为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > dh食饵—捕食者模型稳定性分析vv

dh食饵—捕食者模型稳定性分析vv

2017-10-12 10页 doc 78KB 75阅读

用户头像

is_003124

暂无简介

举报
dh食饵—捕食者模型稳定性分析vvdh食饵—捕食者模型稳定性分析vv 好文章 食饵—捕食者模型稳定性分析 【摘要】自然界中不同种群之间还存在着一种非常有趣的既有相互依存、又有相互制约的生活方式:种群甲靠丰富的天然资源生存,种群乙靠捕食甲为生,形成食饵-捕食者系统,如食用鱼和鲨鱼,美洲兔和山猫,害虫和益虫等。本文是基于食饵—捕食者之间的有关规律,建立具有自身阻滞作用的两种群食饵—捕食者模型,分析平衡点的稳定性,进行相轨线分析,并用数值模拟方法验证理论分析的正确性。 【关键词】食饵—捕食者模型 相轨线 平衡点 稳定性 好文章 一、问题重述 在自然界中...
dh食饵—捕食者模型稳定性分析vv
dh食饵—捕食者模型稳定性分析vv 好文章 食饵—捕食者模型稳定性分析 【摘要】自然界中不同种群之间还存在着一种非常有趣的既有相互依存、又有相互制约的生活方式:种群甲靠丰富的天然资源生存,种群乙靠捕食甲为生,形成食饵-捕食者系统,如食用鱼和鲨鱼,美洲兔和山猫,害虫和益虫等。本文是基于食饵—捕食者之间的有关规律,建立具有自身阻滞作用的两种群食饵—捕食者模型,分析平衡点的稳定性,进行相轨线分析,并用数值模拟验证理论分析的正确性。 【关键词】食饵—捕食者模型 相轨线 平衡点 稳定性 好文章 一、问题重述 在自然界中,存在这种食饵—捕食者关系模型的物种很多。下面讨论具有自身阻滞作用的两种群食饵-捕食者模型,首先根据该两种群的相互关系建立模型,解释参数的意义,然后进行稳定性分析,解释平衡点稳定的实际意义,对模型进行相轨线分析来验证理论分析的正确性。 二、问题分析 本文选择渔场中的食饵(食用鱼)和捕食者(鲨鱼)为研究对象,建立微分方程,并利用数学软件MATLAB求出微分方程的数值解,通过对数值结果和图形的观察,猜测出它的解析解构造。然后,从理论上研究其平衡点及相轨线的形状,验证前面的猜测。 三、模型假设 1.假设捕食者(鲨鱼)离开食饵无法生存; 2.假设大海中资源丰富,食饵独立生存时以指数规律增长; 四、符号说明 /——食饵(食用鱼)在时刻的数量; x(t)x(t)t1 /——捕食者(鲨鱼)在时刻的数量; y(t)x(t)t2 ——食饵(食用鱼)的相对增长率; r1 ——捕食者(鲨鱼)的相对增长率; r2 ——大海中能容纳的食饵(食用鱼)的最大容量; N1 好文章 ——大海中能容纳的捕食者(鲨鱼)的罪的容量; N2 ——单位数量捕食者(相对于)提供的供养食饵的实物量为单位数量捕食,N12 者(相对于)消耗的供养甲实物量的倍; N,11 ——单位数量食饵(相对于)提供的供养捕食者的实物量为单位数量捕食,N21 者(相对于)消耗的供养食饵实物量的倍; N,22 ——捕食者离开食饵独立生存时的死亡率。 d 五、模型建立 食饵独立生存时以指数规律增长,且食饵(食用鱼)的相对增长率为,即r1,,而捕食者的存在使食饵的增长率减小,设减小的程度与捕食者数量成正x,rx 比,于是满足方程 x(t) , (1) x(t),x(r,ay),rx,axy 比例系数反映捕食者掠取食饵的能力。 a ,由于捕食者离开食饵无法生存,且它独立生存时死亡率为,即y,,dy,d而食饵的存在为捕食者提供了食物,相当于使捕食者的死亡率降低,且促使其增长。设这种作用与食饵数量成正比,于是满足 y(t) ,y(t),y(,d,bx),,dy,bxy (2) 比例系数反映食饵对捕食者的供养能力。 b 好文章 方程(1)、(2)是在自然环境中食饵和捕食者之间依存和制约的关系,这里没有考虑种群自身的阻滞作用,是Volterra提出的最简单的模型。 下面,我们加入种群自身的阻滞作用,在上两式中加入Logistic项,即建立以下数学模型: ,,xx,,12, (3) x(t),rx1,,,,,1111NN12,, ,,xx,,12, (4) x(t),rx,1,,,,,2222NN12,, 六、模型求解 在此,我们采用MATLAB软件求解此微分方程组中的、的图形及相x(t)x(t)12轨线图形。 设,,,,,,使用MATLAB,,1.5,,4r,1r,0.4N,3500N,500121212 软件求解,程序代码如下: 1)建立M文件 function y=fun(t,x) y=[x(1).*(1-x(1)./3500-1.5*x(2)./500),0.4.*x(2).*(-1+4.*x(1)./3500-x( 2)./500)]'; 2)在命令窗口输入如下命令: [t,x]=ode45('fun1',[0,40],[2000,35]) 得到数值解如下: t (x(1),x(2)) 1.0e+003 * (单位:千克) 0 2.0000 0.0350 0.1033 2.0654 0.0369 0.2066 2.1276 0.0389 0.3099 2.1863 0.0412 0.4132 2.2412 0.0438 0.8079 2.4113 0.0560 1.2026 2.5111 0.0732 好文章 1.5973 2.5358 0.0961 1.9919 2.4870 0.1248 2.3806 2.3741 0.1577 2.7693 2.2127 0.1922 3.1579 2.0228 0.2246 3.5466 1.8247 0.2514 3.9353 1.6360 0.2697 4.3239 1.4727 0.2793 4.7126 1.3431 0.2813 5.1012 1.2427 0.2775 5.4167 1.1780 0.2717 5.7322 1.1294 0.2642 6.0477 1.0951 0.2561 6.3631 1.0728 0.2476 6.7446 1.0599 0.2377 7.1261 1.0593 0.2286 7.5076 1.0684 0.2206 7.8891 1.0851 0.2139 8.2967 1.1094 0.2081 8.7042 1.1376 0.2038 9.1117 1.1676 0.2009 9.5193 1.1975 0.1993 10.0173 1.2313 0.1990 10.5153 1.2599 0.2000 11.0133 1.2815 0.2020 11.5113 1.2954 0.2047 12.0453 1.3022 0.2079 12.5793 1.3017 0.2111 13.1133 1.2958 0.2138 13.6473 1.2864 0.2159 14.2231 1.2745 0.2174 14.7989 1.2627 0.2181 15.3747 1.2529 0.2181 15.9505 1.2455 0.2177 16.5523 1.2402 0.2169 17.1541 1.2377 0.2160 17.7559 1.2375 0.2151 18.3577 1.2391 0.2144 19.0403 1.2420 0.2138 19.7229 1.2454 0.2134 20.4054 1.2484 0.2134 21.0880 1.2506 0.2135 21.8574 1.2524 0.2137 22.6268 1.2530 0.2140 好文章 23.3962 1.2527 0.2142 24.1656 1.2520 0.2144 25.0656 1.2509 0.2145 25.9657 1.2499 0.2145 26.8657 1.2495 0.2144 27.7657 1.2495 0.2143 28.7657 1.2496 0.2143 29.7657 1.2498 0.2142 30.7657 1.2500 0.2142 31.7657 1.2501 0.2143 32.7657 1.2501 0.2143 33.7657 1.2501 0.2143 34.7657 1.2500 0.2143 35.7657 1.2500 0.2143 36.8243 1.2500 0.2143 37.8828 1.2500 0.2143 38.9414 1.2500 0.2143 40.0000 1.2500 0.2143 >> plot(t,x),grid,gtext('x(t)'),gtext('y(t)') 图1.数值解,的图形 x(t)x(t)12 好文章 >> plot(x(:,1),x(:,2)),grid, 图2.相轨线图形 从数值解及,的图形可以看出他们的数量变化情况,随着时间的x(t)x(t)12 推移,都趋于一个稳定的值,从数值解中可以近似的得到稳定值为:(1250,214)。 下面对其平衡点进行稳定性分析: 由微分方程(3)、(4) ,,,xx,,12,,rx1,,f(x,x),12,,111,NN12,,, ,,,xx,,,12f(x,x),1,,rx,,,12,,222NN,12,,, 好文章 得到如下平衡点: ,,N,N,(1)(1)1122, , PP(0,0)P(N,0)(,)2113,,,,,,111212 因为仅当平衡点位于平面坐标系的第一象限时()才有意义,所以,x,x,012对而言要求>0。 P,22 按照判断平衡点稳定性的方法计算: ,,,xxrx2,112111r(1,,),1,,,ff,NNNxx12212,, A,,,,,ggrxxx,2,,,,222212xx12,,r(,1,,),2,NNN112,, 根据等于主对角线元素之和的相反数,而为其行列式的值,我们得到下pq 表: pq平衡点 稳定条件 P(N,0)r,r(,,1),rr(,,1)<1 ,111221222 ,,,,,,N,N,r(1,),r(,1)rr(1,)(,1)(1)(1)>1 ,1122112212122P(,)2,,,,,,1,,,1,,,1112121212 不稳定 P(0,0) ,rr,r,r 31212 七、模型分析与检验 1.平衡点稳定性的分析及其实际意义: 1) 对而言,有=,=,故当<1时,P(N,0)pr,r(,,1)q,rr(,,1),111221222平衡点是稳定的。 P(N,0)11 意义:如果稳定,则种群乙灭绝,没有种群的共存。 P(N,0)11 ,,,,N,N,r(1,),r(,1)(1)(1)112211222)对P而言,有=,p(,)2,,,,,,1,,,11121212 好文章 ,,,,N,N,rr(1,)(,1)(1)(1)11221212=,故当>1时,平衡点是稳定的。 Pq,(,)221,,,,,,,,,11121212 ,,N,N,(1)(1)1122意义:如果稳定,则两物种恒稳发展,会互相依P(,)2,,,,,,111212 存生长下去。 3)对而言,由于, ,又有题知>0,>0,故<0,P(0,0)p,,r,rq,,rrrrq3121221即是不稳定的。 P(N,0)11 2.平衡点的检验: ,,N,N,(1)(1)1122对于平衡点,把前面给出的初始值带入,在这使P(,)2,,,,,,111212 用MATLAB软件进行简单的求解,在命令窗口输入如下代码: >> x(1)=(3500.*(1+1.5))./(1+1.5.*4); >> x(2)=(500.*(4-1))./(1+1.5.*4); >> [x(1);x(2)] ans = 1.0e+003 * 1.2500 0.2143 把此处求解出的解和前面得出的数值解进行比较可知,平衡点 ,,N,N,(1)(1)1122是稳定的。 P(,)2,,,,,,111212 八、模型的评价与推广 1.模型的评价 自然界中,任何物种即使是捕食者也有自身的阻滞作用,该模型从原始的没带自身阻滞作用模型中加入了阻滞项,使得此模型更接近于生态平衡系统。从此模型中,我们知道两物种同时灭绝是不稳定的,也就是不太可能的,但两种群有一种灭绝一种生存是完全有可能的,两种群共存的可能也是可能的。 2.模型的推广 好文章 本文只考虑两物种模型,我们完全可以把此模型推广到三物种的情形。 自然界里长期存在的呈周期变化的生态平衡系统应该是结构稳定的,即系统受到不可避免的干扰而偏离原来的周期轨道后,其内部制约作用会使系统自动回复原状,如恢复原有的周期和振幅,而Volterra模型描述的周期变化状态却不是结构稳定的。要得到能反映周期变化的结构模型,要用到极限环的概念 参考文献 [1] 姜启源,谢金星,叶俊(数学模型,高等教育出版社.2003年 [2] 冯杰,黄力伟,王勤.《数学建模原理与案例》科学出版社,2007年1月
/
本文档为【dh食饵—捕食者模型稳定性分析vv】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索