Nε相,Fe4Nr相存在而不含Fe2Nξ相氮化物,ξ相化合物硬脆在氮化处理上是不良於韧性的氮化物,液体软氮化的方法是将被处理工件,先除锈,脱脂,预热后再置於氮化坩堝内,坩堝内是以TF – 1為主盐剂,被加温到560,600?处理数分至数小时,依工件所受外力负荷大小,而决定氮化层深度,在处理中,必须在坩堝底部通入一支空气管以一定量之空气氮化盐剂分解為CN或CNO,渗透扩散至工作表面,使工件表面最外层化合物8,9,wt的N及少量的C及扩散层,氮原子扩散入α – Fe基地中使钢件更具耐疲劳性,氮化期间由於CNO之分解消耗,所以不断要在6,8小时处理中化验盐剂成份,以便调整空气量或加入新的盐剂。 液体软氮化处理用的材料為铁金属,氮化后的表面硬度以含有 Al,Cr,Mo,Ti元素者硬度较高,而其含金量愈多而氮化深度愈浅,如炭素钢Hv 350,650,不锈钢Hv 1000,1200,氮化钢Hv 800,1100。 液体软氮化适用於耐磨及耐疲劳等汽车零件,缝衣机、照相机等如气缸套处理,气门阀处理、活塞筒处理及不易变形的模具处。採用液体软氮化的国家,西欧各国、美国、 苏俄、日本、台湾。 五、离子氮化技术: 此一方法為将一工件放置於氮化炉内,预先将炉内抽成真空达10-2,10-3 Torr(?Hg)后导入N2气体或N2 + H2之混合气体,调整炉内达1,10 Torr,将炉体接上阳极,工件接上阴极,两极间通以数百伏之直流电压,此时炉内之N2气体则发生光辉放电成正离子,向工作表面移动,在瞬间阴极电压急剧下降,使正离子以高速衝向阴极表面,将动能转变為气能,使得工件去面温度得以上昇,因氮离子的衝击后将工件表面打出Fe.C.O.等元素飞溅出来与氮离子结合成FeN,由此氮化铁逐渐被吸附在工件上而產生氮化作用,离子氮化在基本上是採用氮气,但若添加碳化氢系气体则可作离子软氮化处理,但一般统称离子氮化处理,工件表面氮气浓度可改变炉内充填的混合气体(N2 + H2)的分压比调节得之,纯离子氮化时,在工作表面得单相的r′(Fe4N)组织含N量在5.7,6.1,wt,厚层在10μn以内,此化合物层强韧而非多孔质层,不易脱落,由於氮化铁不断的被工件吸附并扩散至内部,由表面至内部的组织即為FeN ? Fe2N ? Fe3N? Fe4N 顺序变化,单相ε(Fe3N)含N量在5.7,11.0,wt,单相ξ(Fe2N)含N量在11.0,11.35,wt,离子氮化首先生成r相再添加碳化氢气系时使其变成ε相之化合物层与扩散层,由於扩散层的增加对疲劳强度的增加有很多助。而蚀性以ε相最佳。 离子氮化处理的度可从350?开始,由於考虑到材质及其相关机械性质的选用处理时间可由数分鐘以致於长时间的处理,本法与过去利用热分解方化学反应而氮化的处理法不同,本法系利用高离子能之故,过去认為难处理的不锈钢、鈦、鈷等材料也能简单的施以优秀的表面硬化处理。 渗碳表面硬化处理法 渗碳硬化乃表面硬化法之一种,属于化学表面硬化法。渗碳者先于钢之表面产生初生态之碳,而后使之渗入钢之表面层,逐渐扩散入内部。初生态之碳乃由CO或CH4等气体分解而得。CO之来源或由含有CO之气体得之,或由固体渗碳剂之反应而产生于渗碳容器内,或者由含有氰化物之盐浴得之。初生态之碳由钢之表面扩散入内部时,钢之温度须增高至沃斯田铁化温层范围内,使初生态之碳埂于扩散,盖沃斯田铁可溶解较多之〞C〞而肥粒铁则溶解力极小,故渗碳温度必须在Ac3要以上之温度。以便渗碳作用得以进行。再配合各种热处理法,使得钢之去面生成高碳硬化心部低碳之低硬度层。使处理供具有表面硬而耐磨,心部韧而耐冲击之性质。 一、渗碳处理之种类与特点: (一)渗碳法之种类渗碳法按使用之渗碳剂而可分为如下三大类: (1)固体渗碳法:以木炭为主剂的渗碳法。(2)液体渗碳法:以氰化钠(NaCN)为主剂之渗碳法。 (3)气体渗碳法:以天然气、丙烷、丁烷等气体为主剂的渗碳法。 (二)渗碳法之比较 (1)固体渗碳法 长处: (a)设备费便宜,操作简单,不需高度技术。(b)加热用热源,可用电气、瓦斯、燃料油。 (c)大小工件均适,尤其对大形或需原渗碳层者有利。(d)适合多种少量生产。 短处: (a)渗碳深度及表面碳浓度不易正确调节,有过剩渗碳的倾向。处理件变形大。(b)渗碳终了时,不易直接淬火,需再加热。 (c)作业环境不良,作业人员多。 (2)液体渗碳法 长处: (a)适中小量生产。设备费便宜。不需高度技术。 (b)容易均热、急速加热,可直接淬火。 (c)适小件、薄渗碳层处理件。 (d)渗碳均匀,表面光辉状态。 短处: (a)不适于大形处理件的深渗碳。(b)盐浴组成易变动,管理上麻烦。(c)有毒、排气或公害问题应有对策。 (d)处理后,表面附着盐类不易洗净,易生锈。(e)难以防止渗碳。有喷溅危险。 (3)气体渗碳法 长处: (a)适于大量生产。(b)表面碳浓度可以调节。(c)瓦斯流量、温度、时间容易自动化,容易管理。 短处: (a)设备费昂贵。(b)处理量少时成本高。(c)需要专门作业知识。 二、固体渗碳法: 将表面渗碳钢作成的工件,连同渗碳剂装入渗碳箱而密闭,装入加热炉,加热成沃斯田铁状态,使碳从钢表面侵入而扩散,处理一定时间后,连同渗碳箱冷却,只取出渗碳处理工件,进行一次淬火、二次淬火、施行回火。 此固体渗碳在渗碳法中历史最老,不适于连续处理大量工件,作业环境不良,已有衰退倾向,不过炉及其它设备也较简单,多种少量的处理也较方便,不至于完全绝迹。固体渗碳的渗碳机构以气体渗碳为基础,亦即箱内的固体渗碳剂与箱内空气中的氧反应,成为二氧化碳(CO2),CO2再与碳反应,生成一氧化碳(CO)。 C + O2 = CO2 C + CO2 = 2 CO CO在钢表面分解,析出碳〔C〕。 2 CO =〔C〕+ CO2 〔C〕异于普通的碳,此种在钢表面分解的原子状碳(atomic Carbon)即称为活性碳或初生态碳(nascent Carbon)的活性强的碳,本讲义表成〔C〕;另一方面,钢材表面副生的CO2再在固体渗碳剂表面依(2)式生成CO,依(3)式分解而析出〔C〕,此反应连续反复进行,碳从钢材表面侵入扩散,而渗碳。 前述反应与铁(Fe)组合成渗碳反应。 Fe + 2 CO = { Fe - C }+ CO2 渗碳用之碳素,如以渗碳性之强度顺序列之,可排如木炭、焦炭、石墨、骨炭。通常使用木炭为主剂,再添加若干渗碳促进剂。一般以碱金属的碳酸盐为促进剂,碳酸盐中的碳酸锂(LiCO3)、碳酸锶 (Sr CO3)、碳酸钾(K CO3)、的促进能大,但昂贵,工业上采用碳酸钡(Ba CO3)、碳酸钠(Na2 CO3)为多。虽促进能不如,但有耐久性,Na2 CO3快劣化,所以通常木炭加Ba CO320,30,,或再加10,以下的Na2 CO3为渗碳剂。 固体渗碳处理程序下: 先将处理工件去锈,脱脂以适当的间隔(20,25?以上)排列于渗碳箱中,周围填围渗碳剂,加盖以粘土封密装入如图五之电气炉,坑式炉也可用。加热保持一定时间。 在炉中经过所定后,在炉内徐冷或者由炉中拖出空冷,后进行热处理。渗碳钢的表面为高碳钢,心部为低碳钢,有必要施行适用各部份的硬化处理,一般籍一次淬火将心部组织微细化,其次藉二次淬火将渗碳层硬化,最后藉回火使硬化层的组织安定化。 但依钢材的种类及使用目的而有适当的热处理,镍铬钢、镍铬钼钢等的结晶粒粗大化少,未必要一次淬火,渗碳后实施球状化退火者已达一次淬火的目的,亦无此必要;一次淬火的淬火温度高,变形大,容易脆裂,要尽量避免;渗碳层浅的小工件通常省略一次淬火。二次淬火后,施行回火,消除应力,赋予韧性、分解残留沃斯田铁,防止时效变形,要求高硬度者在150?以下长时回火,忌讳时效变形者,可在稍高的180,200?回火。 三、液体渗碳法: 液体渗碳法为将工作件浸渍于盐浴中行渗碳之方法。因盐浴之淬火性良好,因此可减少工作件之变形,并可使处理件加热均匀。升温迅速,操作简便,便于多种少量的生产。尤其在同一炉,可同时处理不同渗碳深度的处理件。 液体渗碳是以氰化钠(NaCN)为主成分,所以同时能渗碳亦能氰化,所以亦称为渗碳氮化(Carbonitriding),有时亦称为氰化法(Cyaniding)。处理温度约以700?界,此温度以下以氮化为主,渗碳为辅,700?以上则渗碳为主,氮化为辅,氮化之影响极低。一般工业上使用时,系以渗碳作用为主。 液体渗碳法虽硬化层薄,但渗碳时间短,故内部应力较少,同时因C、N同时惨入,所以耐磨性佳。 液体渗碳反应是利用氰化物(NaCN)分解,先在浴面与空气中的氧、水分、二氧化碳反应变成氰酸盐。 2 NaCN + O2 = 2 NaCNO NaCN + CO2 = NaCNO + CO 氰酸盐在高温分解生成CO或N。 4 NaCNO = 2 NaCNO + Na2 CO3 + CO +2 N 在较低温时反应如下: 5 NaCNO = 3 NaCNO + Na2 CO3 + CO2 + 2N 生成的CO及N与Fe反应而进行渗碳及氮化。 Fe + 2 CO = { Fe - C }+ CO2 Fe + N = { Fe - C } 一般用的渗碳剂是在中添加碳酸钠(Na2 CO3)、氯化钡(Ba Cl2)、氯化钠(Na Cl2)等,比起NaCN单盐,表面碳浓度低,扩散层增加,900?时的碳浓度最高,这是由于钡盐的促进作用大,而且熔点变高,浴的粘性也增加,影响渗碳作用。 渗碳盐浴的容器通常使用软铁、镍铬钢、耐热钢,不过,氧化侵蚀很激烈,施行渗铝防锈法可延长寿命;容器形状宜是内容积大、表面积小、接触空气的面少,蒸发挥散量也少,但是容器的上部与下部渗碳力不同,所以要注意盐浴搅拌。 与渗碳处理的零件安装于适当的夹具,预热到200,500?后浸入盐中,尽量防止盐浴温度降低及热变形。浴底堆积很多氧化物,处理品接触它时会变形,所以须预先调节夹具,使处理品与浴底之间有充分的余裕。 渗碳处理技术 渗碳硬化乃表面硬化法之一种,属於化学表面硬化法。渗碳者先於钢之表面產生初生态之碳,而后使之渗入钢之表面层,逐渐扩散入内部。初生态之碳乃由CO或CH4等气体分解而得。CO之来源或由含有CO之气体得之,或由固体渗碳剂之反应而產生於渗碳容器内,或者由含有氰化物之盐浴得之。初生态之碳由钢之表面扩散入内部时,钢之温度须增高至沃斯田铁化温层范围内,使初生态之碳埂於扩散,盖沃斯田铁可溶解较多之〞C〞而肥粒铁则溶解力极小,故渗碳温度必须在Ac3要以上之温度。以便渗碳作用得以进行。再配合各种热处理法,使得钢之去面生成高碳硬化心部低碳之低硬度层。使处理供具有表面硬而耐磨,心部韧而耐衝击之性质。 一、渗碳处理之种类与特点: (一)渗碳法之种类 渗碳法按使用之渗碳剂而可分為如下三大类: (1) 固体渗碳法:以木炭為主剂的渗碳法。 (2) 液体渗碳法:以氰化钠(NaCN)為主剂之渗碳法。 (3) 气体渗碳法:以天然气、丙烷、丁烷等气体為主剂的渗碳法。 (二)渗碳法之比较 (1)固体渗碳法 长处: (a)设备费便宜,操作简单,不需高度技术。 (b)加热用热源,可用电气、瓦斯、燃料油。 (c)大小工件均适,尤其对大形或需原渗碳层者有利。 (d)适合多种少量生產。 短处: (a)渗碳深度及表面碳浓度不易正确调节,有过剩渗碳的倾向。处理件变形大。 (b)渗碳终了时,不易直接淬火,需再加热。 (c)作业环境不良,作业人员多。 (2)液体渗碳法 长处: (a)适中小量生產。设备费便宜。不需高度技术。 (b)容易均热、急速加热,可直接淬火。 (c)适小件、薄渗碳层处理件。 (d)渗碳均匀,表面光辉状态。 短处: (a)不适於大形处理件的深渗碳。 (b)盐浴组成易变动,管理上麻烦。 (c)有毒、排气或公害问题应有对策。 (d)处理后,表面附著盐类不易洗净,易生锈。 (e)难以防止渗碳。有喷溅危险。 )气体渗碳法 (3 长处: (a)适於大量生產。 (b)表面碳浓度可以调节。 (c)瓦斯流量、温度、时间容易自动化,容易管理。 短处: (a)设备费昂贵。 (b)处理量少时成本高。 (c)需要专门作业知识。 二、固体渗碳法: 将表面渗碳钢作成的工件,连同渗碳剂装入渗碳箱而密闭,装入加热炉,加热成沃斯田铁状态,使碳从钢表面侵入而扩散,处理一定时间后,连同渗碳箱冷却,只取出渗碳处理工件,进行一次淬火、二次淬火、施行回火。 此固体渗碳在渗碳法中歷史最老,不适於连续处理大量工件,作业环境不良,已有衰退倾向,不过炉及其他设备也较简单,多种少量的处理也较方便,不至於完全绝跡。 固体渗碳的渗碳机构以气体渗碳為基础,亦即箱内的固体渗碳剂与箱内空气中的氧反应,成為二氧化碳(CO2),CO2再与碳反应,生成一氧化碳(CO)。 C + O2 = CO2 (1) C + CO2 = 2 CO (2) CO在钢表面分解,析出碳〔C〕。 2 CO =〔C〕+ CO2 (3) 〔C〕异於普通的碳,此种在钢表面分解的原子状碳(atomic Carbon)即称為活性碳或初生态碳(nascent Carbon)的活性强的碳,本讲义表成〔C〕;另一方面,钢材表面副生的CO2再在固体渗碳剂表面依(2)式生成CO,依(3)式分解而析出〔C〕,此反应连续反覆进行,碳从钢材表面侵入扩散,而渗碳。 前述反应与铁(Fe)组合成渗碳反应。 Fe + 2 CO = { Fe - C }+ CO2 (4) 渗碳用之碳素,如以渗碳性之强度顺序列之,可排如木炭、焦炭、石墨、骨炭。通常使用木炭為主剂,再添加若干渗碳促进剂。一般以硷金属的碳酸盐為促进剂,碳酸盐中的碳酸鋰(LiCO3)、碳酸鍶(Sr CO3)、碳酸钾(K CO3)、的促进能大,但昂贵,工业上採用碳酸钡(Ba CO3)、碳酸钠(Na2 CO3)為多。虽促进能不如,但有耐久性,Na2 CO3快劣化,所以通常木炭加Ba CO320,30,,或再加10,以下的Na2 CO3為渗碳剂。 固体渗碳处理程序下: 先将处理工件去锈,脱脂以适当的间隔(20,25?以上)排列於渗碳箱中,周围填围渗碳剂,加盖以粘土封密装入如图五之电气炉,坑式炉也可用。加热保持一定时间。 在炉中经过所定后,在炉内徐冷或者由炉中拖出空冷,后进行热处理。 渗碳钢的表面為高碳钢,心部為低碳钢,有必要施行适用各部份的硬化处理,一般籍一次淬火将心部组织微细化,其次藉二次淬火将渗碳层硬化,最后藉回火使硬化层的组织安定化。 但依钢材的种类及使用目的而有适当的热处理,镍铬钢、镍铬鉬钢等的结晶粒粗大化少,未必要一次淬火,渗碳后实施球状化退火者已达一次淬火的目的,亦无此必要;一次淬火的淬火温度高,变形大,容易脆裂,要尽量避免;渗碳层浅的小工件通常省略一次淬火。 二次淬火后,施行回火,消除应力,赋予韧性、分解残留沃斯田铁,防止时效变形,要求高硬度者在150?以下长时回火,忌讳时效变形者,可在稍高的180,200?回火。 三、液体渗碳法: 液体渗碳法為将工作件浸渍於盐浴中行渗碳之方法。因盐浴之淬火性良好,因此可减少工作件之变形,并可使处理件加热均匀。升温迅速,操作简便,便於多种少量的生產。尤其在同一炉,可同时处理不同渗碳深度的处理件。 液体渗碳是以氰化钠(NaCN)為主成分,所以同时能渗碳亦能氰化,所以亦称為渗碳氮化(Carbonitriding),有时亦称為氰化法(Cyaniding)。处理温度约以700?界,此温度以下以氮化為主,渗碳為辅,700?以上则渗碳為主,氮化為辅,氮化之影响极低。一般工业上使用时,係以渗碳作用為主。 液体渗碳法虽硬化层薄,但渗碳时间短,故内部应力较少,同时因C、N同时惨入,所以耐磨性佳。 液体渗碳反应是利用氰化物(NaCN)分解,先在浴面与空气中的氧、水分、二氧化碳反应变成氰酸盐。 2 NaCN + O2 = 2 NaCNO (1) NaCN + CO2 = NaCNO + CO (2) 氰酸盐在高温分解生成CO或N。 4 NaCNO = 2 NaCNO + Na2 CO3 + CO +2 N (3) 在较低温时反应如下: 5 NaCNO = 3 NaCNO + Na2 CO3 + CO2 + 2N (4) 生成的CO及N与Fe反应而进行渗碳及氮化。 Fe + 2 CO = { Fe - C }+ CO2 (5) Fe + N = { Fe - C } (6) 一般用的渗碳剂是在中添加碳酸钠(Na2 CO3)、氯化钡(Ba Cl2)、氯化钠(Na Cl2)等,比起NaCN单盐,表面碳浓度低,扩散层增加,900?时的碳浓度最高,这是由於钡盐的促进作用大,而且熔点变高,浴的粘性也增加,影响渗碳作用。 渗碳盐浴的容器通常使用软铁、镍铬钢、耐热钢,不过,氧化侵蚀很激烈,施行渗铝防锈法可延长寿命;容器形状宜是内容积大、表面积小、接触空气的面少,蒸发挥散量也少,但是容器的上部与下部渗碳力不同,所以要注意盐浴搅拌。 与渗碳处理的零件安装於适当的夹具,预热到200,500?后浸入盐中,尽量防止盐浴温度降低及热变形。 浴底堆积很多氧化物,处理品接触它时会变形,所以须预先调节夹具,使处理品与浴底之间有充分的餘裕。 如前所述,NaCN会随熔融时间而劣化,渗碳能降低,所以作业中要定期分析CN,CN不够时,添加指定的补给剂,保持渗碳能在前面所述的钢箔试验可简易试出渗碳能,因NaCN有吸湿性,若将含有水分的补给剂投入加热浴中,则会溅散,须利用炉的隔热 壁乾燥。 渗碳终了后可直接淬火,不过渗碳温度高时,可先浸入保持淬火温度的中性盐浴中,然后淬火。表6-1為各种淬火方法之比较。 回火係去除淬火时发生之残留应力。且将之部分之残留沃斯田铁变為麻田散铁。温度过高则硬度会降低,一般以150,200?為最适宜。 表6-1 液体渗碳后之淬火法 旧 方 法 新 方 法 A 法 液体渗碳后冷却至室温,然后再加热至800?淬火於水中。 液体渗碳后淬火於500,600?之浴中,然后速即加热至800?淬火於水中。 B 法 (高合金钢) 液体渗碳后冷却至室温,在650?作中间退火,再加热至800?后水冷。 同 上 C 法 二次淬火法Case,Corc之调质硬化。 液体渗碳后淬火於500,600?之热浴中再加热至900?,然后再次淬火於500,600?之热浴中,最后再次加热至800?后水淬火之。 四、气体渗碳法: 气体渗碳,由於适合大量生產化,作业可以简化,品质管制容易算特点,目前最普遍被採用。此法有变成气体(或称发生气体)及滴注式之两种。 变成气体方式之方法是将碳化气体(C4H10,C3H8,CH4等)和空气相混合后送入变成炉(Gas generator),在炉内1000,1100?之高温下,使碳化氢和空气反应而生成所谓变成气体(Converted Gas),由变成炉所生成的气体有各种称呼,本文方便上叫做变成气体。变成气体以CO、H2、N2,為主成份,内含微量CO2、H2O、CH4,然后将此气体送进无外气洩入的加热炉内施行渗碳。渗碳时,因所需的渗碳浓度不同,在变成气体内添加适当量的C4H10、C3H8、CH4等以便调渗碳浓度。 气体渗碳有关的反应如下所示: 2CO =〔C〕+ CO2 (1) CO + H2 =〔C〕+ H2O (2) CH4 =〔C〕+ 2 H2 (3) C2H6 =〔C〕+ CH4 + H2 (4) C3H8 =〔C〕+ C2H6 + H2 (5) 此处析出的碳為活性碳〔C〕,此碳渗入钢中扩散而渗碳。 高级碳化氢以式(4)、(5)的反应依序分解,成為低级碳化氢,最后成為CH4,进行式(3)的分解,式(4)、(5)的分解速度比式(3)快。 这些反应还会引起下示的副反应 H2 + CO2 = CO + H2O (6) CH4 + CO2 = 2CO + 2 H2 (7) CH4 + H2O = CO + 3 H2 (8) 以上為气体渗碳的基本反应。 进行气体渗碳时,需要前述的气体变成炉、处理炉及其他附属设备,都属於气密式炉体,炉内有风扇使渗碳及温度均匀化。 在变成炉变成的渗碳性气体,以对应於处理目的的气体组成或露点的气体导入处理炉。 此气体参与钢的渗碳,会副生CO2,减低渗碳性,為了从钢材表面除去CO2,有必要以某速度以上使渗碳性气体流动,调节气体流量,使炉内气体每1小时置换5,10次,又為了防止炉外的氧化性气体混入,炉内压力要保持稍高於1气体。 取出、装入处理品之际,要实施火陷帘,防止空气混入,免得爆炸。 渗碳终了后进行淬火,不过渗碳温度当作淬火温度时太高的话,可降低气体的碳位,降低炉温,成為淬火适温后淬冷。 淬火用油若不适当,则即使在炉内為光辉状态,淬入油中时也会氧化著色,达不到光辉处理的目的;淬火油阻害光辉性的因子有油的氧化、残留碳、硫量等油的性状或直接与组成有关者,或微量的水分及空气混入的活,也会降低光辉度。 气体渗碳后降低温度至800?以后直接淬火於水或油中,此时若使用麻淬火之处理则可减少淬火变形,又气体渗碳后之组织,其表皮含碳浓度与芯部含碳量之间有显著之差异,所以渗碳后须施以扩散退火(900,950?),此后在800?淬火之,淬火后必须在150,180?施以低温回火。 渗碳后之热处理一般依渗碳温度而分為二种: (1) 渗碳温度在钢件原含碳量之Ac3上方时,渗碳后中心部份之组织变成微细,表皮则為粗大,此时热处理只须将表皮之粗大晶粒处理成微细晶粒即可,故将渗碳后之钢件,加热至A1稍上方(780?附近)淬火即可。 (2) 若渗碳温度在Ac3上方甚高温度处,则中心部晶粒亦成為粗大,此时须经二次热处理。 第1次淬火之目的在於使未被渗碳之心部组织微细化,即加热至Ac3上起沃斯田铁变态,而结晶粒刚微细化时淬火之,故温度较高。同时在此温度下,渗碳层之高碳部份的网状雪明碳铁可固熔於沃斯田铁,所以淬火后不再有网状雪明碳铁存在。 但是此淬火温度,作為渗碳层之淬火温度未免过高,必须再一次在较低之温度作第二次淬火。此温度对於渗碳层而言,相当於A1与Acm之间约760?附近,故经第二次淬火之铲,渗碳表面层為麻田散铁,基地中有许多球状碳化物存在,故耐磨性高。 回火係去除淬火时发生之残留应力,且将一部份之残留沃斯田铁变為麻田散铁。温度过高则硬度会降低,普通以150,200?為最适宜。 若须较高之硬度时,则宜在100,170?回火,若须韧性时,则宜在400?以上,Ac1以下回火之,则得回火糙斑铁组织。 五、气体渗碳氮化法: 气体渗碳氮化时,渗碳和渗氮作用同时行。气体渗碳用的气体渗碳用的气体用来產生渗碳作用,而N H3气体用產生渗氮作用。气体渗碳氮化温度為704,900?,其处理时间比气体渗碳法短,得较薄的硬化层,所得渗碳氮化结果类似於液体渗碳氮化所得者。 处理层的硬化能,比由渗碳所得的渗碳层好,所以把渗碳氮化和淬火适当配合时,碳钢或低合金钢也可以得到十分安定的高硬度硬化层。由此法所得的硬化层深度為0.07,0.75?。淬火时可採用油淬火,有时可实施气体淬火来防止淬火变形而仍能得到高的表面硬度。 渗碳氮化所使用的钢由以低碳构造用钢和低合金构造用钢為主,其主要目的是改善耐磨性。假如同时要满足耐荷重性和耐磨性,首先渗碳1.5,1.8?,其次实施渗碳氮化,然后加以油淬火。 气体渗碳氮化层因為含有N,其回火软化抵抗性大,所以回火温度要比气体渗碳淬火者高。通常回火於190,210?时,表面硬度為HRC58以上。
/
本文档为【[材料科学]金属硬度检测、对照表及其简单的增加硬度处理方式】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
热门搜索

历史搜索

    清空历史搜索