为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

通信原理课程设计--基于Matlab/Simulink的DSB调制解调仿真

2017-10-25 23页 doc 388KB 725阅读

用户头像

is_562397

暂无简介

举报
通信原理课程设计--基于Matlab/Simulink的DSB调制解调仿真通信原理课程设计--基于Matlab/Simulink的DSB调制解调仿真 信息处理课程设计报告 题 目:基于simulink的DSB调制 与解调系统设计 学院(系): 机械与电子工程学院 专业年级: 电信08 学生姓名: 武 彦 曾 杨 指导教师: 迟* 秦** 合作指导教师: 吴** 侯** 完成日期: 2011-7-20 基于simulink的DSB调制与解调系统设计 摘 要 本课程设计主要运用MATLAB集成环境下的Simulink仿真平台设计进行DSB调制与相干解调系统仿真。在本次课程设计中先根...
通信原理课程设计--基于Matlab/Simulink的DSB调制解调仿真
通信原理课程设计--基于Matlab/Simulink的DSB调制解调仿真 信息处理课程设计报告 题 目:基于simulink的DSB调制 与解调系统设计 学院(系): 机械与电子工程学院 专业年级: 电信08 学生姓名: 武 彦 曾 杨 指导教师: 迟* 秦** 合作指导教师: 吴** 侯** 完成日期: 2011-7-20 基于simulink的DSB调制与解调系统设计 摘 要 本课程设计主要运用MATLAB集成环境下的Simulink仿真平台设计进行DSB调制与相干解调系统仿真。在本次课程设计中先根据DSB调制与解调原理构建调制解调电路,从Simulink工具箱中找所各元件,合理设置好参数并运行,其中可以通过不断的修改优化得到需要信号,之后分别加入高斯白噪声,并分析对信号的影响,最后通过对输出波形和功率谱的分析得出DSB调制解调系统仿真是否成功。 关键词:Simulink;DSB;调制;相干解调 目 录 1 设计任务 ............................................................................................................................................. - 1 - 1.1 设计的目的和意义 .................................................................................................................... - 1 - 1.2 设计任务与要求 ........................................................................................................................ - 1 - 2 系统原理 ............................................................................................................................................. - 1 - 2.1 DSB调制原理 ............................................................................................................................. - 1 - 2.2 DSB解调原理 ............................................................................................................................. - 2 - 3 设计方案 ............................................................................................................................................. - 3 - 3.1 仿真平台 .................................................................................................................................... - 3 - 3.2 录音功能的实现 ........................................................................................................................ - 5 - 3.3 调制模块设计 ............................................................................................................................ - 7 - 3.4 高斯白噪声信道 ........................................................................................................................ - 9 - 3.5 解调模块设计 .......................................................................................................................... - 10 - 3.6 总体模型 ...................................................................................................................................- 11 - 4 系统特性分析 .................................................................................................................................. - 12 - 4.1 频谱分析 .................................................................................................................................. - 12 - 4.2 功率谱分析 .............................................................................................................................. - 14 - 5 总结 .................................................................................................................................................... - 15 - 5.1 遇到的问题 .............................................................................................................................. - 15 - 5.2 致谢 .......................................................................................................................................... - 16 - 参考文献 ............................................................................................................................................... - 16 - 1 设计任务 1.1 设计的目的和意义 通信技术的发展日新月异,通信系统也日趋复杂,在通信系统的设计研发过程中,软件仿真已成为必不可少的一部分,电子设计自动化EDA技术已成为电子设计的潮流。随着信息技术的不断发展,涌现出了许多功能强大的电子仿真软件,如Workbench、Protel、Systemview、Matlab等。 《通信原理》是电子通信专业的一门极为重要的专业基础课,由于抽象,基本概念较多,是一门难度较大的课程,要想学好并非易事。采用Matlab及Simulink作为辅助教学软件,摆脱了繁杂的计算,可以使学生对书本上抽象的原理有进一步的感性认识,加深对基本原理的理解。 1.2 设计任务与要求 设计题目:DSB调制与解调系统设计 设计要求: (1)录制一段2s左右的语音信号,并对录制的信号进行8000Hz的采样,画出采样后语音信号的时域波形和频谱图; (2)采用正弦信号和自行录制的语音信号(.wav文件)进行DSB调制与解调;信道使用高斯白噪声;画出相应的时域波形和频谱图。 2 系统原理 2.1 DSB调制原理 在消息信号m(t)上不加上直流分量,则输出的已调信号就是无载波分量的双边带调制信号,或称抑制载波双边带(DSB-SC)调制信号,简称双边带(DSB)信号。DSB调制器模型如图2-1,可见DSB信号实质上就是基带信号与载波直接相乘。 - 1 - 图2-1 DSB信号调制器模型 其时域和频域示式分别如下 SDSB(t),m(t)cos,ct (式2-1) 1,,SDSB(,),M(,,,c),M(,,,c)2 (式2-2) 除不再含有载频分量离散谱外,DSB信号的频谱与AM信号的完全相同,仍由上下对称的两个边带组成。故DSB信号是不带载波的双边带信号,它的带宽与AM信号相同,也为基带信号带宽的两倍,DSB信号的波形和频谱分别如图2-2: 图2-2 DSB信号的波形与频谱 2.2 DSB解调原理 因为不存在载波分量,DSB信号的调制效率是100%,即全部功率都用于信息传输。但由于DSB信号的包络不再与m(t)成正比,故不能进行包络检波,需采用相干解调。 图2-3 DSB信号相干解调模型 图2-3中SL(t)为本地载波,也叫相干载波,必须与发送端的载波完成同步。即频率相同时域分析如下: 211 (式2-3) Sp(t),SDSB(t),SL(t),m(t)cos,ct,m(t),m(t)cos2,ct22 mo(t)Sp(t)经过低通滤波器LPF,滤掉高频成份,为 - 2 - 1 (式2-4) mo(t),m(t)2 频域分析如下: 1 ,,?Sp(,),SDSB(,-,c),SDSB(,,,c)2 1 (式2-5) ?Mo(,),Sp(,),H(,),M(,)2 SL(t)式中的H(ω)为LPF的系统函数。频域分析的过程如图2-4所示。事实上本 SL(t)地载波和发端载波完全一致的条件是是不易满足的,因此,需要讨论有误差情况下对解调结果的影响。 图2-4 DSB信号相干解调过程示意图 3 设计方案 3.1 仿真平台 近几年,在学术界和工业领域,Simulink已经成为在动态系统建模和仿真方面应用最广泛的软件包之一。它的魅力在于强大的功能和使用方法。确切的说,它是对动态系统进行建模、仿真和分析的一个软件包。它支持线性和非线性系统、连续时间系统、离散时间系统等,而且系统可以是多进程的。 Simulink为用户提供了用方框图进行建模的图形接口,采用这种方法进行系统设计,就像你用笔和纸来画一样容易。它与传统的仿真软件包用微分方程和差分方程建模相比,具有更直观、方便、灵活的优点。用Simulink创建的模型可以具有递接层次结构,及允许用户建立自己的子系统。在察看时,用户可以从最顶层开始,然后用鼠标双击其 - 3 - 中的子系统模块,从而进入自信同模块进行察看,这样非常便于模型的条理化,从而帮助用户理解模型的整体结构以及各模块之间的关系。 Simulink是MATLAB为模拟动态系统而提供的一个面向用户的交互式程序,它采用鼠标驱动方式,允许用户在屏幕上绘制框图,模拟系统并能动态的控制该系统。它还提供了两个应用程序扩展集,分别是Simulink EXTENSION和BLOCKSET。Simulik提供了一些按功能分类的基本的系统模块,用户只需要知道这些模块的输入输出及模块的功能,而不必考察模块内部是如何实现的,通过对这些基本模块的调用,再将它们连接起来就可以构成所需要的系统模型,进而进行仿真与分析。 基于这些特点,在本设计中使用Simulink软件作为仿真平台搭建系统模型。对Simulink的使用简要介绍如下。 (1)模型库 在MATLAB命令窗口输入“simulink”并回车,就可进入Simulink模型库,单击工具栏上的 按钮也可进入。 Simulink模块库按功能进行分为以下8类子库:Continuous(连续模块)Discrete(离散模块)Function&Tables(函数和平台模块)Math(数学模块)Nonlinear(非线性模块)Signals&Systems(信号和系统模块)Sinks(接收器模块)Sources(输入源模块)用户可以根据需要混合使用歌库中的模块来组合系统,也可以封装自己的模块,自定义模块库、从而实现全图形化仿真。 Simulink模型库中的仿真模块组织成三级树结构Simulink子模型库中包含了Continous、Discontinus等下一级模型库Continous模型库中又包含了若干模块,可直接加入仿真模型。Simulink主界面如图3-1所示。 图3-1 Simulink主界面 (2)设计仿真模型 - 4 - 在MATLAB子窗口或Simulink模型库的菜单栏依次选择“File” | “New” | “Model”,即可生成空白仿真模型窗口,如图3-2所示。 图3-2 新建仿真模型窗口 (3)运行仿真 两种方式分别是菜单方式和命令行方式,菜单方式:在菜单栏中依次选择"Simulation" | "Start" 或在工具栏上单击。命令行方式:输入“sim”启动仿真进程 比较这两种不同的运行方式:菜单方式的优点在于交互性,通过设置示波器或显示模块即可在仿真过程中观察输出信号。命令行方式启动模型后,不能观察仿真进程,但仍可通过显示模块观察输出,适用于批处理方式。 3.2 录音功能的实现 音频文件的录制和分析处理采用MatLab文本编程实现。首先调用函数wavrecord()进行为时2s、采样率为8000Hz的录音,然后调用wavwrite()函数将音频信号保存为test.wav文件,保存完成后再调用wavread('test.wav')来读取波形,并绘制其时域和频域波形图。编写的脚本文件wav_process.m如下: %--------------------录音并保存-------------------% fs=8000; %语音信号采样频率为8000 fprintf('按任意键开始2秒录音...\n'); pause fprintf('录音中...\n'); wavwrite(wavrecord(2*fs,fs),fs,8,'test.wav'); %以8000的采样率、8bit的位速录音,并保存录音为“test.wav” fprintf('录音保存完毕~\n'); wave=wavread('test.wav'); %读取保存的录音文件,将幅值赋给变量wave fprintf('录音读取完毕~\n'); sound(wave,fs); %以8000Hz的采样率播放语音信号 fprintf('录音播放完毕~\n'); %---------------------波形图----------------------% fprintf('绘制波形图...\n'); t=(0:length(wave)-1)/fs; %数组下标乘以采样周期,得出时间轴 figure(1),plot(t,wave); %做语音信号的时域波形图 title('语音信号时域波形图'); xlabel('时间'),ylabel('幅值'); - 5 - %---------------------频谱图----------------------% fprintf('绘制频谱图...\n'); y1=fft(wave,2048); %语音信号1024点FFT,得出幅值轴 f=fs*(0:2047)/2048; %得出频率轴 figure(2),plot(f,abs(y1(1:2048))); title('语音信号频谱图'); xlabel('Hz'),ylabel('幅值'); fprintf('全部处理完毕~\n\n'); %-------------------------------------------------% -3所示: 程序运行结果如下图3 语音信号时域波形图0.2 0.15 0.1 0.05 幅值0 -0.05 -0.1 -0.1500.20.40.60.811.21.41.61.82时间 语音信号频谱图7 6 5 4 幅值3 2 1 005001000150020002500300035004000Hz 图3-3 语音信号时域、频域波形图 - 6 - 3.3 调制模块设计 新建一个仿真空白模型,将DSB信号调至所需要的模块拖入空白模型中。图3-4中Baseband wave为正弦基带信号、Carrier wave为正弦载波,均使用离散化的信号。product为乘法器、scope为示波器。连接各模块如下图所示。 图3-4 DSB调制模型 双击模块设置基带信号属性:幅度为1,频率为500HZ,初相位为0,离散方式, -5采样间隔为1×10s,具体如下图3-5所示: 图3-5 基带信号参数设置 用同样的方式设置载波信号属性如下图3-6所示: - 7 - 图3-6 载波参数设置图 设置完成点击“运行”按钮,并双击示波器,显示波形如下图3-7: 图3-7 DSB信号调制波形 图中三路信号波形,第一路为基带信号,第三路为载波,第二路为调制的DSB波形。从图中可以清楚地看出,双边带信号时域波形的包络不同于调制信号的变化规律。在调制信号零点前处已调波的相位发生了180?的突变。在调制信号的正半周期内,已调波的高频相位与载波相同,在调制信号的负半周期内,已调波的高频相位与载波相反。并且双边带的带宽为基带信号的两倍。 - 8 - 3.4 高斯白噪声信道 加性高斯白噪声 AWGN(Additive White Gaussian Noise) 是最基本的噪声与干扰模型。加性噪声是叠加在信号上的一种噪声,通常记为n(t),而且无论有无信号,噪声n(t)都是始终存在的。因此通常称它为加性噪声或者加性干扰。若噪声的功率谱密度在所有的频率上均为一常数,则称这样的噪声为白噪声。如果白噪声取值的概率分布服从高斯分布,则称这样的噪声为高斯白噪声。在通信系统中,经常碰到的噪声之一就是白噪声。 在理想信道调制与解调的基础上,在信道中加入高斯白噪声,把Simulink中的AWGN模块加入到模型中。噪声参数设置、模型与波形图如下: 图3-8 高斯噪声参数设置 图3-9 高斯白噪声信道传输模型 图3-10 高斯白噪声信道传输波形 - 9 - 如图3-10所示,第一路为调制后未经传输的DSB信号波形,第二路为加性高斯白噪声信道中传输的波形。相比较可看出,波形出现了一定程度的失真。失真是随着信噪比SNR的变化而变化的,SNR越小,通过AWGN信道的波形就越接近理想信道波形。 3.5 解调模块设计 因为DSB信号包络不再与调制信号的变化规律一致,因而不能采用简单的包络检波来恢复基带信号,而必须采用相干解调。相干解调也称同步检波,是指用载波乘以一路与载波相干(同频同相)的参考信号,再通过低通滤波器即可输出解调信号。解调模块设计模型如图3-11所示: 图3-11 相干解调模块模型 图中In1为DSB信号输入端,Refer wave为与载波相干的参考信号,二者相乘后经数字滤波器进行低通滤波,再进行2倍增益后,输出的既是解调波。 这里的数字滤波器用到了Simulink模型库中的FDATool,双击模块可以选择滤波器类型及更改参数。在这里选择了低通Elliptic滤波器,试验发现它具有很好的频响特性。根据系统基带信号频率范围和载波的频率,设置其通带和截止频率如下图3-12所示: 图3-12 数字滤波器设置 - 10 - 为了方便连线和放置模块,在这里将解调模块封装为子系统Coherent Demodulation,并对带有高斯白噪声的DSB信号进行解调,其模型如图3-13所示。 图3-13 解调模块模型 基带信号、带有噪声的DSB信号和解调信号的波形如图3-14,由图可看出,解调波形较接近基带信号波形,表明解调模块特性较好,能够从带有高斯白噪声的DSB信号中解调出需要的原始波形。 图3-14 解调模块波形 3.6 总体模型 连接各模块并进行仿真调试,不断修改各模块参数使系统能正确稳定地工作。系统总体模型如图3-15所示,系统各个关键点波形如图3-16。 - 11 - 图3-15 系统总体模型图 图3-16 系统各关键点波形 4 系统特性分析 4.1 频谱分析 为了显示系统各个点信号频谱图,采用如下图4-1所示的子系统对信号进行处理变 换,之后送入频谱示波器显示频谱图。 图4-1 频谱显示信号的预处理模型 用频谱示波器观察系统各点信号频谱,频谱图如图4-2: - 12 - (a) 基带信号频谱 (b) 载波信号频谱 (c) 未经传输的DSB信号频谱 (d) 在AWGN信道中传输的DSB信号频谱 (e) 解调信号频谱 图4-2 系统各点信号频谱 由频谱可以看出,DSB信号的频谱由上边带、下边带两部分组成,上边带的频谱结构与原调制信号的频谱结构相同,下边带是上边带的镜像,它的带宽仍是是基带信号带宽的2倍。可见DSB调制的实质是对频谱进行线形搬移,同时抑制了载波;而解调正好是将高频部分信号频谱搬回低频的过程。 - 13 - 4.2 功率谱分析 DSB信号的功率定义为已调信号的均方值,即 111222222== (式4-1) PDSB,SDSB(t)m(t)cos(,ct)m(t),m(t)cos(2,ct),m(t)222 112 (式4-2) Ps,m(t),Pm222Pm,m(t)Ps为边带功率,为调制信号显然,DSB信号的功率仅由边带功率构成, 功率。这样其调制效率为100%。由于双边带信号的频谱不存在载波分量,所有的功率都集中在两个边带中,因此它的调制效率为百分之百,这是它的最大优点。 (1)基带信号在理想信道下的功率谱如下所示。 图4-3 基带信号功率谱 图4-4 DSB调制后波形功率谱 图4-5 相干解调后的波形功率谱 - 14 - 由图4-3和图4-4可以看出通过双边带调制后将原来基带信号(设置为2)以载波(设置为20)为中心进行频谱的搬移,且调制后信号的带宽是原信号的两倍,相位发生了移位,波形表现为基带与载波的乘积。经相干解调后,除由于系统误差而产生的延时外,解调后信号功率谱与原信号功率谱是能一一对应的。 (2)在理想信道中加入高斯噪声对解调结果的影响如下: 图4-6 加入高斯噪声解调后的波形功率谱 如图所示,在理想信道下,DSB解调波形对比基带信号波形发生延时,分别依此加入高斯、瑞利和莱斯噪声,解调后波形收到了噪声的干扰,波形发生畸变。三种噪声参数设置不变,前者方差较小,后者方差较大。比较前后功率谱图可以清楚发现,随着方差的加大,失真也随之变大,前者还较为接近理想信道功率谱图,而后者已出现了严重失真。虽然实际生活中的噪声不可避免,但我们应当减小噪声的影响,以满足我们对信号的需要。 5 总结 5.1 遇到的问题 通过本次课程设计,我熟悉了Matlab下用Simulink进行通信仿真的过程,对一些过去没有弄懂或认识模糊的概念、理论有了正确认识,也为以后的工作和学习打下了基础。 在课程设计中有收获,同样也有许多不足之处。其中之一就是没有很好地实现题目要求的“采用正弦信号和自行录制的语音信号(.wav文件)进行DSB调制与解调”。设计过程中,我使用了“From wave file”模块来加载wav文件,将音频信号作为基带信号进行调制,但可能因为MatLab版本问题,“From wave file”模块始终无法正确运行,具 - 15 - 体表现为Simulink提示找不到用于仿真的模块甚至直接崩溃。我换过不同的软件版本和计算机,但始终没能圆满解决这个问题。所以在最终的系统方案中,仍然采用了低频的正弦波代替音频文件作为基带信号,这个方案被证明是成功的。 今后需要进一步加强对通信系统的认识,并多用Simulink做系统仿真,以熟悉各模块的功能和适用场合。 5.2 致谢 经过为期两周的课程设计,我基本实现了题目要求,完成了DSB信号调制与解调的Simulink建模和仿真。以所学理论为基础,在课程设计的过程中,我又重温了模拟调制系统和相干解调等知识,感到实际动手能力有所提高,并激励自己结合实际问题在专业领域进行更深入的学习。 在这里要感谢很多同学和朋友在本次课程设计中给予我的支持和帮助。特别要感谢我的指导老师秦**和迟*,在我遇到困难的时候,他们给了我极大的帮助。尤其是在系统解调模块和录音方案的确定上,老师多次给我耐心细致的指导。很庆幸能有这样负责任、有爱心的指导老师,帮我扫清了课程设计过程中的诸多障碍,也让我看到了师长的风范。 参考文献 [1] 樊昌信,曹丽娜. 通信原理. 北京:国防工业出版社,2006 [2] 达新宇(通信原理实验与课程设计(北京:北京邮电大学出版社,2003 [3] 徐远明. MATLAB仿真在通信与电子工程中的应用. 西安:西安电子科技大学出版社, 2005 [4] 张化光, 孙秋野. MATLAB/Simulink实用教程. 北京:人民邮电出版社,2009 [5] 姚俊,马松辉.Simulink建模与仿真基础. 北京:西安电子科技大学出版社,2002 [6] 邓华(MATLAB通信仿真及应用实例详解(北京:国防工业出版社,2003 - 16 -
/
本文档为【通信原理课程设计--基于Matlab/Simulink的DSB调制解调仿真】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索