为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

电脑开关电源维修~1.0ok

2017-09-20 23页 doc 247KB 18阅读

用户头像

is_036899

暂无简介

举报
电脑开关电源维修~1.0ok计算机开关电源维修实战   一颗强劲的CPU可以带着我们在复杂的数码世界里飞速狂奔,一块最酷的显示卡会带着我们在绚丽的3D世界里领略那五光十色的震撼,一块最棒的声卡更能带领我们进入那美妙的音乐殿堂。相对于CPU,显示卡、声卡而言,电源可能是微不足道的,我们对它的了解也不是很多,可是我们必须知道,一个稳定工作的电源,是使我们计算机能够更好工作的前提。   计算机开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电路知识,就可以...
电脑开关电源维修~1.0ok
计算机开关电源维修实战   一颗强劲的CPU可以带着我们在复杂的数码世界里飞速狂奔,一块最酷的显示卡会带着我们在绚丽的3D世界里领略那五光十色的震撼,一块最棒的声卡更能带领我们进入那美妙的音乐殿堂。相对于CPU,显示卡、声卡而言,电源可能是微不足道的,我们对它的了解也不是很多,可是我们必须知道,一个稳定工作的电源,是使我们计算机能够更好工作的前提。   计算机开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电路知识,就可以轻松的维修电源。   首先,我们要知道计算机开关电源的工作原理。电源先将高电压交流电(220V)通过全桥二极管(图1、2)整流以后成为高电压的脉冲直流电,再经过电容滤波(图3)以后成为高压直流电。   此时,控制电路控制大功率开关三极管将高压直流电按照一定的高频频率分批送到高频变压器的初级(图4)。接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使电脑工作的低电压强电流的直流电。其中,控制电路是必不可少的部分。它能有效的监控输出端的电压值,并向功率开关三极管发出信号控制电压上下调整的幅度。在计算机开关电源中,由于电源输入部分工作在高电压、大电流的状态下,故障率最高;其次输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏;再就是脉宽调制器TL494的4脚电压是保护电路的关键测试点。通过对多台电源的维修,总结出了对付电源常见故障的方法。 一、在断电情况下,“望、闻、问、切”   由于检修电源要接触到220V高压电,人体一旦接触36V以上的电压就有生命危险。因此,在有可能的条件下,尽量先检查一下在断电状态下有无明显的短路、元器件损坏故障。首先,打开电源的外壳,检查保险丝(图5)是否熔断,再观察电源的内部情况,如果发现电源的PCB板上元件破裂,则应重点检查此元件,一般来讲这是出现故障的主要原因;闻一下电源内部是否有糊味,检查是否有烧焦的元器件;问一下电源损坏的经过,是否对电源进行违规的操作,这一点对于维修任何设备都是必须的。在初步检查以后,还要对电源进行更深入地检测。  用万用表测量AC电源线两端的正反向电阻及电容器充电情况,如果电阻值过低,说明电源内部存在短路,正常时其阻值应能达到100千欧以上;电容器应能够充放电,如果损坏,则表现为AC电源线两端阻值低,呈短路状态,否则可能是开关三极管VT1、VT2击穿。   然后检查直流输出部分。脱开负载,分别测量各组输出端的对地电阻,正常时,表针应有电容器充放电摆动,最后指示的应为该路的泄放电阻的阻值。否则多数是整流二极管反向击穿所致。   二、加电检测 在通过上述检查后,就可通电测试。这时候才是关键所在,需要有一定的经验、电子基础及维修技巧。一般来讲应重点检查一下电源的输入端,开关三极管,电源保护电路以及电源的输出电压电流等。如果电源启动一下就停止,则该电源处于保护状态下,可直接测量TL494的4脚电压,正常值应为0.4V以下,若测得电压值为+4V以上,则说明电源的处于保护状态下,应重点检查产生保护的原因。由于接触到高电压,建议没有电子基础的朋友要小心操作。 三、常见故障   1.保险丝熔断   一般情况下,保险丝熔断说明电源的内部线路有问题。由于电源工作在高电压、大电流的状态下,电网电压的波动、浪涌都会引起电源内电流瞬间增大而使保险丝熔断。重点应检查电源输入端的整流二极管,高压滤波电解电容,逆变功率开关管等,检查一下这些元器件有无击穿、开路、损坏等。如果确实是保险丝熔断,应该首先查看电路板上的各个元件,看这些元件的外表有没有被烧糊,有没有电解液溢出。如果没有发现上述情况,则用万用表进行测量,如果测量出来两个大功率开关管e、 c极间的阻值小于100kΩ,说明开关管损坏。其次测量输入端的电阻值,若小于200kΩ,说明后端有局部短路现象。   2.无直流电压输出或电压输出不稳定   如果保险丝是完好的,可是在有负载情况下,各级直流电压无输出。这种情况主要是以下原因造成的:电源中出现开路、短路现象,过压、过流保护电路出现故障,振荡电路没有工作,电源负载过重,高频整流滤波电路中整流二极管被击穿,滤波电容漏电等。这时,首先用万用表测量系统板+5V电源的对地电阻,若大于0.8Ω,则说明电路板无短路现象;然后将电脑中不必要的硬件暂时拆除,如硬盘、光盘驱动器等,只留下主板电源。表调至蜂鸣器档,然后再测量各输出端的直流电压,如果这时输出为零,则可以肯定是电源的控制电路出了故障。   3.电源负载能力差   电源负开能力差是一个常见的故障,一般都是出现在老式或是工作时间长的电源中,主要原因是各元器件老化,开关三极管的工作不稳定,没有及时进行散热等。应重点检查稳压二极管是否发热漏电,整流二极管损坏、高压滤波电容损坏、晶体管工作点未选择好等。   4、通电无电压输出,电源内发出吱吱声。   这是电源过载或无负载的典型特征。先仔细检查各个元件,重点检查整流二极管、开关管等。经过仔细检查,发现一个整流二极管1N4001的表面已烧黑,而且电路板也给烧黑了。找同型号的二极管换下,用万用表一量果然是击穿的。接上电源,可风扇不转,吱吱声依然。用万用表量+12V输出只有+0.2V,+5V只有0.1V。这说明元件被击穿时电源启动自保护。测量初级和次级开关管,发现初级开关管中有一个已损坏,用相同型号的开关管换上,故障排除,一切正常。   5、没有吱吱声,上一个保险丝就烧一个保险丝。   由于保险丝不断地熔断,搜索范围就缩小了。可能性只有3个:1、整流桥击穿;2、大电解电容击穿;3、初级开关管击穿。电源的整流桥一般是分立的四个整流二极管,或是将四个二极管固化在一起。将整流桥拆下一量是正常的。大电解电容拆下测试后也正常,注意焊回时要注意正负极。最后的可能就只剩开关管了。这个电源的初级只有一个大功率的开关管。拆下一量果然击穿,找同型号开关管换上,问题解决。   其实,维修电源并不难,一般电源损坏都可以归结为保险丝熔断、整流二极管损坏、滤波电容开路或击穿、开关三极管击穿以及电源自保护等,因开关电源的电路较简单,故障类型少,很容易判断出故障位置。只要有足够的电子基础知识,多看看相关报刊,多动动手,平时注意经验的积累,电源故障是可以轻松检修的。 电源电路原理 一、 电源电路的功能和组成每个电子设备都有一个供给能量的电源电路。电源电路有整流电源、逆变电源和变频器三种。常见的家用电器中多数要用到直流电源。直流电源的最简单的供电方法是用电池。但电池有成本高、体积大、需要不时更换(蓄电池则要经常充电)的缺点,因此最经济可靠而又方便的是使用整流电源。电子电路中的电源一般是低压直流电,所以要想从220伏市电变换成直流电,应该先把220伏的高压交流变成低压交流电;再用整流电路变成脉冲的直流电;最后用滤波电路滤除脉动直流电中的交流成分后才能得到(直流电)。有的电子设备对电源的质量很高,所以有时还需要再增加一个稳压电路。因此整流电源的组成一般有四大部分,见图l。其中变压电路其实就是一个铁芯变压器,需要介绍的只是后面三种单元电路 (1)半波整流   半波整流电路只需一个二极管,见图2(a)。在交流电正半周时VD导通,负半周时VD截止.负载R。上得到的是脉动的直流电。 (2)全波整流 全波整流要用两个二极管,而且要求变压器有带中心抽头的两个圈数相同的次级线圈,见图2(b) 。负载R1。上得到的是脉动的全波整流电流,输出电压比半波整流电路高。 (3)全波桥式整流 用4个二极管组成的桥式整流电路可以使用只有单个次级线圈的变压器,见图2(c)。负载上的电流波形和输出电压值与全波整流电路相同。 (4)倍压整流 >   用多个二极管和电容器可以获得较高的直流电压。图2(d)是一个二倍压整流电路。当U2为负半周时VDl导通,Cl被充电,C1上最高电压可接近1.4U2;当U2正半周时VD2导通,Cl上的电压和U2叠加在一起对C2充电,使C2上电压接近2.8U2,是Cl上电压的2倍,所以叫倍压整流电路。 三、滤波电路   整流后得到的是脉动直流电,如果加上滤波电路滤除脉动直流电中的交流成分,就可得到平滑的直流电。 (1)电容滤波   把电容器和负载并联,如图3(a),正半周时电容被充电,负半周时电容放电,就可使负载上得到平滑的直流电。 (2)电感滤波   把电感和负载串联起来,如图3(b),也能滤除脉动电流中的交流成分。 (3)l、C滤波   用1个电感和1个电容组成的滤波电路因为象一个倒写的字母“L”,被称为L型,见图3(c)。用1个电感和2个电容的滤波电路因为象字母“x,',被称为丌型,见图3(d),这是滤波效果较好的电路。 (4)RC滤波   电感器的成本高、体积大,所以在电流不太大的电子电路中常用电阻器取代电感器而组成RC滤波电路。同样,它也有L型,见图3(e);n型,见图3(f)。 四、稳压电路   交流电网电压的波动和负载电流的变化都会使整流电源的输出电压和电流随之变动,因此要求较高的电子电路必须使用稳压电源。 (1)稳压管并联稳压电路用一个稳压管和负载并联的电路是最简单的稳压电路,见图4(a)。图中R是限流电阻。这个电路的输出电流很小,它的输出电压等于稳压管的稳定电压值V;。 (2)串联型稳压电路   有放大和负反馈作用的串联型稳压电路是最常用的稳压电路。它的电路和框图见图4(b)、(c)。它是从取样电路(R3、R4)中检测出输出电压的变动,与基准电压(Vz)比较并经放大器(VT2)放大后加到调整管(VTl)上,使调整管两端的电压随着变化。如果输出电压下降,就使调整管管压降也降低,于是输出电压被提升;如果输出电压上升,就使调整管管压降也上升,于是输出电压被压低,结果就使输出电压基本不变。在这个电路的基础上发展成很多变型电路或增加一些辅助电路,如用复合管作调整管,输出电压可调的电路,用运算放大器作比较放大的电路,以及增加辅助电源和过流保护电路等。 (3)开关型稳压电路.   近年来广泛应用的新型稳珏电源是开关型稳压电源。它的调整管工作在开关状态,本身功耗相小,所以有效率高、体积小等优点,但电路比较复杂。开关稳压电源从原理上分有很多种。它的基本原理框图见图4(d)。图中电感L和电容C是储能和滤波元件,二极管VD是调整管在关断状态时为L、C滤波器提供电流通路的续流二极管。开关稳压电源的开关频率都很高,一般为几~几十千赫,所以电感器的体积不很大,输出电压中的高次谐波也不多。它的基本工作原理是:从取样电路(R3、R4)中检测出取样电压经比较放大后去控制一个矩形波发生器。矩形波发生器的输出脉冲是控制调整管(VT)的导通和截止时间的。如果输出电压U。因为电网电压或负载电流的变动而降低,就会使矩形波发生器的输出脉冲变宽,于是调整管导通时间增大,使L、C储能电路得到更多的能量,结果是使输出电压U。被提升,达到了稳定输出电压的目的。 (4)集成化稳压电路   近年来已有大量集成稳压器产品问世,品种很多,结构也各不相同。目前用得较多的有三端集成稳压器,有输出正电压的CW7800系列和输出负电压的CW7900系列等产品。输出电流从0.1A一3A,输出电压有5V、6V、9V、12V、l5V、18V、24V等多种。这种集成稳压器只有三个端子,稳压电路的所有部分包括大功率调整管以及保护电路等都已集成在芯片内。使用时只要加上散热片后接到整流滤波电路后面就行了。外围元件少,稳压精度高,工作可靠,—般不需调试。图4(c)是——个三端稳压器电路。图中C是主滤波电容,Cl、C2是消除寄生振荡的电容,VD是为防止输入短路烧坏集成块而使用的保护二极管。 五、电源电路读图要点和举例电源电路是电子电路中比较简单然而却是应用最广的电路。拿到—张电源电路图时,应该:1.先按“整流一滤波一稳压”的次序把整个电源。电路分解开来,逐级细细分析。2.逐级分析时要分清主电路相辅助电路、主要元件和次要元件,弄清它们的作用和参数要求等。例如开关稳压电源中,电感电容和续流二极管就是它的关键元件。3.因为晶体管有NPN和PNP型两类,某些集成电路要求双电源供电,所以一个电源电路往往包括有不同极性不同电压值和好几组输出。读图时必须分清各组输出电压的数值和极性。在组装和维修时也要仔细分清晶体管和电解电容的极性,防止出错。4.熟悉某些习惯画法和简化画法。5.最后把整个电源电路从前到后全面综合贯通起来。这张电源电路图也就读懂了。 例l 电热毯控温电路图5是一个电热毯电路。开关在“1”的位置是低温档。220伏市电经二极管后接到电热毯,因为是半波整流,电热毯两端所加的是约l00伏的脉动直流电,发热不高,所以是保温或低温状态。开关扳到“2”的位置,220伏市电直接接到电热毯上,所以是高温档 例2 高压电子灭蚊蝇器图6是利用倍压整流原理得到小电流直流高压电的灭蚊蝇器。220伏交流经过四倍压整流后输出电压可达1100伏,把这个直流高压加到平行的金属丝网上。网下放诱饵,当苍蝇停在网上时造成短路,电容器上的高压通过苍蝇身体放电把蝇击毙。苍蝇尸体落下后,电容器又被充电,电网又恢复高压;这个高压电网电流很小,因此对人无害。由于昆虫夜间有趋光性,因此如在这电网后面放一个3瓦荧光灯或小型黑光灯,就可以诱杀蚊虫和有害昆虫。 例3 实用稳压电源图7是一个实用的稳压电源。输出电压3~9伏可调,输出电流最大100毫安。这个电路就是串联型稳压电源电路。要注意的是;①整流桥的画法和图2(c)不同,实际上它就是桥式整流电路。②这个电路使用PNP型锗管,所以输出是负电压,正极接地。③用两个普通二极管代替稳压管。任何二极管的正向压降都是基本不变的,因此可用二极管代替稳压管。2AP型二极管的正向压降约是0.3伏,2CP型约是0.7伏,2CZ型约是l伏。图中用了两个2CZ二极管作基准电压。④取样电阻是一个电位器,所以输出电压是可调的。 ATX开关电源辅助电源的维修   随着计算机日新月异的发展,现在的主机电源都用上了ATX电源,取代了原先的AT电源。因为ATX电源配合ATX主板可以实现电脑的定时开/关机和远程控制功能。ATX电源与AT电源的最大差别在于ATX电源增加了一个辅助开关电源,可以说辅助开关电源是ATX电源的生命线,由它连续向开关电源的其他部分提供可靠的工作电压。ATX电源一般不设市电开关,有些即使设置了市电开关,但由于在机箱背面,开/关不方便,也很少使用。所以即使关机,辅助电源还一直工作着,因此它是开关电源中易发生故障的部位。在笔者修理的开关电源中,主电源损坏的很少,大多数故障都出在辅助开关电源。下面先介绍如何判断开关电源中辅助开关电源的好坏,然后以K&W  KW-300ATX开关电源为例,介绍辅助电源的维修(实绘出的辅助电源电路如附图)。        ATX电源连接主板的插头是20脚的长方形插头,其中{1}脚为方形,其余为圆形。电源通电后用万用表测量插头{9}脚(紫色线)和{16}脚(黑色线)之间是否有不受控的5V电压,{14}脚(绿色线)和{16}脚之间是否有2~5.25V的电压,如果以上两处电压正常,说明辅助开关电源基本正常;否则,辅助开关电源有故障。      常见故障一:按主机上的轻触电源开关,不能启动或者启动困难,或者有时能启动有时不能启动。这种故障一般是启动电阻R02开路或阻值变大所致。在099 ATX-823/825开关电源中,该电阻为R55,其电阻值一般是220kΩ/2W,换新后故障即可排除。这一故障的典型特征就是保险丝完好,无元件烧毁的痕迹。另外,如果检查启动电阻完好,不要忘了检查轻触电源开关,该开关接触不良也会出现上述故障。 常见故障二:按主机上的轻触电源开关,电源不能启动。此故障一般是限流电阻R01开路所致(观察此限流电阻有时有烧焦现象)。笔者在检修此故障的099ATX-823开关电源时,发现限流电阻R53烧焦,换新后检查其他元件正常,但一通电该电阻又烧焦,后检查发现电源开关管Q12(C3457)的绝缘套绝缘不良,更换后就不再烧限流电阻R53了。 常见故障三:在使用过程中突然电源无输出,同时可听见开关电源部位有异常响声,有时伴有元件烧焦的异味;或者前一天电脑还是正常的,第二天则不能开机。拆开电源盒,往往会发现保险丝F1被烧黑开路。这时不能急于更换保险丝试机,而要先检查整流桥、开关管Q2是否击穿短路,同时检查是否ZD1击穿、R06开路、C03爆裂。另外,脉冲变压器T1也有可能损坏,但不多见。若T1损坏,还会导致其次级元件损坏,常见为CX1爆裂。要注意的是:若ZD1击穿后看不出型号,无法得知其稳压值,代换时先用稳压值低的管子试之,如果电路不起振或输出电压达不到规定值,再换稳压值高的试试。若稳压值选得过高,可能会危及电源开关管和负载的安全。 最后要强调的是,辅助开关电源是一个独立的开关电源,只要一接上交流电,它便开始工作,由于一般用户在电脑关机后都不拔下电源插头或关掉市电开关,辅助电源长期处在高电压下,一旦外界电压有大的波动,开关管就有击穿的危险。所以在修理辅助电源时,建议将原电路中的价廉、耐压低、功率小的开关管换成耐压高、功率大、质量好的开关管,尽量选塑封的。如SSS6N60A,SSS6N90A,2SC3822(125W/500V/8A)、BU508A(125W/700V/8A)。对于一般用户,不需要远程控制电脑或较长时间不用电脑,使用完电脑后一定要将电源插头拔下或切断交流输入,最好为主机和显示器单独配一块接线板,用完电脑后将接线板上的开关断开。    ATX电源电路故障检修精要 作者:未知    文章来源:网络    点击数:1069    更新时间:2007-5-15 一、概述 电脑硬件更新换代快,而主机电源更新较慢,十几年的发展,就是由AT结构变化为ATX电源。它一旦损坏,由于各种原因的影响,用户一般用新的更换,其实,只要我们熟练掌握它的电路结构,工作原理及维修技巧,修复ATX电源很有必要。 二、电路结构(如图1) 三、工作原理 1.整流输出的+300V分别通过两个脉冲变压器加到主电源、辅助电源的功率管集电极,辅助电源开始工作,输出(1)+12V供电TL494;(2)+5VSB、PS-ON到20脚排插。 2.TL49412脚得到+12V,开始工作,它的131415输出+5V,但它被④脚死区控制。当PS-ON端为低电平时,④脚电压跳变,解除控制,从⑧、11输出推挽波形,推动小功率对管工作,通过变压器耦合,使主电源功率对管工作,由主脉冲变压器另一端后续电路输出各型电压。 3.TL494输出的+5V,供电LM339③脚,它由四个比较器构成,一般两个用来完成启动控制,一个用来形成power-good信号,一个用来空载检测。 四、维修技巧 1.TL494(如图2) 注意:12脚Vcc端有的为20V,甚至高达40V。 2.LM339(如图3)②脚通过二极管(IN4148)等控制TL494④脚;⑥脚通过电阻等联接20针排插PS-ON端;还可以分别测各比较器的输入(+,-)和输出端电压值,判断其逻辑功能是否正常。 3.易损部件:(1)保险、电解电容、开关管、整流桥堆; (2)与开关管联接的启动电阻、限流电阻; (3)开关管附近的快恢复二极管、IN4148和稳压管、小功率三极管; (4)TL494、LM339。 4.常见配件型号:(1)主电源的功率对管为E13007、C4242、C4161; (2)辅助电源管为C5027、C3866,有的为N型场效应管; (3)集成块有两片,一片为TL494,有的型号尽管不含494字样,但功能相同,另一片为LM339,有的用LM393(8脚),但周围一定有多个小功率三极管。 5.其它:(1)正常的ATX电源,短路PS-ON,风扇转动正常,各路输出正常,若风扇一转即停,再重复,又如此,这是有空载保护,把硬盘接在输出端,应出现正常现象;否则,为故障。 (2)输出正常,排除主机板故障,但主机不工作,最大可能为power-good信号不正常。 (3)电源功率与主机要配匹,主机经常重新启动,排除电力供应的故障,应考虑换电源。 (4)检修完毕,一定要测各路输出的电压值是否正常。 五、检修实例 1.东阳电源 现象:无任何反应。 检查:(1)保险暴裂,电解电容好; (2)功率对管短路,b极2只1Ω电阻开路,b、e间的电阻2.2k开路; (3)辅助电源管短路,限流电阻开路,附近的2个IN4148短路,10V稳压管短路,C1815击穿。 检修:(1)不装功率对管,其余部件换新。加电,测20针排插的+5VSB,PS-ON高电平是否正常,否则,进一步检修辅助电源; (2)测TL49412、④、131415值正常否,特别注意⑧、11脚电位应相等,不等就换TL494,否则,会烧功率对管。 经上述检测后,换上功率对管,短路PS-ON端,风扇转,一切正常。 2.高达电源 现象:短路PS-ON端,风扇一转即停,再重复,无效,但经过一段时间后,可出现该现象。 检查:保险好,功率管等好,加电测+5VSB,PS-ON输出正常。 检修(1)断开LM339②脚到TL494④脚中的IN4148,短路PS-ON端,风扇转,输出正常。 (2)重查LM339周围的IN4148,无结果,测各比较器的逻辑功能,正常。 (3)画出LM339的局部图(如图4),查D35正向阻值减小,反向有几K的阻值,换掉,正常。注意用数字表在路测D35(二极管档)有蜂鸣声,即可发现故障位,但指针表在路无法判断,除非短路。通电,用数字表测二极管(IN4148)正、负极电位,根据它截止或导通状态,也可判断它的好坏,但指针表很难做到。 3.SUNYONG电源 现象:保险裂,换桥堆后,风扇一转即停,再重复,又如此。 检修:重复例2的检修,无效。该机集成块用的一片LM393,周围有4个小三极管,没有,只好画出简图(如图5),一看图,顿时明白,TL494④脚有二路控制,一路由PS-ON端控制,断开另一路控制的IN4148,结果正常。推断这一路为空载检测控制,找一块坏硬盘挂在输出端,果然,短路PS-ON端,正常(注意ATX电源一般不设空载检测)。 电源是计算机的重要组成部件,它是计算机正常工作的基础。当今微机绝大多数配置ATX电源,它是AT电源发展而来,主变换电路和AT电源相似,并增加了一些辅助电路,除给主机提供稳定可靠的工作电源外,还可配合ATX主板实现软件开关主机的功能。ATX电源除经常发生和AT电源共有的故障外,还有一些特有的故障。下面简要介绍ATX电源的常见故障,仅供参考。    1.ATX电源的工作原理方框图   ATX电源方框图如图1所示。   从图1可以看出,ATX电源的主变换电路和AT电源相似,采用双管半桥它激式电路。整个电路的核心是脉宽调制(PWM)控制芯片,多数ATX电源都采用TL494(或其替代芯片),利用TL494的④脚“死区控制”功能来实现主变换电路的开启和关闭。  2.如何判定故障范围   由于微机电源都设置了过压、过流保护电路,电源发生故障时,大多表现为主机加电无任何指示,主机不启动,显示器无任何显示,电源风扇不转。由于ATX主板上有一部分电路称为“电源检测模块”,它可以控制电源的开启和关闭,这部分电路出现了故障,也表现为上述故障现象。那么,怎样判定是ATX电源故障还是主板故障呢?   ATX电源和主板之间是通过一个20脚长方形双排综合插件连接的,如图2所示,其中14脚(绿色线)为PS-ON信号,主板就是通过这个信号来控制电源的开启和关闭的。当主板电源的“电源检测部件”使PS-ON信号为高电平时,电源关闭;当主板使PS-ON信号为低电平时,电源工作,向主板供电。当ATX电源不和主板相连时,电源内部提供PS-ON信号高电平,ATX电源不工作,处于待机状态。当计算机通电后无法开启时,可将所有供电插头拔下,将14脚和地线(黑色线)用导线短接,若电源风扇转动,各路输出正确,即可判定电源是正常的,否则是电源故障。    3.ATX电源常见故障维修(l)无300V直流电压。这种故障,首先从交流输入插座查起,保险管、整流二极管(桥)、滤波电容是常坏的元件。找到损坏元件后,还要检查主变换电路大功率开关管及其附属电路,在保证其正常时,才可以加电,因为这种故障通常是山大功率元件损坏后引起的。大功率管多采用MJE13007(400V/8A/75W),是故障率最高的元件,更换时要选用性能参数等于或高于原参数的管子,最好选用原型号的管子,还要注意两个管子的参数应一致。   (2)通电后辅助电源正常,启动电源各路主电压无输出。   这种故障有两种可能,一是主变换电路有故障,二是控制部分损坏。首先静态检查半桥功率管及其附属电路和驱动电路,若无故障,检查TL494④脚在PS-ON信号为低电平时是否变为低电平,若无变化,是PS-ON处理电路故障,有变化,再检查8 、11脚有无脉冲输出,若无则TL494损坏。   (3)有300v直流电压,辅助电源不工作。   这是最常见的故障.表现为+300V正常,无+5VSB电压,Tl494的12脚无电压,可以判定辅助电源有故障,辅助电源常见电路简图如图3所示。    这是典型的单管自激式开关电源电路,变压器T3次级有两路输出,一路经整流滤波再由7805稳压,输出5VSB电压;另一路整流滤波后,直接加在TL494的12脚,作为TL494的工作电源,由于TL494的可工作电压范围较宽(7~40V),这一路没有稳压措施。TL494的14脚输出基准+5V(VREF),提供给保护电路、P.G产生电路和PS-ON处理电路,作为这些电路的工作电压。由于电路简单,没有完善的稳压调控及保护电路,使辅助电源电路成为ATX电源中故障率较高的部分,常损坏的元件是功率管和功率电阻(4.7Ω),特别是功率管的启动电阻(300kΩ)。另外,辅助电源出现故障,输出电过高时,也可能造成其供电的电路无件损坏,如TL494等这是出ATX电源的特点决定的。当计算机软关闭后,市电并没有断掉,辅助电源一直在工作,特别在夜间,市电有可能很高,并且辅助电源也较为简易,所以极易损坏辅助电源电路。一般在没有特殊情况时,软关机后若较长时间不用,应切断市电。   (4)各路电压正常,无P.G信号。   ATX电源的P.G(也称PW-OK)信号的形成电路常如图4所示。    在电源加电后,辅助电源首先建立VREF(LM393的工格电源也为VREF),TL494的③脚提供较低电压,三极管A733导通,LM393的①脚输出低电平。当ATX电源开启主变换电路工作,TL494的③脚维持较高电平,使二极管A733处于截止状态,VREF通过电容(4.7uF)充电,延迟一段时间后,输出+5V的P.G信号,主机开始工作。当电源输出电压降低时,检测电路送到TL494的检测电压也随之降低,如果电压降低超过额定范围,TL494的③脚电平将降为低电平,三极管A733导通,使l。M393的①脚输出低电平,主机停止工作。   出现上述故障,一般是LM393集成电路坏,P.G信号恒为低电平,也有可能是三极管A733短路,将P.G信号钳位在低电平。这部分电路由于工作电压较低,阻容元件很少发生故障。将损坏的元件更交换后,即可排除该故障。 检修ATX开关电源,从+5VSB、PS-ON和PW-OK信号入手来定位故障区域,是快速检修中行之有效的方法。   一、+5VSB、PS-ON、PW-OK控制信号  ATX开关电源与AT电源最显著的区别是,前者取消了传统的市电开关,依*+5VSB、PS-ON控制信号的组合来实现电源的开启和关闭。+5VSB是供主机系统在ATX待机状态时的电源,以及开闭自动管理和远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫色线由ATX插头(图1)9脚引出。PS-ON为主机启闭电源或网络计算机远程唤醒电源的控制信号,不同型号的ATX开关电源,待机时电压值为3V、3.6V、4.6V各不相同。当按下主机面板的POWER开关或实现网络唤醒远程开机,受控启动后PS-ON由主板的电子开关接地,使用绿色线从ATX插头14脚输入。PW-OK是供主板检测电源好坏的输出信号,使用灰色线由ATX插头 此主题相关图片如下: 此主题相关图片如下: 8脚引出,待机状态为零电平,受控启动电压输出稳定后为5V高电平。    脱机带电检测ATX电源,首先测量在待机状态下的PS-ON和PW-OK信号,前者为高电平,后者为低电平,插头9脚除输出+5VSB外,不输出其它电压。其次是将ATX开关电源人为唤醒,用一根导线把ATX插头14脚PS-ON信号,与任一地端(3、5、7、13、15、16、17)中的一脚短接,这一步是检测的关键,将ATX电源由待机状态唤醒为启动受控状态,此时PS-ON信号为低电平,PW-OK、+5VSB信号为高电平,ATX插头+3.3V、±5V、±12V有输出,开关电源风扇旋转。上述操作亦可作为选购ATX开关电源脱机通电验证的方法。    二、 控制电路的工作原理 ATX开关电源,电路按其组成功能分为:交流输入整流滤波电路、脉冲半桥功率变换电路、辅助电源电路、脉宽调制控制电路、PS-ON和PW-OK产生电路、自动稳压与保护控制电路、多路直流稳压输出电路。请参照图2。    1.辅助电源电路    只要有交流市电输入,ATX开关电源无论是否开启,其辅助电源一直在工作,为开关电源控制电路提供工作电压。市电经高压整流、滤波,输出约300V直流脉动电压,一路经R72、R76至辅助电源开关管Q15基极,另一路经T3开关变压器的初级绕组加至Q15集电极,使Q15导通。T3反馈绕组的感应电势(上正下负)通过正反馈支路C44、R74加至Q15基极,使Q15饱和导通。反馈电流通过R74、R78、Q15的b、e极等效电阻对电容C44充电,随着C44充电电压增加,流经Q15基极电流逐渐减小,T3反馈绕组感应电势反相(上负下正),与C44电压叠加至Q15基极,Q15基极电位变负,开关管迅速截止。     Q15截止时,ZD6、D30、C41、R70组成Q15基极负偏压截止电路。反馈绕组感应电势的正端经C41、R70、D41至感应电势负端形成充电回路,C41负极负电压,Q15基极电位由于D30、ZD6的导通,被箝位在比C41负电压高约6.8V(二极管压降和稳压值)的负电位上。同时正反馈支路C44的充电电压经T3反馈绕组,R78,Q15的b、e极等效电阻,R74形成放电回路。随着C41充电电流逐渐减小,Ub电位上升,当Ub电位增加到Q15的b、e极的开启电压时,Q15再次导通,又进入下一个周期的振荡。    Q15饱和期间,T3二次绕组输出端的感应电势为负,整流管截止,流经一次绕组的导通电流以磁能的形式储存在T3辅助电源变压器中。当Q15由饱和转向截止时,二次绕组两个输出端的感应电势为正,T3储存的磁能转化为电能经BD5、BD6整流输出。其中BD5整流输出电压供Q16三端稳压器7805工作,Q16输出+5VSB,若该电压丢失,主板就不会自动唤醒ATX电源启动。BD6整流输出电压供给IC1脉宽调制TL494的12脚电源输入端,该芯片14脚输出稳压5V,提供ATX开关电源控制电路所有元件的工作电压。   2.PS-ON和PW-OK、脉宽调制电路 PS-ON信号控制IC1的4脚死区电压,待机时,主板启闭控制电路的电子开关断开,PS-ON信号高电平3.6V,IC10精密稳压电路WL431的Ur电位上升,Uk电位下降,Q7导通,稳压5V通过Q7的e、c极,R80、D25和D40送入IC1的4脚,当4脚电压超过3V时,封锁8、11脚的调制脉宽输出,使T2推动变压器、T1主电源开关变压器停振,停止提供+3.3V、±5V、±12V的输出电压。 受控启动后,PS-ON信号由主板启闭控制电路的电子开关接地,IC10的Ur为零电位,Uk电位升至+5V,Q7截止,c极为零电位,IC1的4脚低电平,允许8、11脚输出脉宽调制信号。IC1的输出方式控制端13脚接稳压5V,脉宽调制器为并联推挽式输出,8、11脚输出相位差180度的脉宽调制控制信号,输出频率为IC1的5、6脚外接定时阻容元件的振荡频率的一半,控制Q3、Q4的c极所接T2推动变压器初级绕组的激励振荡,T2次级它激振荡产生的感应电势作用于T1主电源开关变压器的一次绕组,二次绕组的感应电势经整流形成+3.3V、±5V、±12V的输出电压。    推动管Q3、Q4发射极所接的D17、D18以及C17用于抬高Q3、Q4发射极电平,使Q3、Q4基极有低电平脉冲时能可*截止。C31用于通电瞬间封锁IC1的8、11脚输出脉冲,ATX电源带电瞬间,由于C31两端电压不能突变,IC1的4脚出现高电平,8、11脚无驱动脉冲输出。随着C31的充电,IC1的启动由PS-ON信号控制。    PW-OK产生电路由IC5电压比较器LM393、Q21、C60及其周边元件构成。 待机时IC1的反馈控制端3脚为低电平,Q21饱和导通,IC5的3脚正端输入低电位,小于2脚负端输入的固定分压比,1脚低电位,PW-OK向主机输出零电平的电源自检信号,主机停止工作处于待命休闲状态。受控启动后IC1的3脚电位上升,Q21由饱和导通进入放大状态,e极电位由稳压5V经R104对C60充电来建立,随着C60充电的逐渐进行,IC5的3脚控制电平逐渐上升,一旦IC5的3脚电位大于2脚的固定分压比,经正反馈的迟滞比较器,1脚输出高电平的PW-OK信号。该信号相当于AT电源的PG信号,在开关电源输出电压稳定后再延迟几百毫秒由零电平起跳到+5V,主机检测到PW-OK电源完好的信号后启动系统。在主机运行过程中若遇市电掉电或用户关机时,ATX开关电源+5V输出端电压必下跌,这种幅值变小的反馈信号被送到IC1组件的电压取样放大器同相端1脚后,将引起如下的连锁反应:使IC1的反馈控制端3脚电位下降,经R63耦合到Q21的基极,随着Q21基极电位下降,一旦Q21的e、b极电位达到0.7V,Q21饱和导通,IC5的3脚电位迅速下降,当3脚电位小于2脚的固定分压电平时,IC5的输出端1脚将立即从5V下跳到零电平,关机时PW-OK输出信号比ATX开关电源+5V输出电压提前几百毫秒消失,通知主机触发系统在电源断电前自动关闭,防止突然掉电时硬盘磁头来不及移至着陆区而划伤硬盘。   3.自动稳压控制电路   IC1的1、2脚电压取样放大器正、负输入端,取样电阻R31、R32、R33构成+5V、+12V自动稳压电路。当输出电压升高时(+5V或+12V),由R31取得采样电压送到IC1的1脚和2脚基准电压相比较,输出误差电压与芯片内锯齿波产生电路的振荡脉冲在PWM比较器进行比较放大,使8、11脚输出脉冲宽度降低,输出电压回落至标准值的范围内,反之稳压控制过程相反,从而使开关电源输出电压稳定 电脑电源故障该如何确定    电源是电脑的动力之源,它能否提供稳定充沛的电力,对电脑可靠高效的运行起着至关重要的作用。另一方面,随着电脑硬件性能的不断提高,整机的电力消耗也在迅速攀升,从而使电源故障发生的几率也在不断增加。      一台电脑如果出现了通电开机后主机没有任何反应,就连电源内置的散热风扇都不转动的情况,并且,已经确认市电和电源插座没有任何问题,那末首先值得怀疑的应该就是电源了。不过ATX电源的启动过程与主板上相应控制电路工作的正常与否有着密切的关系,因此,光凭上述现象有时我们还不能确定故障就出自电源本身,还需要通过“替换法”测试后方能确认。     电源故障的分类:主要分为“市电环境影响”、“硬”故障和“软”故障三个方面,下面我们先来介绍最简单的故障类型。     市电环境的影响     不知道读者是否遇到过这样的情况:一台可以正常使用的电脑,有时能够启动、有时不能启动。连续更换了几个电源,可问题始终没有得到解决。观察后发现,故障通常发生在早上8:00—11:00和晚上6:00—10:00这两个时间段。而且,电脑正常启动后显示器的画面有暗黑色干扰条纹显现。事实上,这种故障现象与供电环境有关。因为是住宅的供电线路,受附近电器设备的影响,出现某时段电压降低过多而引发的。这一问题只能考虑在电脑供电线路上采取稳压措施或安装后备式UPS电源来解决。因此,当我们发现电脑出现这种规律故障时,不妨先检查一下供电线路。     1. ATX电源最主要的特点就是不采用传统的市电开关来控制电源的开启与关闭,而是利用+5VSB与PS—ON信号的组合来达到相同的目的。它只要控制PS—ON信号电平的变化,就能控制电源的开启和关闭。当PS—ON小于1伏时开启电源,而大于4.5伏时则关闭电源。     2.电解电容器的好坏可以用指针式万用表的R×1K或R×10K挡,测试其充放电情况来大致的加以确认。测试时红表笔接电容的负极,黑表笔则接正极,接着观察万用表的指针。正常时指示值会先达到零位附近,然后,再缓慢地向阻值增大方向偏转,当指针基本不动时所指示的数值越大,就说明被测电容的质量越好。     完全不能工作     由于电源的高压整流、滤波及开关变换电路部分长期工作于高温、高压、大电流、多灰尘的恶劣条件下。因此,当交流电压波动较大、负载较重、环境温度较高的情况出现时,电路元件就有可能会出现短路等较为严重的故障,造成交流保险管熔断或过压、过流保护电路动作,从而使电源因失去输出电压而完全不能工作。这种故障多发生于那些保护功能存在缺陷或完全失效的电源产品之中。并且,受损部件往往也比较直观,故检查维修的难度不高。但是,由于这部分电路与市电有直接的联系,因此,如果没有丰富的维修经验,最好还是送修或更换一台新电源为好。     工作状态不稳定      电源工作状态不稳定的主要特征有启动困难、有时能够启动、有时不能启动、刚开始工作正常,过一段时间便不正常等。这类情况比较多,引发这种故障的原因主要有四种:     ⑴ 无PG信号或信号延迟时间不足是较为典型的电源故障。检测时可在开机状态下借助万用表的电压挡,测量20芯电源插头(如图)第1脚对地有无3.3V电压。如果没有电压则可切断电源,并拆开电源外壳作进一步的检查。一般情况下引起无PG信号的主要原因多为负责PG信号控制的晶体管击穿或延时电容漏电所至,将它更换后故障即可消除。     小提示:POWER      GOOD(PG)信号:是由各直流输出电压检测信号和交流输入电压故障信号相“与”产生的,它与TTL电平兼容,高电平表示电源正常,低电平表示电源故障。PG信号从打开电源到输出有效,大约有100mS~500mS的延时,其作用是在电源输出达到稳定后通知主机启动系统,而当市电突然断电后,PG信号将在直流稳压输出消失之前做出反应,使得硬盘驱动器有足够的时间使磁头复位,从而防止硬盘受到意外损坏。PG信号不正常往往导致系统不能启动。     ⑵ 为了实现休眠、远端唤醒和软开机功能,ATX电源都设有一个独立的辅助电源系统。它输出的5VSB电压,通过20芯电源插头为主板控制电路供电。而控制电路又通过PS-ON端以反馈的形式来控制电源的开启。在这个反馈回路中的任何一个环节出现了问题,都会直接影响到电脑能否正常启动。还有,当电源处于待机状态时,其自激震荡、推动电路部分,还需要一组单独的自用电源供给。如果该电压不正常的话也会造成电源启动困难,或偶然可以启动的故障现象。     ⑶ 自激震荡或保护电路集成块(TL494、LM339)内部出现短路等问题。这种情况可以在断电的情况下,用万用表的电阻挡在线测量各引脚与地间的直流电阻,将所得数据与无故障集成块进行对比,如果数值相差较大则基本可以确定是集成块损坏,将它更换后故障即可排除。     ⑷ 保护电路设置较为完善的电源,只要其电压输出端的任意一路,出现负载过重或短路的情况均会立即启动,强制震荡、推动电路停止工作,从而有效地保护硬件不被损坏。不过发生保护电路失效的故障几率并不高。如电源能够启动且各路电压正常,则怀疑保护电路误动作就是正确的。此时可以采用最小系统法,并逐步添加外围硬件的方法,最终找出存在问题的硬件。  六种故障看电源供电不足   玩电脑游戏的时候,画面效果好象播幻灯片一样,也许你第一时间就想到升级显卡。硬盘空间爆满,运行大型软件的时候狂读硬盘,也许会令你产生升级硬盘和内存的打算。系统启动时间超长,进游戏要等N久,也 许你要考虑升级CPU。 老机升级,玩家们所持的态度和观点往往是“对症下药”,哪个配件不行换升级哪个,实在不行就整个平台都换掉。不过,玩家在升级过程中往往会忽略一个问题,那就是电源供电。与其他配件一样,PC电源的规格一直在不断进化当中,从早期的ATX 1.1、2.0、2.01、2.02、2.03,到近期的ATX 12V 1.3、2.0、2.2,功率也从以往220W发展现在300W以上,既然其他配件升级,为什么不将电源也进行升级呢? 大部分升级用户,在考虑到升级方案的时候,都没有把电源计算在内,以至不少人在把升级配件买回来这后,才发现旧电脑的电源根本用不了在新平台上面。更多的是在新平台上面沿用旧电源,会就出现这样那样的问题。这个时候,用户可能还在猜想是新买回来的升级配件存在着兼容性的问题,但没有想到问题的根源可能是在于旧电源的供电不足,使得新平台在升级之后出来各种不稳定的现象。 不要说升级平台不换电源,就算是换了新电源,如果选择了不符合系统需求的电源,依然有可能会出现电源供电不足的情况,由此就会引发各种各样的故障,这个情况我们称之为“升级后遗症”。至于“升级后遗症”的具体表现形式,接下来咱们为一一给大家进行讲解。 开机没有反应 根本就点不亮 电源供电不足评价级别:非常严重 如果在升级之前,在没有对主机配件进行调整的前提下,出现这样的情况有可能是电源烧了。但是,如果在进行完升级  ,新旧配件都连结好,开机进行测试的时候才出现,这极可能是预示电源供电严重不足,甚至根本与新平台不匹配。这类故障还有一种表现形式,那就是有时能正常开机,有时又不能,有时要按几下电源开关才能开机。 前一阵子,基于G80核心的NV新一代旗舰级显卡“GF8800GTX”上市,立即吸引了不少发烧友的目光,顶着高价去抢购的玩家是大有人在。据部分买了GF8800GTX的玩家透露,他们将显卡插到主板上面并且接好电源线,开机之后竟然发现毫无反映,主机点不亮。后来在与商家沟通之后,才知道一块“GF8800GTX”通常需要450W的电源才拖得起,如果要玩“GF8800GTX Sli” ,就要更高功率的电源。难怪个别品牌的“GF8800GTX”显卡,买一对的话可以获赠一个750W电源。 其实,无论升级了一个配件,还是将整个平台都换掉,如果出现开机没有反应,也就是点不亮机子的情况,就预示着你所用的电源跟升级后的新平台不匹配。最大可能是电源功率不够,不足以支持主机开机。也可能是电源规范跟新平台不对应,例如Intel双核+SLI平台,就起码要搭配符合ATX 12V 2.2版规范的450W电源。又或者是电源达不到某项关键配件的要求,就好象前面提到的GF8800GTX。面对这样的情况,除了更换电源,基本上没有别的解决方案。 不认存储设备 硬盘出现怪声 电源供电不足评价级别:严重 当你进行完配件升级的工作,并且可以正常开机使用,但是有时在开机之后会在自检画面那里停止的,原因是  你的一个或者几个IDE/SATA存储设备,不能通过启动自检,说直接一点就是某些存储设备不能被正常认出。如果检查数据线和电源连接正确,并且数据线和主板的IDE/SATA接口没有问题的情况下,你不妨将目光放到电源上面。 启动自检认出希捷硬盘和先锋DVD-ROM 这种故障通常出现在玩家更换了硬盘光驱之类的存储设备之后,又或者是在电源老化的情况下增加了存储设备,如采用“双硬盘+单光驱”、“单硬盘+光驱+刻录机”这样的搭配。更换/增加了存储设备,都会对电源本身增加了负担,在功率不足的情况,个别存储设备所对应的那组电源线失去供电,设备就不能正常工作,在开机自检的时候不能被正常认出就十分正常。 另外,搭配太多存储设备,或者是电源功率太低,在供电方面不能应付新款存储设备,还有可能对存储造成损坏。有些用户在进行完升级之后,发现硬盘时不时会发出“咯咯”的怪声,光驱和刻录机在读盘的时候经常进入死循环,只用按出仓键终此读盘的操作,才能重新得到操作权。这个时候用户就一定要注意,这种情况持续下去的话,硬盘等设备可能会出现永久性的损坏,因为它们的“不正常”运行是由于供电不足所造成的,大家应尽量避免让硬盘工作在低电压的环境下。 要解决这类问题,治标的方法是减少搭载的存储设备,不常用的硬盘和光驱,最好拨掉它们的电源线和数据线,而治本的方法当然是换一个更大功率的电源。 不稳定!经常重启和进不了系统 电源供电不足评价级别:严重 升级后新平台搭建完成,可以正常开机和自检,存储设备都可以被正常认出,而在登录Windows系  统过程中,就不是十分稳定。有时在启动画面那里就定着不动,有时会在启动过程中会自动重启,总之进入系统的过程就不太顺利。就算难得有一次能顺利进入Windows系统,跑不了几个程序也会出现自动重启的现象。这样的情况已经严重影响用户正常使用电脑,所谓的“升级后遗症”已经出现。 在这种情况下面,受电源供电不足所影响的配件,就不再是存储产品,而是换成了主板、CPU和内存。无论是进入系统时死机还是在使用过程中经常重启,很有可能是电源规格太旧,不符合CPU和主板对电源符范和功率的要求。这样工作下去,不单只是大大影响大家的电脑使用效率,还会对主板、CPU和内存造成不良的实际影响。主板的短路和爆电容,很多时候就是因为使用不符合规范的电源,在供应电不足的电源而所引起的。 早期的ATX 2.03版电源 举个例子,在ATHLON XP和早期赛扬D时代,很多人都是使用ATX 12V 2.03版 250W电源。但是如果现在打算升级为ATHLON64平台,甚至是X2双核平台,这样的电源就最好换个12V 2.2版的350W产品,不然主板就算能工作也不会太稳定。为了省钱不去换电源,但是旧电源因为功率不足,难以保证升级后的新平台稳定运行,长期强行使用会对其他配件造成损害,省钱的背后分分钟就是更大的经济损失,万一主板、CPU、内存因为这个问题而损坏了,就真的得不偿失。 运行游戏被弹出 或者死机花屏 电源供电不足评价级别:中等 有一部分电脑游戏,像《极品飞车》系列、《魔兽争霸3》、《CS 1.6》、《帝国时代3》等等,它们对硬件性能的要求并不会太高,但对于系统整体稳定性的要求就比较苟刻。长期以来,总是有网友抱怨在玩这些游戏的时候,有时会出现死机花屏,甚至是被直接踢出游戏的情况。他们曾经尝试升级显卡驱动和改善主机散热环境,但是问题依然存在。 其实,在排除显卡本身有问题的前提下,这样的故障很多时候是由于电源对主板的显卡插槽供电不足所造成。如果显卡插槽供电严重不足,主机就根本开不了机或者是开机就报警,就象第一点谈到的那样。在更多的实例中,电源对显卡插槽的供电足够应付开机,但是当玩家在玩3D游戏的时候,问题就会出现,事关这个时候显卡是在全负荷工作中,对于电源供应的需求明显会大于开机的时候,在供电不足的情况下就会出现死机、花屏甚至被踢出游戏。这种情况比较多是出现在新显卡插在旧主板上面使用,有不少人以为显卡能插到主板上面就能用,但实际上旧主板和旧电源,再配合新显卡,往往就会出现插槽供电不足,这样显卡本身也是有损害的, 显卡电源接口 还有,当前很多新款显卡都需要外接电源,包括常用的电源接口和特殊的6针显卡电源接口(如上图)。如果老电源没有这样的接口,或者是用户没有用电源接口接到显卡上面,有可能会直接开不了机,也有可能是能开机但不能进行“玩3D游戏”这样大功耗的操作,问题其实是出在电源对显卡的供电不足。 被逼重启!显示内存地址错误 电源供电不足评价级别:中等 在Windows平台遇到内存地址报错的情况,相信很多电脑玩家都见过,一般来说大家会马上想到内存是  不是出问题了,不过在刚进行完升级操作的新平台上面,出现这样的情况其实就预示着有可能是内存槽供电不足,或者是主板的内存控制电路有问题,造成内存在工作不正常。 DIY玩家应该都知道,现在不少主板厂商都十分看重CPU的供电部分,他们往往是采用了大容量电容来稳压,确保主板的CPU电路工作正常。不过,对于内存槽和内存电路,就明显没有CPU那边受到重视。由于电源方面的原因,造成主板内存电路短路,内存控制芯片烧掉、内存槽损坏,或者内存芯片被击穿的情况是时有发生。而内存地址报错,其实就是一个信号,如果不及时对电源供应方案进行调整,上面提到的几个硬件故障,很容易就会发生。 内存插槽和供应模块 要知道,无论是主板的内存控制芯片,内存供电电路还是内存槽,一经损坏是很难维修的,主板其实上就报废了。至于内存,在上面几项配置有问题的情况下,是很难正常工作的。在升级了主板之后,如果坚持使用老电源,往往就会出现对内存槽和对内存供电不足的情况。虽然主板和内存不一定马上就烧掉,但使用过程中就会出现内存报错这样的情况,长期这样下去的话,主板和内存损坏的机率应该是挺高,希望升级用户在这方面要多加留意。 Windows平台常出现设备丢失 电源供电不足评价级别:一般 以下这些故障,估计很多人都遇到到过:升级完之后,电脑工作比较正常,但有时需要读光盘或者软盘 的时候,却在“我的电脑”里面找不到光驱或者软驱的盘符,系统管理器里面更是发现光驱或者软驱这项设备丢失了,不过重启系统或者关机重进之后又正常了。另外,一些USB设备如移动硬盘和闪存盘,有时候接上电脑的USB接口之后就马上能用,有时候就总是找不到盘符,不能被系统认出来。 这类问题其实就是体现在主机电源的整体供电不足,虽然情况不是很严重,但在进入Windows系统之后,各项配件都开始高负荷运行起来,某个配件如果在这个时候得不到稳定的电源供应,就会暂时出现工作不正常的情况,好象光驱软驱不能正常使用,USB端口供电不足使得USB设备难以正常运作。当用户重启系统之后,这几个配件得到稳定电源供应,又恢复正常运行,但可能又有其他配件出问题,如PCI声卡丢失等等。 说明白一点,开机的时候各项配件对于电源供应的需求较低,但在登录系统后部分配件的功耗都会大增,此时电源供电不足的问题就会突显出来。短期来看,这种情况会给用家带来一定的不便,时不时因为找不到设备而需要重启。长期来看,对主板和USB设备的寿命会有一定影响。特别是在升级后使用了一些大功耗的配件,大家在升级过程中最好把电源也升级了,选择符合新平台功率需求的新款电源。 银河ATX电源检修实例   1:交流保险管烧黑炸裂,检测BD1至BD4四个整流二极管,辅助电源电路Q15开关三极管、ZD8稳压管,D30、D41二极管击穿短路,限流电阻R72断路。更换上述元件,启动ATX电源恢复正常。Q15的c、e极内含阻尼二极管,其替代型号为2SC2979、2SC3148、2SC3178。  例2:待机、启动状态时,PS-ON、PW-OK均为低电平,检查IC1脉宽调制芯片TL494的12脚有电压输入,14脚无稳压5V输出,  断电后在线测14脚对地阻值几乎为零,吸锡起拔TL494后测电路板IC1的14脚对地阻值在3kΩ以上,正常。焊上16脚插座,用另一片TL494替代时,带电受控启动后风扇转了一下即停,启动后开关电源风扇能微动,说明交流输入整流滤波电路、辅助电源电路正常,故障一般在脉宽调制控制电路及推动级、自动稳压与保护控制电路。检测IC1周围元件正常,手摸IC1芯片发烫,再测14脚对地又短路,连换几片TL494,带电启动电源后芯片不是发烫就是冒烟炸裂,仔细检查替换下的芯片,发现管脚被重新浸锡过,疑是拆机件的翻新品。重新换上一片本色管脚的正品TL494,带电测量正常。银河ATX开关电源IC1常见故障是12脚、14脚对地短路,12脚对11脚击穿短路。更换IC1,要谨防该器件是管脚被浸锡后的翻新品,这种芯片经常造成TL494上电烧毁、炸裂,或造成ATX开关电源工作几天又坏,可靠性极差的故障。检修后的ATX开关电源,应按一定间隔和次数人为短接、断开ATX插头14脚的PS-ON与接地端,在待机、启动状态下考查ATX电源工作的可靠性。 例3:辅助电源电路T3变压器次级整流二极管BD6击穿短路,IC1崩裂,BD6整流输出是向IC1的12脚提供输入电源,BD6短路,辅助电源次级交流电压直接加截在TL494芯片上,导致击穿。更换损坏元件,在待机、启动状态下测量PS-ON、PW-OK、+5VSB信号,ATX电源输出电压均正常。 例4:IC1的11、12、14脚对地短路,脉冲半桥功率变换电路T2推动变压器一次绕组振荡管Q3的b、e极击穿短路,辅助电源变压器T3次级滤波电容C16炸裂。检修中发现,当IC1的14脚内部断路无稳压5V输出时,T3次级BD5、BD6整流输出电压升高,C16标称耐压值16V,极易炸裂爆壳,同时TL494击穿短路。用标称耐压值25V以上的电容替代,并更换IC1、Q3管后,电源正常。IC1损坏除了可以用494系列的芯片替换外,还可用TL594、IR3M02、MB3670、ULN8186、ULS8194R等直接替代。 故障现象二:ATX开关电源接主板,启动后PW-OK信号常低,主机不能进入Windows画面。 在线测ATX插头8脚PW-OK信号为0.7V低电平,有直流稳压输出。  ATX电源空载,受控启动后PW-OK高电平,故障属空载正常,加载异常。PW-OK信号变化由Q21  e极电位确定,试换Q21、C60无效,更换C32后正常。 故障现象三:ATX电源刚接入市电,未经启动,风扇有时转动一下即停,瞬间有直流稳压输出。 接通市电,待机状态在线测IC10精密稳压电路WL431,Uk电位时高时低不稳,导致PS-ON控制信号异常,更换C49、C51无效,替换IC10后正常。  文档已经阅读完毕,请返回上一页!
/
本文档为【电脑开关电源维修~1.0ok】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索