为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

计算机外文翻译

2017-10-06 11页 doc 38KB 43阅读

用户头像

is_005190

暂无简介

举报
计算机外文翻译计算机外文翻译 附件 1:外文资料翻译译文 大容量存储器 由于计算机主存储器的易失性和容量的限制 大多数的计算机都有附加的称为大容量存储系统的存储设备 包括有磁盘、 CD 和 磁带。相对于主存储器,大的容量储存系统的优点是易失性小,容量大,低成本 并且在许多情况下 为了归档的需要可以把储存介质从计算机上移开。 术语联机和脱机通常分别用于描述连接于和没有连接于计算机的设备。联机意味着,设备或信息已经与计算机连接,计算机不需要人的干预,脱机意味着设备或信息与机器相连前需要人的干预,或许需要将这个设备接通电源,或许包含有该信息的介...
计算机外文翻译
计算机外文翻译 附件 1:外文资料翻译译文 大容量存储器 由于计算机主存储器的易失性和容量的限制 大多数的计算机都有附加的称为大容量存储系统的存储设备 包括有磁盘、 CD 和 磁带。相对于主存储器,大的容量储存系统的优点是易失性小,容量大,低成本 并且在许多情况下 为了归档的需要可以把储存介质从计算机上移开。 术语联机和脱机通常分别用于描述连接于和没有连接于计算机的设备。联机意味着,设备或信息已经与计算机连接,计算机不需要人的干预,脱机意味着设备或信息与机器相连前需要人的干预,或许需要将这个设备接通电源,或许包含有该信息的介质需要插到某机械装置里。 大量储存器系统的主要缺点是他们典型地需要机械的运动因此需要较多的时间,因为主存储器的所有工作都由电子器件实现 。 1. 磁盘 今天,我们使用得最多的一种大量存储器是磁盘,在那里有薄的可以旋转的盘片,盘片上有磁介质以储存数据。盘片的上面和(或)下面安装有读/写磁头,当盘片旋转时,每个磁头都遍历一圈,它被叫作磁道,围绕着磁盘的上下两个面。通过重新定位的读/写磁头,不同的同心圆磁道可以被访问。通常,一个磁盘存储系统由若干个安装在同一根轴上的盘片组成,盘片之间有足够的距离,使得磁头可以在盘片之间滑动。在一个磁盘中,所有的磁头是一起移动的。因此,当磁头移动到新的位置时,新的一组磁道可以存取了。每一组磁道称为一个柱面。 因为一个磁道能包含的信息可能比我们一次操作所需要得多,所以每个磁道划分成若干个弧区,称为扇区,记录在每个扇区上的信息是连续的二进制位串。传统的磁盘上每个磁道分为同样数目的扇区,而每个扇区也包含同样数目的二进制位。(所以,盘片中心的储存的二进制位的密度要比靠近盘片边缘的大)。 因此,一个磁盘存储器系统有许多个别的磁区 每个扇区都可以作为独立的二进制位串存取,盘片表面上的磁道数目和每个磁道上的扇区数目对于不同的磁盘系统可能都不相同。磁区大小一般是不超过几个 KB 512 个字节或 1024 个字节。 磁道和扇区的位置不是磁盘的物理结构的固定部分,它是通过称为磁盘格式化或初始化形成的,它通常是由磁盘的厂家完成的,这样的盘称为格式化盘,大多数的计算机系统也能执行这一个任务。因此 如果一个磁盘上的信息被损坏了磁盘能被再格式化,虽然这一过程会破坏所有的先前在磁盘上被记录的信息。 磁盘储存器系统的容量取决于所使用盘片的数目和所划分的磁道与扇区的密度。低容量的系统仅有一张塑料盘片组成称泶排袒蛉砼蹋硪桓雒剖莊loppy disk,强调它的灵活性。 现在直径 3.5 英寸的软盘封装在硬的塑料盒子里,没有继续使用老的为 5.25 英寸的软盘的柔软纸质包装)软盘很容易插入到相应的读写装置里,也容易读取和保存,因此,软盘通常用于信息的脱机存储设备,普通的 3.5 英寸软盘的容量是 1.44MB,而特殊的软盘会有较高的容量,一个例子是 INMEGA 公司的 ZIP 盘,单盘容量达几百兆。 大容量的磁盘系统的容量可达几个 GB,它可能有 5-10 个刚性的盘片,这种磁盘系统出于所用的盘片是刚性的,所以称为硬盘系统,为了使盘片可以比较快的旋转,硬盘系统里的磁头不与盘片是表面接触,而是依靠气流“浮”在上面,磁头与盘片表面的间隙非常小,甚至一颗尘粒都会造成磁头和盘片卡住,或者两者毁坏(这个现象称为划道)。因此,硬盘系统出厂前已被密封在盒子里。 评估一个磁盘系统的性能有几个指标: (1)寻道时间,读/写磁头从当前磁道移到目的磁道(依靠存取臂)所需要的时间 。 (2)旋转延迟或等待时间,读/写磁头到达所要求的磁道后,等待盘片旋转使读/写磁头位于所要存取的数据(扇区)上所需要的时间。它平均为盘片旋转一圈时间的一半。 (3) 存取时间,寻道时间和等待时间之和。 (4)传输速率,数据从磁盘上读出或写入磁盘的时间。 硬盘系统的性能通常大大优于软盘,因为硬盘系统里的读/写磁头不接触盘片表面,所以盘片旋转速度达到每分种几千转,而软盘系统只有每分 300 转。因此,硬盘系统的传输速率通常以每秒 MB 数目来标称,比软盘系统大得多,因为后者仅为每秒数 KB。 因为磁盘系统需要物理移动来完成它的们的操作,因此软盘系统和硬盘系统都难以与电子工业线路的速度相比。电子线路的延迟时间是以毫微秒或更小单位度量的,而磁盘系统的寻道时间,等待时间和存取时间是以毫秒度量的,因此,从磁盘系统检索信息所需要的时间与电子线路的等待时间相比是一个漫长的过程。 2. 光盘 另一种流行的数据存储技术是光盘,盘片直径是 12 厘米(大约 5 英寸),由反射材料组成,上面有光洁的保护层。通过在它们反射层上创建反射偏差的方法在上面记录信息,这种信息可以借助激光束检测出来,因为在 CD 旋转时激光束监视它的反射面上的反射偏差。 CD 技术原来用于音频录制,采用称为 CD-DA(光盘数字音频)的记录格式,今天作为计算机数据存储器使用的 CD 实际上使用同样的格式。CD 上的信息是存放在一条绕着 CD 的螺旋形的磁道上,很象老式唱片里的凹槽;与老式唱片不同的是,CD 上的磁道是从里向外的,这条磁道被分成称为扇区的单元。每个扇区有自己的标识,有 2KB 的数据容量,相当于在音频录制时 1/75 的音乐。 CD 上保存的信息在整个螺旋形的磁道是按照统一的线性刻度,这就意味着,螺旋形磁道靠边的环道存放的信息比靠里边的环道要多。所以,如果盘片旋转一整圈,那么激光束在扫描螺旋形磁道外边时读到的扇区个数要比里边多。因而,为了获得一致的数据传输速率,CD-DA 播放器能够根据激光束在盘片上的位置调整盘片的旋转速度。但是,作为计算机数据存储器使用的大多数 CD 驱动器都以一种比较快的、恒定的速度旋转盘片,因此必须适应数据传输速率的变化。 这种设计思想就使得 CD 存储系统在对付长而连续的数据串时有最好的表现,如音乐复制。相反,当一个应用需要以随机的方法存取数据时,那么磁盘存储器所用的方法(独立的、同心的磁道)就胜过 CD 所用的螺旋形方法。 传统 CD 的容量为 600700MB。但是,较新的 DVD 的容量达到几个 GB。DVD 由多个半透明的层构成,精确聚焦的激光可以识别不同的层。这种盘能够储存冗长的多媒体演示,包括整个电影。 3( 磁带 一种比较老式的大容量存储器设备是磁带。这时,信息储存在一条细薄的的塑料带的磁介质涂层上,而塑料带则围在磁带盘上作为存储器,要存取数据时,磁带装到称为磁带驱动器的设备里,它在计算机控制下通常可以读带,写带和倒带,磁带机有大有小,从小的盒式磁带机到比较老式的大型盘式磁带机,前者称为流式磁带机,它表面上类似于立体声收录机,虽然这些磁带机的存储容量依赖于所使用的格式,但是大多数都达几个 GB。 现代的流式磁带机都将磁带划分为许多段,每段的标记是格式化过程中磁化形成的,类似于磁盘驱动器。每一段含有若干条纵向相互平行的磁道,这些磁道可以独立地存取,因而可以说,磁带是由许多单独的二进制位串组成的,好比磁盘的扇区。 磁带技术的主要缺点是:在一条磁带上不同位置之间移动非常耗费时间,因为在磁带卷轴之间要移动很长的磁带,于是,磁带系统的数据存取时间比磁盘系统的长,因为对于不同的扇区,磁盘的读/写磁头只要在磁道之间作短的移动,因此,磁带不是流行的联机的数据存储设备,但是,磁带系统常使用在脱机档案数据应用中,原因是它具有容量大,可靠性高和性价比好等优势。虽然例如 DVD非传统技术的进展正迅速向这磁带的最后 痕迹提出挑战。 4. 文件存储和检索 在大容量存储系统中,信息是以称为文件的大 的单位储存的,一个典型的文件可以是一个全文本的资料,一张照片,一个程序或 一组关于公司员工的数据,大容量存储系统的物理特性表明,这些文件是按照许多 字节为单位存储的检索的,例如,磁盘上每个扇区必须作为一个连续的二进制位串 进行操作,符合存储系统物理特性的数据块称为物理记录,因此存放在大容量存储 系统中的文件通常包含许多物理记录。 与这种物理记录划分相对的是,一个文件通 常有一种由它所表示的信息决定的自然划分,例如,一个关于公司员工信息的文件 由许多单元组成,每个单元由一个员工的信息组成。这些自然产生的数据块称为逻 辑记录,其次,逻辑记录通常由更小的称为字段的单元组成,例如,包含员工信息 的记录大概由姓名,地址,员工标识号等字段组成。 逻辑记录的大小很少能够与大 容量存储系统的物理记录相匹配,因此,可能许多个逻辑记录可以存放在一个物理 记录中,也可能一个逻辑记录分成几个物理记录,因此,从大容量存储系统中存取 数据时需要一定的整理工作,对于这个问题的常用解决方法是,在主存储系统里设 置一个足够大的存储区域,它可以存放若干个物理记录并可以通过它重新组织数据。 (以符合逻辑记录(读)或物理记录(写)的要求)也就是说,在主存储器与大容 量存储系统之间传输的数据应该符合物理记录的要求。同时位于主存储器区域的数 据按照逻辑记录可以被查阅。 主存储器中的这种存储区域称为缓冲区,通常,缓冲 区是在一个设备向另一个设备传输数据时用来临时保存数据的,例如,现代的打印 机都有自己的存储芯片,其大部分的作为缓冲区,以保存该打印机已经收到但还没 有打印的那部分数据。 由此可知,主存储器,磁盘,光盘和磁带依次表示随机存取 程度降低的设备,主存储器里所用的编址系统可允许快速随机地存取某个字节。磁 盘只能随机存取整个扇区的数据。其次,检索一个扇区涉及寻道时间和旋转延迟, 光盘也能够随机存取单个扇区,但是延迟时间比磁盘长一些,因为把读/写头定位到 螺旋形磁道上并调准盘片的旋转速度需要的时间较长,最后,磁带几乎没有随机存 取的机制,现代的磁带系统都在磁带上做标记,使得可以单独存取磁带上指定的段, 但是磁带的物理结构决定了存取远距离的段需要花费比较多的时间。附件 2:外文 原文(复印件)Mass StorageDue to the volatility and limited size of a computer’s main memory most computershave additional memory devices called mass storage systems which include magneticdisksCDsand magnetic tapes. The advantages of mass storage systems over mainmemory include less volatility large storage capacities low cost and in many casesthe ability to remove the storage medium from the machine for archival purposes. The terms on-line and 0ff-line are often used to describe devices that can beeither attached to or detached from a machine. On-line means that the device orinformation is connected and readily available to the machine without humanintervention. Off-line means that human intervention is required before the device orinformation can be accessed by the machine-perhaps because the device must beturned on or the medium holding the information must be inserted into somemechanism. A major disadvantage of mass storage systems is that they typically requiremechanical motion and therefore require significantly more time to store and retrievedata than a machine’s main memory where all activities are performed electronically. Magnetic Disks One of the most common forms of mass storage in use today is the magnetic diskin which a thin spinning disk with magnetic coating is used to hold data. Read/writeheads are placed above and/or below the disk so that as the disk spins each headtraverses a circle called a track around the disk’s upper or lower surface. Byrepositioning the read/write heads different concentric tracks can be accessed. Inmany cases a disk storage system consists of several disk mounted on a commonspindle one on top of the other with enough space for the read/write heads to slipbetween the platters In such cases the read/write heads move in unison. Each timethe read/write heads are repositioned a new set of tracks-which is called a cylinderbecomes accessible . Since a track can contain more information than we would normally want tomanipulate at any on time each track is divided into arcs called sectors on whichinformation is recorded as track is divided into arcs called sectors on whichinformation is record as a continuous string of bits. Each track on a traditional diskcontains the same number of sectors and each sector contains the same number thecenter of bits. Thus the bits within a sector are more compactly stored on the tracknearer the center of the disk than those on the tracks near the outer edge. Thus a disk storage system consists of many individual sectors each of whichcan be sectors per track vary grealy from one disk system to another. Sector sizes tendto be no more than a few KB sectors of 512 bytes or 1024 bytes are common. The location of tracks and sectors is not a permanent part of a disk’s physicalstructure. Instead they are marked magnetically through a process called formattingor initializing the disk. This process is usually performed by the disk’smanufacturer resulting in what are known as formatted disks. Most computersystems can also perform this task. Thus if the format information on a disk isdamaged the disk can be reformatted although this process destroys all theinformation that was previously recorded on the disk. The capacity of a disk storage system depend on the number of number of disksused and the density in which the tracks and sectors are placed. Lower-capacitysystems consist of a single plastic disk known as a diskette or in those cases in whichthe disk is flexible by the less prestigious title of floppy disk. today’s 3 1,2-inchdiameter floppy disks are housed in rigid plastic cases which do not constitute asflexible a package as their older 5 1,4-inch diameter cousins that were housed inpaper sleeves. Diskettes are easily inserted and removed from their correspondingread/write units and are easily stored. As a consequence diskettes are often used foroff-line storage of information. The generic 3 1,2-inch diskette is capable of holding1.44MB of data but nongeneric diskettes are available with much higher capacities.An example is the Zip disk system from Iomega Corporation which provides storagecapacities up to several hundred MB on a single rigid diskette. High-capacity disk systems capable of holding many gigabytes consist ofperhaps five to ten rigid disks mounted on a common spindle. The fact that the disksused in these systems are rigid leads them to be known as hard-disk systems incontrast to their floppy counterparts. To allow for faster rotation speeds the read/writeheads in these systems do not touch the disk but instead “float”just off the surface.The spacing is so close that even a single particle of dust could become jammedbetween the head and disk surface destroying both a phenomenon known as a headcrash Thus hard-disk systems are housed in cases that are sealed at the factory. Several measurements are used to evaluate a disk system’s performance:1seektome the time required to move the read/write heads from one rack toanother2rotation delay or latency time half the time required for the disk to makea complete rotation which is the average amount of time required for the desired datato rotate around to the read/write head once the head has been positioned over thedesired track 3access time the sum of seek time and rotation delayand 4transferrate the rate at which data can be transferred to or from the disk. Hard-disk systems generally have significantly better characteristics than floppysystems. Since the read/write heads do not touch the disk surface in a hared-disksystem one finds rotation speeds of several thousand revolutions per minute whereasdisks in floppy-disk systems rotate on the order of 300 revolutions per minute.Consequently transfer rates for hard-disk systems usually measured in megabytes persecond are much greater than those associated with floppy-disk systems which tendto be measured in kilobytes per second. Since disk systems require physical motion for their operation both hard andfloppy systems suffer when compared to speeds within electronic circuitry. Delaytimes within an electronic circuit are measured in units of nanoseconds billionths of asecond or less whereas seek times latency times and access times and access timesof disk systems are measured in milliseconds thousandths of a second. Thus the timerequired to retrieve information from a disk system can seem like an eternity to anelectronic circuit awaiting a result. Compact Disks Another popular data storage technology is the compact disk CD. Theredisks are 12 centimeters approximately 5 inches in diameter and consist ofreflective material covered with a clear protective coating. Information is recorded onthem by creating variations in their reflective surfaces. This information can then beretrieved by means of a laser beam that monitors irregularities on the reflectivesurface of the CD as it spins. CD technology was originally applied to audio recording using a recordingusing a recording format known as CD-DA compact disk-digital audio and the CDsused today for computer data storage use essentially the same format. In particularinformation on these CDs is stored on a single track that spirals around the CD like agroove in an old-fashioned record however unlike old-fashioned records the trackon a CD spirals from the inside out .This track is divided into units called sectorseach with its own identifying markings and a capacity of 2KB of data which equatesto 1,75 of a second of music in the case of audio recording . Information is stored on a CD at a uniform linear density over the entirespiraled track which means that more information is stored in a loop around the outerportion of the spiral than in a loop around the inner portion. In turn more sectors willbe read in a single revolution of the disk when the laser beam is scanning the outerportion of the spiraled track than when the beam is scanning the inner portion. Thusto obtain a uniform rate of data transfer CD-DA players are designed to vary therotation speed depending on the location of the laser beam. However most CD drivesused for computer data storage spin at a faster constant speed and thus mustaccommodate variations in data transfer rates. As a consequence of such design decision CD storage systems perform bestwhen dealing with long continuous string of data as when reproducing music. Incontrast when an application requires access to it.
/
本文档为【计算机外文翻译】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索