为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

计算机网络教程_谢希仁(第二版)_课后答案(全)

2018-07-10 50页 doc 143KB 49阅读

用户头像

is_496339

暂无简介

举报
计算机网络教程_谢希仁(第二版)_课后答案(全)计算机网络教程_谢希仁(第二版)_课后答案(全) 第一章概述 传播时延,信道长度/电磁波在信道上的传播速度 发送时延,数据块长度/信道带宽 总时延,传播时延,发送时延,排队时延 1-01计算机网络的发展可划分为几个阶段,每个阶段各有何特点, 答:计算机网络的发展可分为以下四个阶段。 (1)面向终端的计算机通信网:其特点是计算机是网络的中心和控制者,终端围绕中心计算机分布在各处,呈分层星型结构,各终端通过通信线路共享主机的硬件和软件资源,计算机的主要任务还是进行批处理,在20世纪60年代出现分时系统后,则具有交互式处理和成批处...
计算机网络教程_谢希仁(第二版)_课后答案(全)
计算机网络教程_谢希仁(第二版)_课后答案(全) 第一章概述 传播时延,信道长度/电磁波在信道上的传播速度 发送时延,数据块长度/信道带宽 总时延,传播时延,发送时延,排队时延 1-01计算机网络的发展可划分为几个阶段,每个阶段各有何特点, 答:计算机网络的发展可分为以下四个阶段。 (1)面向终端的计算机通信网:其特点是计算机是网络的中心和控制者,终端围绕中心计算机分布在各处,呈分层星型结构,各终端通过通信线路共享主机的硬件和软件资源,计算机的主要任务还是进行批处理,在20世纪60年代出现分时系统后,则具有交互式处理和成批处理能力。 (2)分组交换网:分组交换网由通信子网和资源子网组成,以通信子网为中心,不仅共享通信子网的资源,还可共享资源子网的硬件和软件资源。网络的共享采用排队方式,即由结点的分组交换机负责分组的存储转发和路由选择,给两个进行通信的用户断续(或动态)分配传输带宽,这样就可以大大提高通信线路的利用率,非常适合突发式的计算机数据。 (3)形成计算机网络体系结构:为了使不同体系结构的计算机网络都能互联,国际化组织ISO提出了一个能使各种计算机在世界范围内互联成网的标准框架—开放系统互连基本参考模型OSI.。这样,只要遵循OSI标准,一个系统就可以和位于世界上任何地方的、也遵循同一标准的其他任何系统进行通信。 (4)高速计算机网络:其特点是采用高速网络技术,综合业务数字网的实现,多媒体和智能型网络的兴起。 1-02试简述分组交换的要点。 答:分组交换实质上是在“存储——转发”基础上发展起来的。它兼有电路交换和报文交换的优点。在分组交换网络中,数据按一定长度分割为许多小段的数据——分组。以短的分组形式传送。分组交换在线路上采用动态复用技术。每个分组标识后,在一条物理线路上采用动态复用的技术,同时传送多个数据分组。在路径上的每个结点,把来自用户发端的数据暂存在交换机的存储器内,接着在网内转发。到达接收端,再去掉分组头将各数据字段按顺序重新装配成完整的报文。分组交换比电路交换的电路利用率高,比报文交换的传输时延小,交互性好。 分组交换网的主要优点是: ?高效。在分组传输的过程中动态分配传输带宽,对通信链路是逐段占有。 ?灵活。每个结点均有智能,为每一个分组独立地选择转发的路由。 ?迅速。以分组作为传送单位,通信之前可以不先建立连接就能发送分组;网络使用高速链路。 ?可靠。完善的网络;分布式多路由的通信子网。 1-03试从多个方面比较电路交换、报文交换和分组交换的主要优缺点。 答:(1)电路交换电路交换就是计算机终端之间通信时,一方发起呼叫,独占一条物理线路。当交换机完成接续,对方收到发起端的信号,双方即可进行通信。在整个通信过程中双方一直占用该电路。它的特点是实时性强,时延小,交换设备成本较低。但同时也带来线路利用率低,电路接续时间长,通信效率低,不同类型终端用户之间不能通信等缺点。电路交换比较适用于信息量大、长报文,经常使用的固定用户之间的通信。 (2)报文交换将用户的报文存储在交换机的存储器中。当所需要的输出电 路空闲时,再将该报文发向接收交换机或终端,它以“存储——转发”方式在网内传输数据。报文交换的优点是中继电路利用率高,可以多个用户同时在一条线路上传送,可实现不同速率、不同规程的终端间互通。但它的缺点也是显而易见的。以报文为单位进行存储转发,网络传输时延大,且占用大量的交换机内存和外存,不能满足对实时性要求高的用户。报文交换适用于传输的报文较短、实时性要求较低的网络用户之间的通信,如公用电报网。 (3)分组交换分组交换实质上是在“存储——转发”基础上发展起来的。它兼有电路交换和报文交换的优点。分组交换在线路上采用动态复用技术传送按一定长度分割为许多小段的数据——分组。每个分组标识后,在一条物理线路上采用动态复用的技术,同时传送多个数据分组。把来自用户发端的数据暂存在交换机的存储器内,接着在网内转发。到达接收端,再去掉分组头将各数据字段按顺序重新装配成完整的报文。分组交换比电路交换的电路利用率高,比报文交换的传输时延小,交互性好。 1-04为什么说因特网是自印刷术以来人类通信方面最大的变革, 答:融合其他通信网络,在信息化过程中起核心作用,提供最好的连通性和信息共享,第一次提供了各种媒体形式的实时交互能力。 1-05因特网的发展大致分为哪几个阶段,请指出这几个阶段的主要特点。 答:从单个网络APPANET向互联网发展;TCP/IP协议的初步成型 建成三级结构的Internet;分为主干网、地区网和校园网; 形成多层次ISP结构的Internet;ISP首次出现。 1-06简述因特网标准制定的几个阶段, 答:(1)因特网草案(InternetDraft)——在这个阶段还不是RFC文档。 (2)建议标准(ProposedStandard)——从这个阶段开始就成为RFC文档。 (3)草案标准(DraftStandard) (4)因特网标准(InternetStandard) 1-07小写和大写开头的英文名字internet和Internet在意思上有何重要区别, 答:(1)internet(互联网或互连网):通用名词,它泛指由多个计算机网络互连而成的网络。;协议无特指   (2)Internet(因特网):专用名词,特指采用TCP/IP协议的互联网络 区别:后者实际上是前者的双向应用 1-08计算机网络可以从那几个方面进行分类, 答:按范围:(1)广域网WAN:远程、高速、是Internet的核心网。 (2)城域网:城市范围,链接多个局域网。 (3)局域网:校园、企业、机关、社区。 (4)个域网PAN:个人电子设备 按用户:公用网:面向公共营运。专用网:面向特定机构。 …… 1-09计算机网络中的主干网和本地接入网的主要区别是什么, 答:主干网络一般是分布式的,具有分布式网络的特点:其中任何一个结点都至少和其它两个结点直接相连;本地接入网一般是集中式的,具有集中式网络的特点:所有的信息流必须经过中央处理设备(交换结点),链路从中央交换结点向外辐射。 主干网:提供远程覆盖\高速传输\和路由器最优化通信 本地接入网:主要支持用户的访问本地,实现散户接入,速率低。 1-10计算机网络由哪几部分组成, 答:一个计算机网络应当有三个主要的组成部分: (1)若干主机,它们向用户提供服务; (2)一个通信子网,它由一些专用的结点交换机和连接这些结点的通信链路所组成的; (3)一系列协议,这些协议为主机之间或主机和子网之间的通信而用的。 1-11试在下列条件下比较电路交换和分组交换。要传送的报文共x(bit)。从源点到终点共经过k段链路,每段链路的传播时延为d(s),数据率为b(b/s)。在电路交换时电路的建立时间为s(s)。在分组交换时分组长度为p(bit),且各结点的排队等待时间可忽略不计。问在怎样的条件下,分组交换的时延比电路交换的要小,(提示:画一下草图观察k段链路共有几个结点。) 答:线路交换时延:kd+x/b+s,分组交换时延:kd+(x/p)*(p/b)+(k-1)*(p/b) 其中(k-1)*(p/b)表示K段传输中,有(k-1)次的储存转发延迟,当s>(k-1)*(p/b)时,电路交换的时延比分组交换的时延大,当x>>p,相反。 1-12在上题的分组交换网中,设报文长度和分组长度分别为x和(p+h)(bit),其中p为分组的数据部分的长度,而h为每个分组所带的控制信息固定长度,与p的大小无关。通信的两端共经过k段链路。链路的数据率为b(b/s),但传播时延和结点的排队时间均可忽略不计。若打算使总的时延为最小,问分组的数据部分长度p应取为多大,(提示:参考1-11的分组交换部分,观察总的时延是由哪几部分组成。) 答:总时延D表达式,分组交换时延为:D=kd+(x/p)*((p+h)/b)+(k-1)*(p+h)/b D对p求导后,令其值等于0,求得 1-13因特网的两大组成部分(边缘部分与核心部分)的特点是什么,它们的工作方式各有什么特点, 答:边缘部分:由各主机构成,用户直接进行信息处理和信息共享;低速连入核心网。  核心部分:由各路由器连网,负责为边缘部分提供高速远程分组交换。 1-14客户服务器方式与对等通信方式的主要区别是什么,有没有相同的地方, 答:前者严格区分服务和被服务者,后者无此区别。后者实际上是前者的双向应用。 1-15计算机网络有哪些常用的性能指标, 答:速率,带宽,吞吐量,时延,时延带宽积,往返时间RTT,利用率等。 1-16收发两端之间的传输距离为1000km,信号在媒体上的传播速率为2×108m/s。试计算以下两种情况的发送时延和传播时延: (1)数据长度为107bit,数据发送速率为100kb/s。 (2)数据长度为103bit,数据发送速率为1Gb/s。 从上面的计算中可以得到什么样的结论, 解:(1)发送时延:ts=107/105=100s 传播时延tp=106/(2×108)=0.005s (2)发送时延ts=103/109=1µs 传播时延:tp=106/(2×108)=0.005s 结论:若数据长度大而发送速率低,则在总的时延中,发送时延往往大于传播时延。但若数据长度短而发送速率高,则传播时延就可能是总时延中的主要成分。 第二章协议和体系结构 2-1网络体系结构为什么要采用分层次的结构,试举出一些与分层体系结构的思想相似的日常生活。 答:分层的好处: ?各层之间是独立的。某一层可以使用其下一层提供的服务而不需要知道服务是如何实现的。 ?灵活性好。当某一层发生变化时,只要其接口关系不变,则这层以上或以下的各层均不受影响。 ?结构上可分割开。各层可以采用最合适的技术来实现 ?易于实现和维护。 ?能促进标准化工作。 与分层体系结构的思想相似的日常生活有邮政系统,物流系统。 2-2协议与服务有何区别,有何关系, 答:网络协议:为进行网络中的数据交换而建立的规则、标准或约定。由以下三个要素组成: (1)语法:即数据与控制信息的结构或格式。 (2)语义:即需要发出何种控制信息,完成何种动作以及做出何种响应。 (3)同步:即事件实现顺序的详细说明。 协议是控制两个对等实体进行通信的规则的集合。在协议的控制下,两个对等实体间的通信使得本层能够向上一层提供服务,而要实现本层协议,还需要使用下面一层提供服务。 协议和服务的概念的区分: 1、协议的实现保证了能够向上一层提供服务。本层的服务用户只能看见服务而无法看见下面的协议。下面的协议对上面的服务用户是透明的。 2、协议是“水平的”,即协议是控制两个对等实体进行通信的规则。但服务是“垂直的”,即服务是由下层通过层间接口向上层提供的。上层使用所提供的服务必须与下层交换一些命令,这些命令在OSI中称为服务原语。 2-3网络协议的三个要素是什么,各有什么含义, 答:网络协议:为进行网络中的数据交换而建立的规则、标准或约定。 由以下三个要素组成: (1)语法:即数据与控制信息的结构或格式。 (2)语义:即需要发出何种控制信息,完成何种动作以及做出何种响应。 (3)同步:即事件实现顺序的详细说明。 2-4为什么一个网络协议必须把各种不利的情况都考虑到, 答:因为网络协议如果不全面考虑不利情况,当情况发生变化时,协议就会保持理想状况,一直等下去~就如同两个朋友在电话中约会好,下午3点在公园见面,并且约定不见不散。这个协议就是很不科学的,因为任何一方如果有耽搁了而来不了,就无法通知对方,而另一方就必须一直等下去~所以看一个计算机网络是否正确,不能只看在正常情况下是否正确,而且还必须非常仔细的检查协议能否应付各种异常情况。 2-5论述具有五层协议的网络体系结构的要点,包括各层的主要功能。 答:综合OSI和TCP/IP的优点,采用一种原理体系结构。各层的主要功能: 物理层:物理层的任务就是透明地传送比特流。(注意:传递信息的物理媒体,如双绞线、同轴电缆、光缆等,是在物理层的下面,当做第0层。)物理层还要确定连接电缆插头的定义及连接法。 数据链路层:数据链路层的任务是在两个相邻结点间的线路上无差错地传送以帧(frame)为单位的数据。每一帧包括数据和必要的控制信息。 网络层:网络层的任务就是要选择合适的路由,使发送站的运输层所传下来的分组能够正确无误地按照地址找到目的站,并交付给目的站的运输层。 运输层:运输层的任务是向上一层的进行通信的两个进程之间提供一个可靠的端到端服务,使它们看不见运输层以下的数据通信的细节。 应用层:应用层直接为用户的应用进程提供服务。 2-6试举出日常生活中有关“透明”这种名词的例子。 答:电视,计算机视窗操作系统、工农业产品 2-7试解释以下名词:协议栈、实体、对等层、协议数据单元、服务访问点、客户、服务器、客户-服务器方式。 答:实体(entity)表示任何可发送或接收信息的硬件或软件进程。 协议是控制两个对等实体进行通信的规则的集合。 客户(client)和服务器(server)都是指通信中所涉及的两个应用进程。客户是服务的请求方,服务器是服务的提供方。 客户服务器方式所描述的是进程之间服务和被服务的关系。 协议栈:指计算机网络体系结构采用分层模型后,每层的主要功能由对等层协议的运行来实现,因而每层可用一些主要协议来表征,几个层次画在一起很像一个栈的结构. 对等层:在网络体系结构中,通信双方实现同样功能的层. 协议数据单元:对等层实体进行信息交换的数据单位. 服务访问点:在同一系统中相邻两层的实体进行交互(即交换信息)的地方.服务访问点SAP是一个抽象的概念,它实体上就是一个逻辑接口. 2-8试解释everything over IP和IP over eveything的含义。 答:TCP/IP协议可以为各式各样的应用提供服务(everything over IP) 允许IP协议在各式各样的网络构成的互联网上运行(IP over everything) 第三章物理层 规程与协议有什么区别,规程专指物理层协议 3-01物理层要解决哪些问题,物理层的主要特点是什么, 答:物理层要解决的主要问题: (1)物理层要尽可能地屏蔽掉物理设备和传输媒体,通信手段的不同,使数据链路层感觉不到这些差异,只考虑完成本层的协议和服务。 (2)给其服务用户(数据链路层)在一条物理的传输媒体上传送和接收比特流(一般为串行按顺序传输的比特流)的能力,为此,物理层应该解决物理连接的建立、维持和释放问题。 (3)在两个相邻系统之间唯一地标识数据电路 物理层的主要特点: (1)由于在OSI之前,许多物理规程或协议已经制定出来了,而且在数据通信领域中,这些物理规程已被许多商品化的设备所采用,加之,物理层协议涉及的范围广泛,所以至今没有按OSI的抽象模型制定一套新的物理层协议,而是沿用已存在的物理规程,将物理层确定为描述与传输媒体接口的机械,电气,功能和规程特性。 (2)由于物理连接的方式很多,传输媒体的种类也很多,因此,具体的物理协议相当复杂。 3-02试给出数据通信系统的模型并说明其主要组成构件的作用。 答:源点:源点设备产生要传输的数据。源点又称为源站。 发送器:通常源点生成的数据要通过发送器编码后才能在传输系统中进行传输。 接收器:接收传输系统传送过来的信号,并将其转换为能够被目的设备处理的信息。 终点:终点设备从接收器获取传送过来的信息。终点又称为目的站 传输系统:信号物理通道 3-03试解释以下名词:数据,信号,模拟数据,模拟信号,数字数据,数字信号,码元,单工通信,半双工通信,全双工通信。 答:数据:是运送信息的实体。 信号:则是数据的电气的或电磁的表现。 模拟数据:运送信息的模拟信号。 模拟信号:连续变化的信号。 数字信号:取值为有限的几个离散值的信号。 数字数据:取值为不连续数值的数据。 码元(code):在使用时间域(或简称为时域)的波形表示数字信号时,代表不同离散数值的基本波形。 单工通信:即只有一个方向的通信而没有反方向的交互。 半双工通信:即通信和双方都可以发送信息,但不能双方同时发送(当然也不能同时接收)。这种通信方式是一方发送另一方接收,过一段时间再反过来。 全双工通信:即通信的双方可以同时发送和接收信息。 3-04物理层的接口有哪几个方面的特性,各包含些什么内容, 答:(1)机械特性 明接口所用的接线器的形状和尺寸、引线数目和排列、固定和锁定装置等等。 (2)电气特性 指明在接口电缆的各条线上出现的电压的范围。 (3)功能特性 指明某条线上出现的某一电平的电压表示何意。 (4)规程特性 说明对于不同功能的各种可能事件的出现顺序。 305奈氏准则与香农公式在数据通信中的意义是什么,“比特/每秒”和“码元/每秒”有何区别, 答:奈氏准则与香农公式的意义在于揭示了信道对数据传输率的限制,只是两者作用的范围不同。 奈氏准则给出了每赫带宽的理想低通信道的最高码元的传输速率是每秒2个码元。香农公式则推导出了带宽受限且有高斯白噪声干扰的信道的极限信息传输速率C=Wlog2(1+S/N),其中W为信道的带宽(以赫兹为单位),S为信道内所传信号的平均功率,N为信道内部的高斯噪声功率。 比特和波特是两个完全不同的概念,比特是信息量的单位,波特是码元传输的速率单位。但信息的传输速率“比特/每秒”一般在数量上大于码元的传输速率“波特”,且有一定的关系,若使1个码元携带n比特的信息量,则MBaud的码元传输速率所对应的信息传输率为M×nbit/s,但某些情况下,信息的传输速率“比特/每秒”在数量上小于码元的传输速率“波特”,如采用内带时钟的曼切斯特编码,一半的信号变化用于时钟同步,另一半的信号变化用于信息二进制数据,码元的传输速率“波特”是信息的传输速率“比特/每秒”的2倍。 3-06常用的传输媒体有哪几种,各有何特点, 答:常用的传输媒体有双绞线、同轴电缆、光纤和电磁波。 一、双绞线 特点: (1)抗电磁干扰 (2)模拟传输和数字传输都可以使用双绞线 二、同轴电缆 特点:同轴电缆具有很好的抗干扰特性 三、光纤 特点: (1)传输损耗小,中继距离长,对远距离传输特别经济; (2)抗雷电和电磁干扰性能好; (3)无串音干扰,保密性好,也不易被窃听或截取数据; (4)体积小,重量轻。 四、电磁波 优点: (1)微波波段频率很高,其频段范围也很宽,因此其通信信道的容量很大; (2)微波传输质量较高; (3)微波接力通信的可靠性较高; (4)微波接力通信与相同容量和长度的电缆载波通信比较,建设投资少,见效快。 当然,微波接力通信也存在如下的一些缺点: (1)相邻站之间必须直视,不能有障碍物。 (2)微波的传播有时也会受到恶劣气候的影响; (3)与电缆通信系统比较,微波通信的隐蔽性和保密性较差; (4)对大量的中继站的使用和维护要耗费一定的人力和物力。 308模拟传输系统与数字传输系统的主要特点是什么, 答:模拟传输:只能传模拟信号,信号会失真。 数字传输:可传模拟与数字信号,噪声不累计,误差小。 310EIA232接口标准用在什么场合, 答:通常EIA232用于标准电话线路(一个话路)的物理层接口。 311基带信号与宽带信号的传输各有什么特点, 答:(1)基带信号是将数字信号1或0直接用两种不同的电压来表示,然后送到线路上去传输。 (2)宽带信号则是将基带信号进行调制后形成的频分复用模拟信号。基带信号进行调制后,其频谱移到较高的频率处。由于每一路基带信号的频谱被搬移到不同的频段上,因此合在一起后并不会互相干扰。这样做可以在一条线路中同时传送许多路的数字信号,因而提高了线路的利用率。 312有600MB(兆字节)的数据,需要从南京传送到北京。一种是将数据写到磁盘上,然后托人乘火车将这些磁盘捎去。另一种方法是用计算机通过长途电话线路(设信息传送的速率是2.4kb/s)传送此数据。试比较这两种方法的优劣。若信息传送速率为56kb/s,其结果又如何, 答:假定连续传送且不出错。若用2.4Kb/s速率,传输600MB需要23.7天: 600MB=600×1024×1024×8=600×1048576×8=5033164800bit。 5033164800bit/2.4Kb/s=2048000s 2048000s/60/60/24=23.7天,比托人乘火车捎去要慢。 若用56Kb/s速率传送,则需时间1.02天。 3-13 试写出下列英文缩写的全文,并进行简单的解释。 FDM,TDM,STDM,WDM,DWDM,CDMA,SONET,SDH,STM-1,OC-48,DTE,DCE,EIA,ITU-T,CCITT,ISO. 答: 3-14试写出下列英文缩写的全文,并做简单的解释。FDM,TDM,STDM,WDM,DWDM,CDMA,SONET,SDH,STM-1,OC-48,DTE,DCE,EIA,ITU-T,CCITT,ISO 答:FDM(frequencydivisionmultiplexing) TDM(TimeDivisionMultiplexing) STDM(StatisticTimeDivisionMultiplexing) WDM(WaveDivisionMultiplexing) DWDM(DenseWaveDivisionMultiplexing) CDMA(CodeWaveDivisionMultiplexing) SONET(SynchronousOpticalNetwork)同步光纤网 SDH(SynchronousDigitalHierarchy)同步数字系列 STM-1(SynchronousTransferModule)第1级同步传递模块 OC-48(OpticalCarrier)第48级光载波 3-15 3-16试比较xDSL、HFC以及FTTx接入技术的优缺点, 答:xDSL技术就是用数字技术对现有的模拟电话用户线进行改造,使它能够承载宽带业务。成本低,易实现,但带宽和质量差异性大。 HFC网的最大的优点具有很宽的频带,并且能够利用已经有相当大的覆盖面的有线电视网。要将现有的450MHz单向传输的有线电视网络改造为750MHz双向传输的HFC网需要相当的资金和时间。 FTTx(光纤到……)这里字母x可代表不同意思。可提供最好的带宽和质量、但现阶段线路和工程成本太大。 第四章数据链路层 网络适配器的作用是什么?网络适配器工作在哪一层? 答:适配器(即网卡)来实现数据链路层和物理层这两层的协议的硬件和软件。网络适配器工作在TCP/IP协议中的网络接口层(OSI中的数据链路层和物理层) 4-1数据链路(即逻辑链路)与链路(即物理链路)有何区别?“电路接通了”与”数据链路接通了”的区别何在? 答:数据链路与链路的区别在于数据链路出链路外,还必须有一些必要的规程来控制数据的传输,因此,数据链路比链路多了实现通信规程所需要的硬件和软件。 “电路接通了”表示链路两端的结点交换机已经开机,物理连接已经能够传送比特流了,但是,数据传输并不可靠,在物理连接基础上,再建立数据链路连接,才是“数据链路接通了”,此后,由于数据链路连接具有检测、确认和重传功能,才使不太可靠的物理链路变成可靠的数据链路,进行可靠的数据传输当数据链路断开连接时,物理电路连接不一定跟着断开连接。 4-2数据链路层中的链路控制包括哪些功能?试讨论数据链路层做成可靠的链路层有哪些优点和缺点. 答:链路管理 帧定界 流量控制 差错控制 将数据和控制信息区分开 透明传输 寻址 可靠的链路层的优点和缺点取决于所应用的环境:对于干扰严重的信道,可靠的链路层可以将重传范围约束在局部链路,防止全网络的传输效率受损;对于优质信道,采用可靠的链路层会增大资源开销,影响传输效率。 4-3数据链路层的三个基本问题(帧定界、透明传输和差错检测)为什么都必须加以解决, 答:帧定界是分组交换的必然要求 透明传输避免消息符号与帧定界符号相混淆 差错检测防止合差错的无效数据帧浪费后续路由上的传输和处理资源 4-4如果在数据链路层不进行帧定界,会发生什么问题, 答:无法区分分组与分组 无法确定分组的控制域和数据域 无法将差错更正的范围限定在确切的局部 4-5PPP协议的主要特点是什么,为什么PPP不使用帧的编号,PPP适用于什么情况,为什么PPP协议不能使数据链路层实现可靠传输, 答:简单,提供不可靠的数据报服务,检错,无纠错 不使用序号和确认机制 地址字段A只置为0xFF。地址字段实际上并不起作用。 控制字段C通常置为0x03。 PPP是面向字节的 当PPP用在同步传输链路时,协议规定采用硬件来完成比特填充(和HDLC的做法一样),当PPP用在异步传输时,就使用一种特殊的字符填充法 PPP适用于线路质量不太差的情况下、PPP没有编码和确认机制 4-6要发送的数据为1101011011。采用CRC的生成多项式是P(X)=X4+X+1。试求应添加在数据后面的余数。 数据在传输过程中最后一个1变成了0,问接收端能否发现, 若数据在传输过程中最后两个1都变成了0,问接收端能否发现, *采用CRC检验后,数据链路层的传输是否就变成了可靠的传输, 答:作二进制除法,1得余数1110,添加的检验序列是1110. 作二进制除法,两种错误均可发展 仅仅采用了CRC检验,缺重传机制,数据链路层的传输还不是可靠的传输。 4-7一个PPP帧的数据部分(用十六进制写出)是7D5EFE277D5D7D5D657D5E。试问真正的数据是什么(用十六进制写出), 答:7D5EFE277D5D7D5D657D5E 7EFE277D7D657D 4-8PPP协议使用同步传输技术传送比特串0。试问经过零比特填充后变成怎样的比特串,若接收端收到的PPP帧的数据部分是0110,问删除发送端加入的零比特后变成怎样的比特串, 答:0 0110 10 4-9试分别讨论一下各种情况在什么条件下是透明传输,在什么条件下不是透明传输。(提示:请弄清什么是“透明传输”,然后考虑能否满足其条件。) (1)普通的电话通信。 (2)电信局提供的公用电报通信。 (3)因特网提供的电子邮件服务。 答: 第5章 局域网 5-01局域网的主要特点是什么,为什么局域网采用广播通信方式而广域网不采用呢, 答:局域网LAN是指在较小的地理范围内,将有限的通信设备互联起来的计算机通信网络 从功能的角度来看,局域网具有以下几个特点: (1)共享传输信道,在局域网中,多个系统连接到一个共享的通信媒体上。 (2)地理范围有限,用户个数有限。通常局域网仅为一个单位服务,只在一个相对独立的局部范围内连网,如一座楼或集中的建筑群内,一般来说,局域网的覆盖范围越位10m~10km内或更大一些。 从网络的体系结构和传输检测提醒来看,局域网也有自己的特点: (1)低层协议简单 (2)不单独设立网络层,局域网的体系结构仅相当于相当与OSI/RM的最低两层 (3)采用两种媒体访问控制技术,由于采用共享广播信道,而信道又可用不同的传输媒体,所以局域网面对的问题是多源,多目的的连连管理,由此引发出多中媒体访问控制技术 在局域网中各站通常共享通信媒体,采用广播通信方式是天然合适的,广域网通常采站点间直接构成格状网。 5-02为什么LLC子层的标准已制定出来了但现在却很少使用, 答:由于TCP/IP体系经常使用的局域网是DIXEthernetV2而不是802.3标准中的几种局域网,因此现在802委员会制定的逻辑链路控制子层LLC(即802.2标准)的作用已经不大了。 5-03数据率为10Mb/s的以太网在物理媒体上的码元传输速率是多少码元/秒, 答:码元传输速率即为波特率,以太网使用曼彻斯特编码,这就意味着发 送的每一位都有两个信号周期。标准以太网的数据速率是10MB/s,因此波特率是数据率的两倍,即20M波特 5-04试说明10BASE-T中的“10”、“BASE”和“T”所代表的意思。 答:10BASE-T中的“10”表示信号在电缆上的传输速率为10MB/s,“BASE”表示电缆上的信号是基带信号,“T”代表双绞线星形网,但10BASE-T的通信距离稍短,每个站到集线器的距离不超过100m。 5-0510Mb/s以太网升级到100Mb/s、1Gb/S和10Gb/s时,都需要解决哪些技术问题,为什么以太网能够在发展的过程中淘汰掉自己的竞争对手,并使自己的应用范围从局域网一直扩展到城域网和广域网, 答:技术问题:使参数a保持为较小的数值,可通过减小最大电缆长度或增大帧的最小长度 在100mb/s的以太网中采用的方法是保持最短帧长不变,但将一个网段的最大电缆的度减小到100m,帧间时间间隔从原来9.6微秒改为现在的0.96微秒 吉比特以太网仍保持一个网段的最大长度为100m,但采用了“载波延伸”的方法,使最短帧长仍为64字节(这样可以保持兼容性)、同时将争用时间增大为512字节。并使用“分组突发”减小开销 10吉比特以太网的帧格式与10mb/s,100mb/s和1Gb/s以太网的帧格式完全相同 吉比特以太网还保留标准规定的以太网最小和最大帧长,这就使用户在将其已有的以太网进行升级时,仍能和较低速率的以太网很方便地通信。 由于数据率很高,吉比特以太网不再使用铜线而只使用光纤作为传输媒体,它使用长距离(超过km)的光收发器与单模光纤接口,以便能够工作在广域网。 提示:可以从兼容性,价格,使用了光纤后具有的“意想不到”效果等角度阐述。 5-06有10个站连接到以太网上。试计算一下三种情况下每一个站所能得到的带宽。 (1)10个站都连接到一个10Mb/s以太网集线器。 (2)10个站都连接到一个100Mb/s以太网集线器。 (3)10个站都连接到一个10Mb/s以太网交换机。 答:(1)10个站共享10Mb/s。 10个站共享100Mb/s。(3)每个站独占10Mb/s。 5-07假定1km长的CSMA/CD网络的数据率为1Gb/s。设信号在网络上的传播速率为200000km/s。求能够使用此协议的最短帧长。 答:对于1km电缆,单程传播时间为1/200000=5为微秒,来回路程传播时间为10微秒,为了能够按照CSMA/CD工作,最小帧的发射时间不能小于10微秒,以Gb/s速率工作,10微秒可以发送的比特数等于10*10-6/1*10-9=10000,因此,最短帧是10000位或1250字节长 5-08有一个使用集线器的以太网,每个站到集线器的距离为d,数据发送 82.5×10m/s速率为C,帧长为12500字节,信号在线路上的传播速率为,距离d为25m或2500m,发送速率为10Mb/s或10Gb/s。这样就有四种不同的组合。试 α利用公式(5-1)分别计算这4种不同情况下参数的数值,并作简单讨论。 解:公式(5-1)为: τττC===αTLCL0 T,τ其中为传播时延,为数据帧的发送时间。 计算结果: 距离d=25md=2500m 发送速率C=10Mb/sC=10Gb/sC=10Mb/sC=10Gb/s ?,?2?3α,,,1010 α讨论:越大,信道利用率就越小。 5-09为什么早期的以太网选择总线拓扑结构而不是星形拓扑结构,但现在却改为使用星形拓扑结构, 答:常用的局域网的网络拓扑有:星形网,总线网,环形网,树形网 当时很可靠的星形拓扑结构较贵,人们都认为无源的总线结构更加可靠,但实践证明,连接有大量站点的总线式以太网很容易出现故障,而现在专用的ASIC芯片的使用可以讲星形结构的集线器做的非常可靠,因此现在的以太网一般都使用星形结构的拓扑。 5-10假定一个以太网上的通信量中的80%是在本局域网上进行的,而其余的20%的通信量是在本局域网和因特网之间进行的。另一个以太网的情况则反过来。这两个以太网一个使用以太网集线器,而另一个使用以太网交换机。你认为以太网交换机应当用在哪一个网络, 答:集线器为物理层设备,模拟了总线这一共享媒介共争用,成为局域网通信容量的瓶颈。 交换机则为链路层设备,可实现透明交换 局域网通过路由器与因特网相连 当本局域网和因特网之间的通信量占主要成份时,形成集中面向路由器的数据流,使用集线器冲突较大,采用交换机能得到改善。 当本局域网内通信量占主要成份时,采用交换机改善对外流量不明显。 5-11以太网使用的CSMA/CD协议是以争用方式接入到共享信道。这与传统的时分复用TDM相比优缺点如何, 答:CSMA/CD是一种动态的媒体随机接入共享信道方式,而传统的时分复用TDM是一种静态的划分信道,所以对信道的利用,CSMA/CD是用户共享信道,更灵活,可提高信道的利用率,不像TDM,为用户按时隙固定分配信道,即使当用户没有数据要传送时,信道在用户时隙也是浪费的;传统的时分复用TDM是静态时隙分配,均匀高负荷时信道利用率高,低负荷或符合不均匀时资源浪费较大,CSMA/CD动态使用空闲资源,低负荷时信道利用率高,但控制复杂,高负荷时信道冲突大。对计算机通信来说,突发式的数据更不利于使用TDM方式。 5-12使用CSMA/CD协议时,若线路长度为100m,信号在线路上传播速率为2×108m/s。数据的发送速率为1Gbit/s。试计算帧长度为512字节、1500字节和64000字节时的参数a的数值,并进行简单讨论。 答:a=τ/T0=τC/L=100?(2×108)×1×109/L=500/L, 信道最大利用率Smax=1/(1+4.44a),最大吞吐量Tmax=Smax×1Gbit/s 帧长512字节时,a=500/(512×8)=0.122,Smax=0.6486,Tmax=648.6Mbit/s 帧长1500字节时,a=500/(1500×8)=0.0417,Smax=0.8438,Tmax=843.8Mbit/s 帧长64000字节时,a=500/(64000×8)=0.000977,Smax=0.9957,Tmax=995.7Mbit/s 可见,在端到端传播时延和数据发送率一定的情况下,帧长度越大,信道利用率越大,信道的最大吞吐量就越大。 513以太网交换机有何特点,用它怎样组成虚拟局域网, 答:特点:以太网交换机实质就是一个多端口的的网桥,它工作在数据链路层上。每一个端口都直接与一个主机或一个集线器相连,并且是全双工工作。它能同时连通多对端口,使每一对通信能进行无碰撞地传输数据。在通信时是独占而不是和其他网络用户共享传输媒体的带宽。 以太网交换机则为链路层设备,可实现透明交换,支持存储转发方式,而有些交换机还支持直通方式。 虚拟局域网VLAN是由一些局域网网段构成的与物理位置无关的逻辑组。这些网段具有某些共同的需求。虚拟局域网协议允许在以太网的帧格式中插入一个4字节的标识符,称为VLAN标记(tag),用来指明发送该帧的工作站属于哪一个虚拟局域网。 5-14网桥的工作原理和特点是什么,网桥与转发器以及以太网交换机有何异同, 网桥工作在数据链路层,它根据MAC帧的目的地址对收到的帧进行转发。 网桥具有过滤帧的功能。当网桥收到一个帧时,并不是向所有的接口转发此帧,而是先检查此帧的目的MAC地址,然后再确定将该帧转发到哪一个接口 转发器工作在物理层,它仅简单地转发信号,没有过滤能力 以太网交换机则为链路层设备,可视为多端口网桥。 5-15图5-24(见教材p123)表示有五个站点分别连接在三个局域网上,并且用网桥B1和B2连接起来。每一个网桥都有两个接口(1和2)。在一开始,两个网桥中的转发表都是空的。以后有以下各站向其他的站发送了数据帧:H1发送给H5,H3发送给H2,H4发送给H3,H2发送给H1。试把有关数据填写在表3-2中。 发送B1的转B2的转B1的处理B2的处理 的帧发表发表(转发,丢弃,(转发,丢弃, 地接地接登记,)登记,) 址口址口 H1?HA1A1转发,写入转发转发,写入转发 5表表 H3?HC2C1转发,写入转发转发,写入转发 2表表 H4?HD2D2写入转发表,丢转发,写入转发 3弃不转发表 H2?HB1写入转发表,丢接收不到这个帧 1弃不转发 516无线局域网的MAC协议有哪些特点,为什么WLAN中不能使用冲突检测协议,试说明RTS帧和CTS帧的作用。 答:无线局域网MAC协议提供了一个名为分布式协调功能(DCF)的分布式接入控制机制以及工作于其上的一个可选的集中式控制,该集中式控制算法称为点协调功能(PCF)。DCF采用争用算法为所有通信量提供接入;PCF提供无争用的服务,并利用了DCF特性来保证它的用户可靠接入。PCF采用类似轮询的方法将发送权轮流交给各站,从而避免了冲突的产生,对于分组语音这样对于时间敏感的业务,就应提供PCF服务。 由于无线信道信号强度随传播距离动态变化范围很大,不能根据信号强度来判断是否发生冲突,因此不适用有线局域网的的冲突检测协议CSMA/CD。802.11采用了CSMA/CA技术, CA表示冲突避免。这种协议实际上是在发送数据帧前需对信道进行预约。这种CSMA/CA协议通过RTS(请求发送)帧和CTS(允许发送)帧来实现。 源站在发送数据前,先向目的站发送一个称为RTS的短帧,目的站收到RTS后向源站响应一个CTS短帧,发送站收到CTS后就可向目的站发送数据帧。 5-17 518 IEEE802.11标准的MAC协议中的SIFS、PIFS和DIFS的作用是什么, 答SIFS是一种最短的帧间间隔,用于PCF中对轮询的响应帧、CSMA/CA协议中预约信道的RTS帧和CTS帧、目的站收到自己的数据帧后给发送站的确认帧等短帧的场合。PIFS是中等的帧间间隔,用于PCF方式中轮询。DIFS是最长的帧间间隔,用于DCF方式中所有普通的通信量。 第6章 广域网 6-01试从多个方面比较虚电路和数据报这两种服务的优缺点。 答:虚电路服务和数据报服务的区别可由下表归纳:        对比的方面虚电路数据报 连接的建立必须有不要 目的站地址仅在连接建立阶段使每个分组都有目的站 用,每个分组使用短的虚的全地址 电路号 路由选择在虚电路连接建立时每个分组独立选择路 进行,所有分组均按同一由 路由 当路由器出所有通过了出故障的出故障的路由器可能 故障路由器的虚电路均不能工会丢失分组,一些路由可 作能会发生变化  分组的顺序 总是按发送顺序到达到达目的站时可能不 目的站按发送顺序  端到端的差由通信子网负责 由主机负责  错处理 端到端的流由通信子网负责 由主机负责  量控制  从占用通信子网资源方面看:虚电路服务将占用结点交换机的存储空间,而数据报服务对每个其完整的目标地址独立选径,如果传送大量短的分组,数据头部分远大于数据部分,则会浪费带宽。 从时间开销方面看:虚电路服务有创建连接的时间开销,对传送小量的短分组,显得很浪费;而数据报服务决定分组的去向过程很复杂,对每个分组都有分析时间的开销。 从拥塞避免方面看:虚电路服务因连接起来的资源可以预留下来,一旦分组到达,所需的带宽和结点交换机的容量便已具有,因此有一些避免拥塞的优势。而数据报服务则很困难。 从健壮性方面看:通信线路的故障对虚电路服务是致命的因素,但对数据报服务则容易通过调整路由得到补偿。因此虚电路服务更脆弱。 6-02设有一分组交换网。若使用虚电路,则每一分组必须有3字节的分组首部,而每个网络结点必须为虚电路保留8字节的存储空间来识别虚电路。但若使用数据报,则每个分组需有15字节的分组首部,而结点就不需要保留转发表的存储空间。设每段链路每传1MB需0.01元。购买结点存储器的代价为每字节0.01元,而存储器的寿命为2年工作时间(每周工作40小时)。假定一条虚电路的每次平均时间为1000s,而在此时间内发送200分组,每个分组平均要经过4段链路。试问采用哪种(虚电路或数据报)更为经济,相差多少, 答:每个分组经过4段链路意味链路上包括5个分组交换机。 虚电路实现方案:需在1000秒内固定分配5×8=40bytes存储空间, 存储器使用的时间是2年,即2×52×40×3600=1.5×107sec 每字节每秒的费用=0.01/(1.5×107)=6.7×10-10元 总费用,即1000秒40字节的费用=1000×40×6.7×10-10=2.7×10-5元 数据报实现方案:比上述虚电路实现方案需多传(15-3)×4×200=9600bytes, 每字节每链路的费用=0.01/106=10-8元 总费用,即9600字节每链路的费用=9600×10-8=9.6×10-5元 9.6-2.7=6.9毫分 可见,本题中采用虚电路实现方案更为经济,在1000秒的时间内便宜6.9毫分。 6-03假定分组交换网中所有结点的处理机和主机均正常工作,所有的软件也正常无误。试问一个分组是否可能被投送到错误的目的结点(不管这个概率有多小), 如果一个网络中所有链路的数据链路层协议都能正确工作,试问从源结点到目的结点之间的端到端通信是否一定也是可靠的, 答:有可能。大的突发噪声可能破坏分组。使用k位的效验和,差错仍然有-k2的概率被漏检。如果分组的目的地址字段或虚电路的标识号被改变,分组会被投递到错误的目的地,并可能被接收为正确的分组。换句话说,偶然的突发噪声可能把送往一个目的地的完全合法的分组改变成送往另一个目的地的也是完全合法的分组。 即使所有的数据链路层协议都工作正常,端到端的通信不一定可靠。 6-04广域网中的主机为什么采用层次结构方式进行编址, 答:层次结构方式进行编址就是把一个用二进制数表示的主机地址分为前后两部分。前一部分的二进制数表示该主机所连接的分组交换机的编号,而后一部分的二进制数表示所连接的分组交换机的端口号,或主机的编号。采用两个层次的编址方案可使转发分组时只根据分组和第一部分的地址(交换机号),即在进行分组转发时,只根据收到的分组的主机地址中的交换机号。只有当分组到达与目的主机相连的结点交换机时,交换机才检查第二部分地址(主机号),并通过合适的低速端口将分组交给目的主机。采用这种方案可以减小转发表的长度,从而减少了查找转发表的时间。 6-05一个数据报分组交换网允许各结点在必要时将收到的分组丢弃。设结点丢弃一个分组的概率为p。现有一个主机经过两个网络结点与另一个主机以数据报方式通信,因此两个主机之间要经过3段链路。当传送数据报时,只要任何一个结点丢弃分组,则源点主机最终将重传此分组。试问: (1)每一个分组在一次传输过程中平均经过几段链路, (2)每一个分组平均要传送几次, (3)目的主机每收到一个分组,连同该分组在传输时被丢弃的传输,平均需要经过几段链路, 答:(1)从源主机发送的每个分组可能走1段链路(主机-结点)、2段链路(主机-结点-结点)或3段链路(主机-结点-结点-主机)。 走1段链路的概率是p, 走2段链路的概率是p(1-p), 2走3段链路的概率是(1-p) 则,一个分组平均通路长度的期望值是这3个概率的加权和,即等于 22L=1×p,2×p(1-p),3×(1-p)=p-3p+3 注意,当p=0时,平均经过3段链路,当p=1时,平均经过1段链路,当0250,共有子网数8=2-2=254>16,能满足实际需求。 可给每个地点分配如下子网号码 地点: 子网号(subnet-id) 子网网络号 主机IP的最小值和最大值 1: 00000001 129.250.1.0 129.250.1.1---129.250.1.254 2: 00000010 129.250.2.0 129.250.2.1---129.250.2.254 3: 00000011 129.250.3.0 129.250.3.1---129.250.3.254 4: 00000100 129.250.4.0 129.250.4.1---129.250.4.254 5: 00000101 129.250.5.0 129.250.5.1---129.250.5.254 6: 00000110 129.250.6.0 129.250.6.1---129.250.6.254 7: 00000111 129.250.7.0 129.250.7.1---129.250.7.254 8: 00001000 129.250.8.0 129.250.8.1---129.250.8.254 9: 00001001 129.250.9.0 129.250.9.1---129.250.9.254 10: 00001010 129.250.10.0 129.250.10.1---129.250.10.254 11: 00001011 129.250.11.0 129.250.11.1---129.250.11.254 12: 00001100 129.250.12.0 129.250.12.1---129.250.12.254 13: 00001101 129.250.13.0 129.250.13.1---129.250.13.254 14: 00001110 129.250.14.0 129.250.14.1---129.250.14.254 15: 00001111 129.250.15.0 129.250.15.1---129.250.15.254 16: 00010000 129.250.16.0 129.250.16.1---129.250.16.254 7-20 有两个CIDR地址块208.128/11和208.130.28/22。是否有那一个地址块包含了另一个地址,如果有,请指出,并说明理由。 208.128/11的前缀为:11010000 100 208.130.28/22的前缀为:11010000 10000010 000101,它的前11位与208.128/11的前缀是一致的,所以208.128/11地址块包含了208.130.28/22这一地址块。 7-21 有如下的4个/24地址块,试进行最大可能性的聚会。 212.56.132.0/24 212.56.133.0/24 212.56.134.0/24 212.56.135.0/24 212=(11010100),56=(00111000)22 132=(10000100),2 133=(10000101)2 134=(10000110),2 135=(10000111)2 所以共同的前缀有22位,即11010100 00111000 100001,聚合的CIDR地址块是:212.56.132.0/22 7-23 设某路由器建立了如下路由表(这三列分别是目的网络、子网掩码和下一跳路由器,若直接交付则最后一列表示应当从哪一个接口转发出去): 128.96.39.0 255.255.255.128 接口0 128.96.39.128 255.255.255.128 接口1 128.96.40.0 255.255.255.128 R2 192.4.153.0 255.255.255.192 R3 *(默认) R4 现共收到5个分组,其目的站IP地址分别为: (1)128.96.39.10 (2)128.96.40.12 (3)128.96.40.151 (4)192.4.153.17 (5)192.4.153.90 试分别计算其下一跳。 解:(1)分组的目的站IP地址为:128.96.39.10。先与子网掩码255.255.255.128相与,得128.96.39.0,可见该分组经接口0转发。 (2)分组的目的IP地址为:128.96.40.12。 与子网掩码255.255.255.128相与得128.96.40.0,不等于128.96.39.0。 与子网掩码255.255.255.128相与得128.96.40.0,经查路由表可知,该项分组经R2转发。 (3)分组的目的IP地址为:128.96.40.151,与子网掩码255.255.255.128相与后得128.96.40.128,与子网掩码255.255.255.192相与后得128.96.40.128,经查路由表知,该分组转 发选择默认路由,经R4转发。 (4)分组的目的IP地址为:192.4.153.17。与子网掩码255.255.255.128相与后得192.4.153.0。与子网掩码255.255.255.192相与后得192.4.153.0,经查路由表知,该分组经R3转发。 (5)分组的目的IP地址为:192.4.153.90,与子网掩码255.255.255.128相与后得192.4.153.0。与子网掩码255.255.255.192相与后得192.4.153.64,经查路由表知,该分组转发选择默认路由,经R4转发。 7-24 一个自治系统有5个局域网,其连接图如图7-36示(p199)。LAN2至LAN5上的主机数分别为:91,150,3和15。该自治系统分配到的IP地址块为30.138.118/23。试给出每一个局域网的地址块(包括前缀)。 答:本题的解答有很多种,下面给出两种不同的答案: 第一组答案 第二组答案 LAN1:30.138.119.192/29 30.138.118.192/27 LAN2: 30.138.119.0/25 30.138.118.0/25 LAN3: 30.138.118.0/24 30.138.119.0/24 LAN4: 30.138.119.200/29 30.138.118.224/27 LAN5: 30.138.119.128/26 30.138.118.128/27 再给出一组解答: 30.138.118/23-- 30.138.0111011 分配网络前缀时应先分配地址数较多的前缀 题目没有说LAN1上有几个主机,但至少需要3个地址给三个路由器用。 写成二进制表示:00011110 10001010 01110110 00000000 掩码 11111111 11111111 11111110 00000000 LAN3有150个主机加一个路由器地址为151个地址。 地址块 00011110 10001010 0111011* ******** 分配地址块 00011110 10001010 01110110 ******** 即 30.138.118.0/24 LAN2有91个主机加一个路由器地址为92个地址。 分配地址块 00011110 10001010 01110111 0******* 即 30.138.119.0/25 LAN5有15个主机加一个路由器地址为16个地址。需要/27地址块,可分配/26地址块。 分配地址块 00011110 10001010 01110111 10****** 即 30.138.119.128/26 LAN4有3个主机加一个路由器地址为4个地址。至少需要/29地址块 分配地址块 00011110 10001010 01110111 11000*** 即 30.138.119.192/29 LAN1至少有3个IP地址供路由器用。也分一个/29地址块 分配地址块 00011110 10001010 01110111 11001*** 即 30.138.119.200/29 7-25 已知地址块中的一个地址是140.120.84.24/20。试求这个地址块中的最小地址和最大地址。地址掩码是什么,地址块中共有多少个地址,相当于多少 个C类地址, 140.120.84.24——140.120.(01010100).24 最小地址是140.120.(01010000).0/20 (80) 最大地址是140.120.(01011111).255/20 (95) 12=4096,相当于16个C类地址。地址数是2 7-26 7-27 以下地址中的哪一个和86.32/12匹配?请说明理由。 (1)86.33.224(123 (2)86.79.65.216 (3)86.58.119.74 (4)86.68.206.154。 86.32/12——86.00100000下划线上为12位前缀说明第二字节的前4位在前缀中。 给出的四个地址的第二字节的前4位分别为:0010,0100,0011和0100。 因此只有(1)是匹配的。 7-28 以下的地址前缀中的哪一个和地址2.52.90.140匹配,请说明理由。 (1)0/4;(2)32/4;(3)4/6(4)80/4 答:前缀(1)和地址2.52.90.140匹配 2.52.90.140——00000010.52.90.140 0/4——00000000 32/4——00100000 4/6——00000100 80/4——01010000 7-29 IGP和EGP这两类协议的主要区别是什么, IGP:在自治系统内部使用的路由协议;力求最佳路由 EGP:在不同自治系统便捷使用的路由协议;力求较好路由(不兜圈子) EGP必须考虑其他方面的政策,需要多条路由。代价费用方面可能可达性更重要。 IGP:内部网关协议,只关心本自治系统内如何传送数据报,与互联网中其他自治系统使用什么协议无关。 EGP:外部网关协议,在不同的AS边界传递路由信息的协议,不关心AS内部使用何种协议。 注:IGP主要考虑AS内部如何高效地工作,绝大多数情况找到最佳路由,对费用和代价的有多种解释。 7-30 试简述RIP,OSPF和BGP路由选择协议的主要特点。 主要特点RIPOSPFBGP 网关协议内部内部外部 路由表内容目的网,下一目的网,下一目的网,完整 站,距离站,距离路径 最优通路依据跳数费用多种策略 算法距离矢量链路状态距离矢量 传送方式运输层UDPIP数据报建立TCP连接 其他简单、效率低、效率高、路由器规模大、统一度 跳数为16不可达、频繁交换信息,难量为可达性 好消息传的快,坏维持一致性 消息传的慢 7-31 RIP使用UDP,OSPF使用IP,而BGP使用TCP。这样做有何优点,为什么RIP周期性地和临站交换路由信息,而BGP却不这样做, RIP只和邻站交换信息,使用UDP无可靠保障,但开销小,可以满足RIP要求; OSPF使用可靠的洪泛法,直接使用IP,灵活、开销小; BGP需要交换整个路由表和更新信息,TCP提供可靠交付以减少带宽消耗; RIP使用不保证可靠交付的UDP,因此必须不断地(周期性地)和邻站交换信息才能使路由信息及时得到更新。但BGP使用保证可靠交付的TCP因此不需要这样做。 第八章 运输层 端口的作用是什么,为什么端口要划分为三种, 答:端口的作用是对TCP/IP体系的应用进程进行统一的标志,使运行不同操作系统的计算机的应用进程能够互相通信。 熟知端口,数值一般为0~1023.标记常规的服务进程; 登记端口号,数值为1024~49151,标记没有熟知端口号的非常规的服务进程; 8-01试说明运输层的作用。网络层提供数据报或虚电路服务对上面的运输层有何影响, 答:(1)运输层是资源子网与通信子网的界面和桥梁,它负责端到端的通信,既是七层模型中负责数据通信的最高层,又是面向网络通信的低三层和面向信息处理的最高三层之间的中间层,起承上启下的作用。 (2)若通信子网所提供的服务越多,运输协议就可以做得越简单。若网络层提供虚电路服务,那就能保证报文无差错、不丢失、不重复且按序地进行交付,因而运输协议就很简单。但若网络层提供的是不可靠的数据报服务,则就要求主机有一个复杂的运输协议。在极端情况下可以不需要运输层。 8-02当应用程序使用面向连接的TCP和无连接的IP时,这种传输是面向连接的还是面向无连接的, 答:都是。这要在不同层次来看,在运输层是面向连接的,在网络层则是无连接的。 8-03接收方收到有差错的UDP用户数据报时应如何处理, 答:丢弃 8-04试用示意图来解释运输层的复用。一个给定的运输连接能否分裂成许多条虚电路,试解释之;画图说明许多个运输用户复用到一条运输连接上,而 这条运输连接又复用到若干条网络连接(虚电路)上。 答:所有的传输层协议都为应用程序提供多路复用多路分解服务。除了多路复用移路分解服务之外,传输层协议还可以给应用进程提供其他服务,包括可靠数据传输、带宽保证和传输延迟保证。 图传输层在两个应用程序之间提供了逻辑的而不是物理的通信 如图所示,传输层协议实现于终端系统上,而不是在网络路由器上。网络路由器只作用于3—PDU(协议数据单元)的网络层字段,而不作用于传输层字段。 8-05试以具体例子说明为什么一个运输连接可以有多种方式释放。可以设两个互相通信的用户分别连接在网络的两结点上。 答:设A,B建立了运输连接。协议应考虑一下实际可能性: A或B故障,应超时机制,使对方退出,不至于死锁; A主动退出,B被动退出 B主动退出,A被动退出 8-06解释为什么突然释放运输连接就可能会丢失用户数据,而使用TCP的连接释放方法就可保证不丢失数据。 答:当主机1和主机2之间连接建立后,主机1发送了一个TCP数据段并正确抵达主机2,接着主机1发送另一个TCP数据段,这次很不幸,主机2在收到第二个TCP数据段之前发出了释放连接请求,如果就这样突然释放连接,显然主机1发送的第二个TCP报文段会丢失。 而使用TCP的连接释放方法,主机2发出了释放连接的请求,那么即使收到主机1的确认后,只会释放主机2到主机1方向的连接,即主机2不再向主机1发送数据,而仍然可接受主机1发来的数据,所以可保证不丢失数据。 8-07试用具体例子说明为什么在运输连接建立时要使用三次握手。说明如不这样做可能会出现什么情况。 答:3次握手完成两个重要的功能,既要双方做好发送数据的准备工作(双方都知道彼此已准备好),也要允许双方就初始序列号进行协商 ,这个序列号在握手过程中被发送和确认。 假定B给A发送一个连接请求分组,A收到了这个分组,并发送了确认应答分组。按照两次握手的协定,A认为连接已经成功地建立了,可以开始发送数据分组。可是,B在A的应答分组在传输中被丢失的情况下,将不知道A是否已准备好,不知道A建议什么样的序列号,B甚至怀疑A是否收到自己的连接请求分组,在这种情况下,B认为连接还未建立成功,将忽略A发来的任何数据分组,只等待连接确认应答分组。 8-08一个TCP报文段的数据部分最多为多少个字节,为什么,如果用户要传送的数据的字节长度超过TCP报文字段中的序号字段可能编出的最大序号,问还能否用TCP来传送, 答:65495字节,此数据部分加上TCP首部的20字节,再加上IP首部的20字节,正好是IP数据报的最大长度65535.(当然,若IP首部包含了选择,则IP首部长度超过20字节,这时TCP报文段的数据部分的长度将小于65495字节。) 数据的字节长度超过TCP报文段中的序号字段可能编出的最大序号,通过循环使用序号,仍能用TCP来传送。 8-11在8.3.3节曾讲过,若收到的报文段无差错,只是未按序号,则TCP对此未作明确规定,而是让TCP的实现者自行确定。试讨论两种可能的方法的优劣: (1)将不按序的报文段丢弃; (2)先将不按序的报文段暂存于接收缓存内,待所缺序号的报文段收齐后再一起上交应用层。 提示:可以从以下角度回答——尽管到达的每个数据报都是完整的,但可能到达的数据报顺序是错误的,因此,TCP必须准备适当地重组报文的各个部分。 8-12设TCP使用的最大窗口为64KB(64*1024*8bit),而传输信道不产生差错,带宽也不受限制。若报文段的平均往返时延为20ms,问所能得到的最大吞吐量是多少? 答:在发送时延可忽略的情况下,最大数据率=最大窗口*8/平均往返时间=26.2Mb/s。 8-13试计算一个包括5段链路的运输连接的单程端到端时延。5段链路程中有2段是卫星链路,有3段是广域网链路。每条卫星链路又由上行链路和下行链路两部分组成。可以取这两部分的传播时延之和为250ms。每一个广域网的范围为1500km,其传播时延可按150000km,s来计算。各数据链路速率为48kb,s,帧长为960位。 答:5段链路的传播时延=250*2+(1500/150000)*3*1000=530ms 5段链路的发送时延=960/(48*1000)*5*1000=100ms 所以5段链路单程端到端时延=530+100=630ms 8-14重复5-35题,但假定其中的一个陆地上的广域网的传输时延为150ms。 答:760ms 8-15用TCP传送512字节的数据。设窗口为100字节,而TCP报文段每次也是传送100字节的数据。再设发送端和接收端的起始序号分别选为100和200,试画出类似于图8-18(三次握手)的工作示意图。从连接建立阶段到连接释放 都要画上。 主机A主机B SYN,SEQ=100,WIN=100 SYN,ACK,SEQ=200,ACK=101 ACK,SEQ=101,ACK=201 SEQ=101 SEQ=101 ACK=301 SEQ=301 SEQ=401 ACK=501 SEQ=501 ACK=513 FIN,SEQ=513 ACK,SEQ=201,ACK=514 FIN,ACK,SEQ=201,ACK=514 ACK,SEQ=514,ACK=202 8-16在图8-19中所示的连接释放过程中,主机B能否先不发送ACK=x+1的确认?(因为后面要发送的连接释放报文段中仍有ACK=x+1这一信息) 答:如果B不再发送数据了,是可以把两个报文段合并成为一个,即只发送FIN+ACK报文段。但如果B还有数据报要发送,而且要发送一段时间,那就不行,因为A迟迟收不到确认,就会以为刚才发送的FIN报文段丢失了,就超时重传这个FIN报文段,浪费网络资源。 8-17在图8-20中,在什么情况下会发生从状态LISTEN到状态SYN_SENT,以及从状态SYN_ENT到状态SYN_RCVD的变迁? 答:当A和B都作为客户,即同时主动打开TCP连接。这时的每一方的状态变迁都是:CLOSED----SYN-SENT---SYN-RCVD--ESTABLISHED 而A发出的分组超时后,重复发送同样的分组。这样就形成了死锁。 8-18什么是Karn算法,在TCP的重传机制中,若不采用Karn算法,而是在收到确认时认为是对重传报文段的确认,那么由此得出的往返时延样本和重传时间都会偏小。试问:重传时间最后会减小到什么程度, 答:Karn提出了一个算法:在计算平均往返时延时,只要报文段重发了,就不采用其往返时延样本。这样得出的平均往返时延和重发时间当然就较准确。 反之,若不采用Karn算法,若收到的确认是对重发报文段的确认,但却被源站当成是对原来的报文段的确认,那么这样计算出的往返时延样本和重发时 间就会偏大。如果后面再发送的报文段又是经过重发后才收到确认报文段,那么按此方法得出的重发时间就越来越长。 若收到的确认是对原来的报文段的确认,但被当成是对重发报文段的确认则由此计算出的往返时延样本和重发时间都会偏小。这就必然导致报文段的重发。这样就有可能导致重发时间越来越短。 8-19 8-20使用TCP对实时话音数据的传输会有什么问题,使用UDP在传送数据文件时会有什么问题, 答:如果语音数据不是实时播放(边接受边播放)就可以使用TCP,因为TCP传输可靠。接收端用TCP讲话音数据接受完毕后,可以在以后的任何时间进行播放。但假定是实时传输,则必须使用UDP。 UDP不保证可靠交付,但UCP比TCP的开销要小很多。因此只要应用程序接受这样的服务质量就可以使用UDP。 8-21 TCP在进行流量控制时是以分组的丢失作为产生拥塞的标志。有没有不是因拥塞而引起的分组丢失的情况?如有,请举出三种情况。 答:当Ip数据报在传输过程中需要分片,但其中的一个数据报未能及时到达终点,而终点组装IP数据报已超时,因而只能丢失该数据报;IP数据报已经到达终点,但终点的缓存没有足够的空间存放此数据报;数据报在转发过程中经过一个局域网的网桥,但网桥在转发该数据报的帧没有足够的差错空间而只好丢弃。 8-22 一个应用程序用UDP,到IP层把数据报在划分为4个数据报片发送出去,结果前两个数据报片丢失,后两个到达目的站。过了一段时间应用程序重传UDP,而IP层仍然划分为4个数据报片来传送。结果这次前两个到达目的站而后两个丢失。试问:在目的站能否将这两次传输的4个数据报片组装成完整的数据报,假定目的站第一次收到的后两个数据报片仍然保存在目的站的缓存中。 答:不行 重传时,IP数据报的标识字段会有另一个标识符。 仅当标识符相同的IP数据报片才能组装成一个IP数据报。 前两个IP数据报片的标识符与后两个IP数据报片的标识符不同,因此不能组装成一个IP数据报。 8-23 为什么在TCP首部中要把TCP端口号放入最开始的4个字节, 答:在ICMP的差错报文中要包含IP首部后面的8个字节的内容,而这里面有TCP首部中的源端口和目的端口。当TCP收到ICMP差错报文时需要用这两个端口来确定是哪条连接出了差错。 8-24为什么在TCP首部中有一个首部长度字段,而UDP的首部中就没有这个这个字段, 答:TCP首部除固定长度部分外,还有选项,因此TCP首部长度是可变的 。UDP首部长度是固定的。 8-25一个UDP用户数据的数据字段为8192季节。在数据链路层要使用以太网来传送。试问应当划分为几个IP数据报片,说明每一个IP数据报字段长度和片偏移字段的值。 答:6个 数据字段的长度:前5个是1480字节,最后一个是800字节。 片偏移字段的值分别是:0,1480,2960,4440,5920和7400. 8-26在TCP的拥塞控制中,什么是慢开始、拥塞避免、快重传和快恢复算法?这里每一种算法各起什么作用?“乘法减小”和“加法增大”各用在什么情况下? 答:慢开始: 在主机刚刚开始发送报文段时可先将拥塞窗口cwnd设置为一个最大报文段MSS的数值。在每收到一个对新的报文段的确认后,将拥塞窗口增加至多一个MSS的数值。用这样的方法逐步增大发送端的拥塞窗口cwnd,可以分组注入到网络的速率更加合理。 拥塞避免: 当拥塞窗口值大于慢开始门限时,停止使用慢开始算法而改用拥塞避免算法。拥塞避免算法使发送的拥塞窗口每经过一个往返时延RTT就增加一个MSS的大小。 快重传算法规定: 发送端只要一连收到三个重复的ACK即可断定有分组丢失了,就应该立即重传丢手的报文段而不必继续等待为该报文段设置的重传计时器的超时。 快恢复算法: 当发送端收到连续三个重复的ACK时,就重新设置慢开始门限ssthresh 与慢开始不同之处是拥塞窗口cwnd不是设置为1,而是设置为ssthresh 若收到的重复的AVK为n个(n>3),则将cwnd设置为ssthresh 若发送窗口值还容许发送报文段,就按拥塞避免算法继续发送报文段。 若收到了确认新的报文段的ACK,就将cwnd缩小到ssthresh 乘法减小: 是指不论在慢开始阶段还是拥塞避免阶段,只要出现一次超时(即出现一次网络拥塞),就把慢开始门限值ssthresh设置为当前的拥塞窗口值乘以0.5。 当网络频繁出现拥塞时,ssthresh值就下降得很快,以大大减少注入到网络中的分组数。 加法增大: 是指执行拥塞避免算法后,在收到对所有报文段的确认后(即经过一个往返时间),就把拥塞窗口cwnd增加一个MSS大小,使拥塞窗口缓慢增大,以防止网络过早出现拥塞。
/
本文档为【计算机网络教程_谢希仁(第二版)_课后答案(全)】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索