为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

二氧化硅

2017-09-27 6页 doc 43KB 26阅读

用户头像

is_003124

暂无简介

举报
二氧化硅二氧化硅薄膜的制备及应用       摘要:二氧化硅薄膜具有良好的硬度、光学、介电性质及耐磨、抗蚀等特性,在光学、微电子等领域有着广泛的应用前景,是目前国际上广泛关注的功能材料。论述了有关二氧化硅薄膜的制备方法,相应性质及其应用前景。 关键词:二氧化硅,薄膜,制备,应用,方法 引言:二氧化硅具有硬度高、耐磨性好、绝热性好、光透过率高、抗侵蚀能力强以及良好的介电性质。通过对各种制备方法、制备工艺的开发和不同组分配比对二氧化硅薄膜的影响研究,制备具有优良性能的透明二氧化硅薄膜的工作已经取得了很大进展。薄膜在诸多领域得到了很好的应...
二氧化硅
二氧化硅薄膜的制备及应用       摘要:二氧化硅薄膜具有良好的硬度、光学、介电性质及耐磨、抗蚀等特性,在光学、微电子等领域有着广泛的应用前景,是目前国际上广泛关注的功能材料。论述了有关二氧化硅薄膜的制备方法,相应性质及其应用前景。 关键词:二氧化硅,薄膜,制备,应用,方法 引言:二氧化硅具有硬度高、耐磨性好、绝热性好、光透过率高、抗侵蚀能力强以及良好的介电性质。通过对各种制备方法、制备工艺的开发和不同组分配比对二氧化硅薄膜的影响研究,制备具有优良性能的透明二氧化硅薄膜的工作已经取得了很大进展。薄膜在诸多领域得到了很好的应用,如用于电子器件和集成器件、光学薄膜器件等相关器件中。利用纳米二氧化硅的多孔性质可应用于过滤薄膜、薄膜反应和相关的吸收剂以及分离技术、分子工程和生物工程等,从而在光催化、微电子和透明绝热等领域具有很好的发展前景。本文将对二氧化硅薄膜的制备、性能及其应用研究进行了综述。 ABSTRACT:Silica films has good hardness, optical, dielectric properties and abrasion resistance, corrosion properties, such as in optics, microelectronics etc widely, and is currently world wide attention of functional materials. Discusses the relevant silica films preparation methods, properties and corresponding application prospect Keywords: silica, film, preparation, application, method 1  二氧化硅(SiO2)薄膜的制备 针对不同的用途和要求,很多SiO2薄膜的制备方法得到了发展与应用,主要有化学气相淀积,物理气相淀积,热氧化法,溶胶凝胶法和液相沉积法等。 1.1化学气相淀积(CVD)   1969年,科莱特(Collett)首次利用光化学反应淀积了Si3N4薄膜,从此开辟了光化学气相淀积法在微电子方面的应用。     化学气相淀积是利用化学反应的方式,在反应室内,将反应物(通常是气体)生成固态生成物,并淀积在硅片表面是的一种薄膜淀积技术。因为它涉及化学反应,所以又称CVD(Chemical Vapour Deposition)。 CVD法又分为常压化学气相沉积(APCVD)、低压化学气相沉积(LPCVD)、等离子增强化学气相沉积(PECVD)和光化学气相沉积等。此外CVD法制备SiO2可用以下几种反应体系:SiH4-O2、SiH4-N2O、SiH2Cl2-N2O、Si(OC2H5)4等。各种不同的制备方法和不同的反应体系生长SiO2所要求的设备和工艺条件都不相同,且各自拥有不同的用途和优缺点。目前最常用的是等离子体增强化学气相沉积法。 1.1.1 等离子体增强化学气相沉积法 这种技术利用辉光放电,在高频电场下使稀薄气体电离产生等离子体,这些离子在电场中被加速而获得能量,可在较低温度下实现SiO2薄膜的沉积。这种方法的特点是沉积温度可以降低,一般可从LPCVD中的700℃下降至200℃,且生长速率快,可准确控制沉积速率(约1nm樸s),生成的薄膜结构致密;缺点是真空度低,从而使薄膜中的杂质含量(Cl、O)较高,薄膜硬度低,沉积速率过快而导致薄膜内柱状晶严重,并存在空洞等。 目前已发展了双源等离子体CVD、电子回旋共振等离子体增强化学气相沉积(ECR2PECVD)、微波等离子体增强化学气相沉积(MPECVD)[10]等技术。采用开放式2.45GHzECR2PECVD装置,产生低能量、低气压、高密度的等离子体,并将一个可独立调节和控制的13.56MHz的射频偏压加在待沉积的单面抛光Si(100)基片上,用SiH4、O2和Ar气体作为反应气体来制备SiO2薄膜。结果表明,通过改变射频偏压来控制离子轰击能量,使ECR2PECVD成膜的内应力、溅射现象、微观结构和化学计量均受到很大程度的影响。 1.1.2 光化学气相沉积法 这种方法是使用紫外汞灯(UV2Hg)作为辐射源,利用Hg敏化原理,在SiH4+N2O混合气体中进行光化学反应。SiH4和O2分2路进入反应室,在紫外光垂直照射下,反应方程式如下 3O 2 2O ·3 (< 195 nm ) O ·3 O ·+ O 2 (200~ 300 nm ) 总反应式为              SiH4+ 2O 2 SiO 2+ 气体副产物(通N 2 排出)    PCVD制备的SiO2薄膜可应用于气体传感器的表面修饰,从而提高传感器的选择性。这种方法的主要特点是形成薄膜的温度低(50~200℃)。此外,由于光子的能量不足以引起气体分子电离,所以没有高能离子对晶片的损伤问题。这为集成电路的低温制造开辟了一条重要途径。 2.1物理气相沉积(PVD)   物理气相沉积主要分为蒸发镀膜、离子镀膜和溅射镀膜三大类。其中真空蒸发镀膜技术出现较早,但此法沉积的膜与基体的结合力不强。在1963年,美国Sandia公司的D.M.Mattox首先提出离子镀(IonPlating)技术,1965年,美国IBM公司研制出射频溅射法,从而构成了PVD技术的三大系列——蒸发镀,溅射镀和离子镀。 2.1.1 磁控溅射沉积 SiO2靶的射频溅射法是制备SiO2薄膜的主要方法之一。这种方法在低温下制备的SiO2薄膜,具有多孔结构,致密度低,因而抗侵蚀能力差;而在较高温度下制备的薄膜,具有较高的致密度和较好的性能。所以,在通常情况下,衬底温度选择为300~600℃。其缺点是导致器件易受到热伤害,使一些性能指标降低。随后发展起来的磁控射频溅射技术,能达到快速和低温的要求,不仅弥补了射频溅射的缺点,大大减小了电子对衬底表面直接轰击造成的损伤,且能在较低的功率和气压下工作。绝缘体和导体均可溅射,工艺简单,衬底温度低,薄膜厚度的可控性、重复性及均匀性与其他薄膜制备方法相比有明显的改善和提高,因而得到了广泛使用。许生等使用140mm×600mm的硅靶,频率为40kHz的中频电源,以Ar为溅射气体,O2为反应气体,成功地制备了SiO2薄膜,并对制备的SiO2薄膜的化学配比和元素化学态进行了扫描俄歇谱(SAM)和X射线光电子能谱(XPS)分析,测试了膜层对钠离子(Na+)的阻挡性能、光学折射率和可见光透过率。 2.1.2 脉冲激光沉积 激光沉积是20世纪80年代后期发展起来的新型的薄膜制备技术,在制备高温超导体、铁电体等复杂氧化物方面,取得了极大的成功。近年来,这种方法也被用来制备硅基硅材料及硅基硅化物材料的薄膜,并对这些材料的结构及发光特性进行了研究。用准分子激光,在含氧气氛中对单晶硅靶进行反应剥离,使反应生成的二氧化硅沉积在单晶硅片表面形成薄膜,用X射线光电子能谱分析表明,形成的薄膜是非晶态的二氧化硅组分;通过透射电子显微镜(TEM)可观察到微米量级的多晶硅颗粒。 3.1  热氧化法 热氧化工艺是在高温下(900~ 1 200 ℃) 使硅片表面氧化形成SiO 2 膜的方法, 包括干氧氧化、湿氧氧化以及水汽氧化。采用干氧气氛下的高温氧化, 生长厚度为10 nm 左右的SiO 2 所需的氧化时间很短, 常规电阻丝加热氧化炉无法控制如此短的氧化时间。而采用高温下的低压氧化方法, 氧化时间将增加, 常规氧化炉可以控制较长的氧化时间, 但是较长时间的高温工艺过程会引起掺入杂质的再分布, 这是超大规模集成电路制作工艺中所不希望的。为了解决以上问题, 出现了一种制备超薄SiO 2 薄膜的新方法——快速热工艺氧化法, 或称快速热氧化法(Rap id ThermalO x idat ion) 。这种方法采用快速热工艺系统, 精确地控制高温短时间的氧化过程, 获得了性能优良的超薄SiO 2 薄膜。譬如硅烷低温氧化沉积SiO 2 薄膜, 温度在400 ℃左右, 在含氧的气氛中硅烷(SiH4) 在衬底表面上热分解, 并与氧气反应生成SiO 2, 其化学反应式为: SiH4+ 2O 2SiO 2↓+ 2H2O ↑(或H2↑)。为了防止硅烷自燃, 通常使用氮气(N 2) 或氩气(A r) 稀释硅烷。在这些条件下生长的薄膜, 具有较高的绝缘强度和相当快的生长速度。这种方法的特点是设备简单, 温度低, 不生成气态有机原子团, 生长速率快, 膜厚容易控制; 缺点是大面积均匀性差, 结构较疏松, 腐蚀速度较快, 且气体管道中易出现硅烷氧化, 形成白粉, 因而沉积SiO 2 粉尘的污染在所难免。 3.2 溶胶凝胶法 溶胶凝胶法是一种低温合成材料的方法, 是材料研究领域的热点。早在19 世纪中期, Ebelman 和Graham 就发现了硅酸乙酯在酸性条件下水解可以得到“玻璃状透明的”SiO 2 材料, 并且从此在黏性的凝胶中可制备出纤维及光学透镜片。这种方法的制作费用低、镀膜简单、便于大面积采用、且光学性能好,适用于立体器件。过去10 年中, 人们在此方面已取得了较大进展。通常, 多孔SiO 2 薄膜的特性依赖溶胶2凝胶的制备条件、控制实验条件(如溶胶组分、pH 值、老化温度及时间、回流等) , 可获得折射率在1. 009~ 1. 440、连续可调、结构可控的SiO 2 纳米网络。但是SiO 2 减反射膜(即增透膜) 往往不具有疏水的性能, 受空气中潮气的影响, 使用寿命较短。经过改进, 以正硅酸乙酯(TEO S) 和二甲基二乙氧基硅烷(DDS) 2 种常见的物质为原料, 通过二者的共水解2缩聚反应向SiO 2 网络中引入疏水的有机基团——CH3, 由此增加膜层的疏水性能。同时, 通过对体系溶胶2凝胶过程的有效控制, 使膜层同时具有良好的增透性能及韧性。此外, 在制备多孔SiO 2 膜时添加聚乙二醇(PEG) 可加强溶胶颗粒之间的交联, 改善SiO 2 膜层的机械强度, 有利于提高抗激光损伤强度。 3.3 液相沉积法 在化学沉积法中, 使用溶液的湿化学法因需要能量较小, 对环境影响较小, 在如今环境和能源成为世人瞩目的问题之时备受欢迎, 被称为sof t2p rocess (柔性过程)。近年来在湿化学法中发展起一种液相沉积法(L PD) , SiO 2 薄膜是用L PD 法最早制备成功的氧化物薄膜。通常使用H2SiF6 的水溶液为反应液, 在溶液中溶入过饱和的SiO 2 (以SiO 2、硅胶或硅酸的形式) , 溶液中的反应为: H2SiF6+ 2H2O SiO 2+ 6HF。目前可在相当低的温度(~ 40 ℃) 成功地在GaA s 基底上生长SiO 2 薄膜, 其折射率约为1. 423。PLD 成膜过程不需热处理, 不需昂贵的设备, 操作简单, 可以在形状复杂的基片上制膜, 因此使用广泛。 4 二氧化硅(SiO2)薄膜的应用 4. 1 微电子领域 在微电子工艺中, SiO 2 薄膜因其优越的电绝缘性和工艺的可行性而被广泛采用。在半导体器件中, 利用SiO 2 禁带宽度可变的特性, 可作为非晶硅太阳电池的薄膜光吸收层, 以提高光吸收效率; 还可作为金属2氮化物2氧化物2半导体(MN SO ) 存储器件中的电荷存储层, 集成电路中CMO S 器件和SiGeMO S 器件以及薄膜晶体管(TFT ) 中的栅介质层等。此外, 随着大规模集成电路器件集成度的提高, 多层布线技术变得愈加重要, 如逻辑器件的中间介质层将增加到4~ 5 层, 这就要求减小介质层带来的寄生电容。鉴于此, 现在很多研究者都对低介电常数介质膜的种类、制备方法和性能进行了深入研究。对新型低介电常数介质材料的要求是: 在电性能方面具有低损耗和低耗电; 在机械性能方面具有高附着力和高硬度; 在化学性能方面要求耐腐蚀和低吸水性; 在热性能方面有高稳定性和低收缩性。目前普遍采用的制备介质层的SiO 2, 其介电常数约为4. 0, 并具有良好的机械性能。如用于硅大功率双极晶体管管芯平面和台面钝化, 提高或保持了管芯的击穿电压, 并提高了晶体管的稳定性。这种技术, 完全达到了保护钝化器件的目的, 使得器件的性能稳定、可靠, 减少了外界对芯片沾污、干扰, 提高了器件的可靠性能。 4. 2 光学领域 20 世纪80 年代末期, Si 基SiO 2 光波导无源和有源器件的研究取得了长足的发展, 使这类器件不仅具有优良的传导特性, 还将具备光放大、发光和电光调制等基本功能, 在光学集成和光电集成器件方面很有应用前景, 可作为波导膜、减反膜和增透膜。随着光通信及集成光学研究的飞速发展, 玻璃薄膜光波导被广泛应用于光无源器件及集成光路中。制备性能良好的用作光波导的薄膜显得至关重要。集成光路中光波导的一般要求: 单模传输、低传输损耗、同光纤耦合效率高等。波导损耗来源主要分为材料吸收、基片损耗、散射损耗三部分。通过选用表面粗糙度高、平整的光学用玻璃片或预先溅射足够厚的SiO 2 薄膜的普通玻璃基片, 使波导模瞬间场分布远离粗糙表面, 以减少基底损耗。激光器用减反膜的研究也取得了很大的进展。中国工程物理研究院与化学所用溶胶凝胶法成功地研制出紫外激光SiO 2 减反膜。结果表明, 浸入涂膜法制备的多孔SiO 2 薄膜比早期的真空蒸发和旋转涂膜法制备的SiO 2 薄膜有更好的减反射效果。在波长350 nm 处的透过率达到98% 以上, 紫外区的最高透过率达到99% 以上。该SiO 2 薄膜有望用于惯性约束聚变( ICF) 和X 光激光研究的透光元件的减反射膜。目前在溶胶凝胶工艺制备保护膜、增透膜方面也取得了一些进展。此法制备的SiO 2 光学薄膜在惯性约束聚变的激光装置中已成为一种重要的手段, 广泛地应用于增透光学元件上, 如空间滤波器、窗口、靶室窗口或打靶透镜。在谐波转换元件KDP 晶体上用溶胶工艺镀制保护、增透膜, 能改善KDP 晶体的工作条件,提高谐波光束的质量与可聚焦功率。Thomas 用溶胶2凝胶工艺制备的增透膜和保护膜在美国洛仑兹·利弗莫尔国家实验室已使用多年。 4. 3 其他方面 非晶态SiO 2 薄膜由于具有十分优良的负电荷充电和存储能力, 在20 世纪80 年代初、中期成为无机驻极体的代表性材料, 与已经得到广泛应用的传统有机高分子聚合物驻极体相比, 以单晶硅为基片的SiO 2 薄膜驻极体无疑具有不可比拟的优势。除了电荷储存寿命长(可达200~ 500 年)、抗高温恶劣环境能力强(可在近200 ℃温度区内工作) 外, 还可以和现代硅半导体工艺相结合, 实现微型化甚至集成电路化。在驻极体电声器件与传感器件、驻极体太阳能电池板、驻极体马达与发电机等方面获得更广泛的应用。此外, 在研究中还发现, 在氧化气氛中进行后处理能够改善各种沉积方法制备的SiO 2 薄膜的性能[34 ]。在ITO 透明导电玻璃中, SiO 2 可作为钠离子阻挡层。目前双靶反应磁控溅射沉积SiO 2 膜的设备已成功地应用在ITO 透明导电玻璃生产线上。两年多的连续运行表明, 设备和工艺稳定可靠, 产品特性和质量符合有关技术标准。近年来, 随着溶胶凝胶技术的迅猛发展, 采用这种工艺在玻璃表面浸镀上一层二氧化硅薄膜已成为一种较好的材料强度改性方法, 其主要原理是利用溶胶在微孔和裂痕处的凝胶化作用, 填隙孔洞, 缩小或钝化裂纹, 经过后续热处理达到增强的目。此外, 非晶SiO 2 还可以用于高阻隔食品包装材料。 3 结束语 SiO 2 薄膜作为介质材料家族中的一员, 对其开发具有很重要的意义。相信在不远的将来, 纳米SiO 2 薄膜会进一步工业化, 并广泛应用于各个领域。 参考文献: [ 1 ] 王福贞, 闻立时. 表面沉积技术[M ]. 北京: 机械工业出版社, 1989. [ 2 ] SAN TAMAR IA J , IDORRA E, QU ESADA F S, et al. Sput tering of SiO 2 in O 2 2A r atmo spheres [J ]. Th in so lidF ilm s, 1986, 139 (2) : [ 3]  SHABALOV A L , FELDMAN M S. A tom ic defects and st resses in r. f. 2sput tered SiO 2 th in film s [J ]. Th in So ildfilm , 1986, 143 (1) : [ 4] 许生, 侯晓波, 范垂祯, 等. 硅靶中频反应磁控溅射二氧化硅薄膜的特性研究[ J ]. 真空, 2001, (5) : [ 5] 郑祥钦, 郭新立, 廖良生, 等. 脉冲激光沉积硅基二氧化硅薄膜的蓝光发射[J ]. 半导体学报, 1998, 19:. [ 6] 张劲松, 任兆杏, 梁荣庆, 等. ECR2PECVD 制备SiO 2 薄膜中衬底射频偏压的作用[J ]. 核聚变与等离子体物理, 2001,21 (1) :. [ 7 ] 景俊海, 孙青, 孙建诚, 等. 紫外汞灯PVD 二氧化硅薄膜特性研究[J ]. 微电子学, 1990, 20 (4) : [ 8 ] 孙良彦. 半导体气敏元件的表面修饰[C ]. 第二届全国敏感元件与传感器学术会议, 上海, 1991. [ 9 ] 黄汉尧, 李乃平. 半导体器件工艺原理[M ]. 北京: 国防工业出版社, 1983.
/
本文档为【二氧化硅】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索