为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

凝汽器自动除垢强化换热装置

2017-11-15 15页 doc 147KB 30阅读

用户头像

嘉然今天吃什么

暂无简介

举报
凝汽器自动除垢强化换热装置凝汽器自动除垢强化换热装置 凝汽器自动除垢强化换热装置 前言: 汽轮机是火电厂的重要设备,通过汽轮机,蒸汽的热能转化为机械能,为发电机发电提供动力。凝汽器是汽轮机的附属设备,在凝汽器里汽轮机排汽转化为凝结水,体积缩小,压力降低,汽轮机进出蒸汽焓差增大,做功能力提高。凝汽器也为系统水汽循环提供了必要条件。凝汽器工作性能的好坏直接影响到系统的热经济性。衡量凝汽器工作性能的指标主要有端差和真空。 凝汽器是一个表面式换热器,在壳程里流动的是汽轮机排汽和凝结水,管程里流动的是冷却水。冷却水吸收蒸汽热量后蒸汽凝结成水,冷却水温度升高...
凝汽器自动除垢强化换热装置
凝汽器自动除垢强化换热装置 凝汽器自动除垢强化换热装置 前言: 汽轮机是火电厂的重要设备,通过汽轮机,蒸汽的热能转化为机械能,为发电机发电提供动力。凝汽器是汽轮机的附属设备,在凝汽器里汽轮机排汽转化为凝结水,体积缩小,压力降低,汽轮机进出蒸汽焓差增大,做功能力提高。凝汽器也为系统水汽循环提供了必要条件。凝汽器工作性能的好坏直接影响到系统的热经济性。衡量凝汽器工作性能的指标主要有端差和真空。 凝汽器是一个表面式换热器,在壳程里流动的是汽轮机排汽和凝结水,管程里流动的是冷却水。冷却水吸收蒸汽热量后蒸汽凝结成水,冷却水温度升高后排出凝汽器。表面式换热器存在换热管结垢的问题,凝汽器也不例外。凝汽器铜管内壁结垢会严重影响换热效果,大大降低系统的热经济性。凝汽器结垢影响主要体现在端差升高和真空降低。在系统来说主要是发电汽耗增加,煤耗增加,经济效益下降。(常识,可越过) 水垢的形成: 汽轮机组运行时必须有大量的冷却水通过凝汽器来冷却汽轮机排汽,循环冷却水的水温在15?—35?之间,适宜藻类和微生物繁殖。循环使用中,大量的水分被蒸发,而补充水中又含有杂质和盐类化物,冷却水的盐类不断浓缩,水中的碳酸氢钙浓度越来越高,游离CO2- HCO3)2分解为CaCO3而析出形成水垢: 却不断挥发,使Ca( Ca(HCO3)2= CaCO3?+CO2?+H2O 碳酸盐水垢的产生严重影响了金属的传热效果,循环水温又适合藻类和微生物繁殖生长,脱落下的藻类易发生粘垢,致使循环冷却水水质不断恶化。(这里讨论的应该是采用凉水塔的闭式循环冷却方式,而我们采用的是海水直流冷却的开始循环方式) 循环水在凝汽器铜管内流动,吸收大量的热量,保证了汽轮机正常运行。根据流体力学原理,液体在管道内流动分为层流和紊流两种基本现象。层流边层是紧靠管壁的一层,流速很慢,水中的CaCO3和粘垢最易滞留在管内壁上,形成水垢。 水垢的危害: 1、 凝汽器铜管内壁形成水垢后,换热效果下降,导致真空下降,能耗上升,严重时要降低发电负荷或停机清洗。据有关资料介绍,水冷设备换热器中水垢厚度为2.16mm时,传热系数平均下降51%,设备运行效率下降50%,而形成水垢的时间仅25天。如此短的积垢时间和低传热效率,导致凝汽器长期处在低效率中运行。 1 2、增加了冷却循环水系统的水流阻力,降低了冷却水的流量,增加了循环水泵的能耗。 3、由于水垢的热导率很低,因而急剧降低了凝汽器的传热系数,导致凝汽器真空降低,按照不同汽轮机的试验资料,真空度每降低1%,汽耗增加1,1.5%,当蒸汽流量不变,将降低汽轮机组的出力。据有关资料介绍,水冷设备换热器中水垢厚度为2.16mm时,传热系数平均下降51%,设备运行效率下降50%,而形成水垢的时间仅25天。 凝汽器结垢对真空度的影响 机组容量(Mw) 水垢厚度(mm) 真空降低(kpa) 真空度降低(%) 汽耗增加(%) 100 1.2,2.0 26.7 , 33.3 3 , 5 3 , 7.5 50 0.8,1.2 20.0 , 40.0 2 , 4 2 , 6 注:真空度降低1%,汽耗增加1,1.5%,当蒸汽量不够,降低汽轮机出力1,2% 。 4、水垢的附着,特别是粘泥的附着,会在附着物下部发生局部腐蚀甚至破裂和穿孔。水垢的附着凝汽器铜管会导致铜管堵塞,严重影响设备运行。 5、凝汽器铜管的损坏会造成凝汽器的严重泄露,情况严重或处理不当会造成锅炉水冷壁管的爆破,严重危及锅炉的安全运行。(水垢有百害而无一利,无需多说) 装置原理: 在凝汽器铜管内安装本装置后,当汽轮机组运行时,无需外加动力,利用水的流速驱动本装置的旋转部件长期在铜管内不停地快速旋转,改变管内水的流动状态,强化换热。同时,破坏水垢和粘泥的形成机理,使水垢和粘泥不能在管壁上滞留,排除了结垢的可能。 装置特点: 采用高分子聚合材料制成,耐温0??T?100?,自润滑,耐酸碱腐蚀,耐磨,抗老化,其密度与水的密度相近,能较好地浮动在管的中心部位,在运行时可避免与金属的硬摩擦,使管内除垢均匀化,同时还保护了金属表面的氧化膜,较好地解决了铜管的使用寿命。 装置安装: 自动除垢强化换热装置安装简单,不需对凝汽器本体作任何改动。 使用寿命及质量保证: 本装置设计使用寿命5年,无条件质保2年,质保期内出现产品质量问题免费更换。 适用范围: 所有的开式循环和直流冷却系统都能安装本装置,解决凝汽器的结垢和换热效率低下的难题,大幅度提高发电经济效益。 2 装置作用: 1、强化凝汽器换热管水侧换热效果(提高真空,降低端差)。 2、保持凝汽器换热管内长期干净无垢,无需清洗,提高设备寿命及有效运行时间。。 3、减缓垢下腐蚀,延长凝汽器换热管使用寿命。 4、减少发电汽耗0.1kg/kwh及以上,减少补充水量50,左右,减少加药量50,左右。 投资回收期: 用户在安装本装置后2,6月内收回投资。 安装、运行注意事项: 1、 在安装技术改造产品前甲方必须对凝汽器铜管进行彻底清洗,以免因存留水垢损坏改造装置和影响改造运行效果。 2、 凝汽器的循环水中无塑料袋,杂物,烂草,大的水生物等杂物。 3、 装置自安装完毕投入运行,循环水水质要保持安装改造前之状态,不能擅自改变,更不能突然停止加药。具体的加药量和循环水水质要在运行中摸索,循序渐进,以机组整体经济效益最大为依据。 4、 循环水量尽量维持在额定量,装置的自清洗和强化换热效果会更好,使凝汽器的换热性能处于最佳状态。因此提高真空取得的经济效益远大于因加大循环水量而增加的泵耗。 5、 定期检查各级滤网,及时清除杂物,减小流动阻力,保证循环水水质。 以下是装置原理图 3 4 紊流状态 改造后:凝汽器铜管内壁水的滞流层消失呈现 本装置和胶球清洗装置的比较 胶球清洗装置的运行是人为控制的,是定期进行的。由于凝汽器本体结构的先天性(如局部涡流、流速不均、铜管管径不一等),使胶球的运动呈现概率性和习惯性,有的铜管长期或始终得不到清洗,凝汽器整体清洗效果不好,胶球回收率不高。胶球对硬垢无能为力,反而会使胶球卡塞在铜管里,造成换热损失。更重要的是胶球清洗装置没有在线强化换热的能力,不能大幅度提高凝汽器的换热效果,充其量只能使凝汽器的换热效果达到铜管为光管时的状态。 自动除垢强化换热装置是在凝汽器每根铜管里安装,在线连续清洗和强化换热,保证了铜管始终干净无垢,大大增强了铜管内壁对流换热能力,使凝汽器整体换热效果增强,远高 5 于铜管为光管时状态,即设计状态。 自动除垢强化换热装置还免除了胶球清洗装置人工操作的随意性和能耗,减少加药量,减轻铜管垢下腐蚀,免除头疼的停机人工清洗,持续经济效益巨大,是当前取代胶球清洗装置的最佳产品。 真空KPa 自动除垢强化换热装置 其他清洗装置 时间 凝汽器自动除垢强化换热装置与其它清洗方式的比较 清洗方式 自动除垢强化换热装置 胶球清洗 化学清洗 高压水枪 机械清洗 在线除垢能力 强 弱 无 无 无 在线强化换热 强 无 无 无 无 保护氧化膜 是 是 否 是 否 腐蚀铜管 减缓 腐蚀 腐蚀 腐蚀 腐蚀 维持效果时效 长 较长 短 短 短 需要外力 否 否 是 是 是 发电负荷 增加 维持 增加 增加 增加 发电汽耗 减少 维持 增加 增加 增加 端差 减少 维持 增加 增加 增加 真空 增大 维持 减小 减小 减小 6 阻垢剂量 减少50, 持续 持续 持续 持续 补充水量 减少50, 持续 持续 持续 持续 操作难度 易 较易 困难 困难 困难 各种清洗方式的优缺点 优 点 缺 点 仅冲掉泥沙、生物黏泥等松软物质,对硬反冲洗 操作方便,安全可靠,可不停机清洗 垢无能为力 通过化学吸附,阻止结晶成长或抑制原水水质对阻垢效果影响较大,需要经常加阻垢缓蚀剂 晶体析出 添加阻垢缓蚀剂,加强排污,费用较高 人工机械清洗 不产生化学废液。 需停机清洗。劳动强度大,清洗不彻底 需停机清洗,仅冲掉泥沙、生物黏泥等松高压水枪清洗 对铜管损伤小,安全可靠 软物质,对硬垢无能为力 需外加设备和动力,收球率低,无法去处胶球清洗 不停机清洗,效果较好 钙、镁硬垢,沉积物垢下腐蚀严重 清洗彻底,结合高压水枪可除去生物对铜管造成腐蚀破坏,周期长,需镀膜,化学清洗 黏泥钙、镁硬垢 费用高,化学废液污染环境 自动除垢强化运行安全,强烈扰动层流边界层,既成本略高于胶球清洗装置 换热装置 能防止污垢形成,又能强化换热 北京首钢超群电力有限公司 1#机组凝汽器安装自动除垢强化换热装置前后 热 力 性 能 试 验 报 告 1 项目来源 北京首钢超群电力有限公司1#机组在2006年5月份的大修中,对凝汽器进行了改造,安装了自清洗强化换热装置。为评价1#机组凝汽器自清洗强化换热装置的运行效果,为机组运行提供依据,北京首钢超群电力有限公司对1#汽轮机组进行热力性能试验及凝汽器性能试验。 2 试验目的 7 应首钢公司要求,对1#汽轮机组进行热力性能试验及凝汽器性能试验,测取有关热力参数及循环水系统的主要运行参数,评价凝汽器改造的效果,为机组经济运行提供依据。 3 设备概述 3.1汽轮机技术规范 C60-8.83/1.27 汽轮机主要技术规范: 调节方式:喷嘴调节 额定功率:60MW 最大功率:63MW 主蒸汽流量:373.29t/h ? 主蒸汽压力:8.83MPa 主蒸汽温度:535 工业抽汽压力:1.275 MPa 设计背压:0.0061 MPa 设计冷却进口水温:20? 给水温度:199.2? 额定工业抽汽量:200 汽耗(抽/冷):6.219/3.709kg/kwh 热耗(抽/冷):5905/9723.6kj/kwh 3.2凝汽器技术规范 凝汽器为对分、双道制、表面式结构,冷却水从下部的两个接管口流入前水室,流经第一道的铜管进入后水室,转折后,经过第二道铜管进入前水室上部排出凝汽器。其主要技术参数如下: 型号:N-3500型 型式:单壳体双流程 23冷却面积:3500m 冷却水流量:8455m/h 冷却水温度:20? 铜管尺寸:Φ25×1×7170mm 铜管根数:6280 3.3试验结果的计算 2 ?t:循环水进出水温差 δt:凝汽器端差 A:凝汽器换热面积3500m 1#凝汽器改造前 1#机组2006年5月12日1:00,24:00抽汽回热运行工况 平均功率N=4.45KW 主蒸汽流量G1=210.29t/h 凝结水流量D2=91.75t/h 排汽温度Tc=42.67? 表计真空=-0.091MPa(排汽温度对应标准真空=0.093MPa) 循环水进水温度t=19.38? 出水温度t=27.86? 凝汽器端差δt=16.58? 抽汽发电汽耗=4.73kg/kwh 12 根据热平衡原理,凝汽器内蒸汽放热与循环水吸热相等: 凝汽器循环水实际流量为D: D,520*91.75/(27.86-19.38),5626t/h,1563 kg/s 8 循环水吸热量Q: ’’Q,D*(h-h),1563*(27.86*4.2-19.38*4.2),55668kJ 21 循环水进出水对数平均温度: ? t ,?t/ln(1+?t/δt),(27.86-19.38)/ln(1+(27.86-19.38)/ 16.58),20.53 ? mm 由凝汽器的热量传递公式Q=KA?t可知凝汽器传热系数K: m 22K,Q/A/?t ,55668/3500/20.53, 0.7747 kW/(m.?) , 774.7 W/(m.?) m 1#凝汽器改造后 10:45纯凝回热运行工况测试 1#机组2006年7月18日10:10, 平均功率N=5KW 主蒸汽流量G1=180.8t/h 凝结水流量D2=138.43t/h 排汽温度Tc=40? 表计真空=-0.091MPa(排汽温度对应标准真空=0.0939MPa) 循环水进水温度t=26? 出水温度t=36.14? 凝汽器端差δt=3.86? 纯凝发电汽耗=3.61kg/kwh 12 根据热平衡原理,凝汽器内蒸汽放热与循环水吸热相等: 凝汽器循环水实际流量为D: D,520*138.43/(36.14-26) ,7099 t/h ,1971.9 kg/s 循环水吸热量Q: ’’ Q,D*(h-h),1971.9*(36.14*4.2-26*4.2) ,83979.28kJ/s 21 循环水进出水对数平均温度: ? t ,?t/ln(1+?t/δt),(36.14-26)/ln(1+(36.14-26)/3.86),7.87 ? mm 由凝汽器的热量传递公式Q=KA?t可知改造后的凝汽器传热系数K: m 22K,Q/A/?t,83979.28/3500/7.87,3.0488 kW/(m.?) ,3048.8 W/(m.?) m 4、结论 21#凝汽器改造前:平均端差为16.86?,传热系数平均为774.7 W/(m.?),抽汽工况下发电汽耗平均为4.75kg/kwh。 21#凝汽器改造后:平均端差为4.08?,传热系数平均为3048.8 W/(m.?),纯凝工况下发电汽耗平均为3.61kg/kwh。 2改造后传热系数提高了2284.35 W/(m.?),端差下降了12.78?,纯凝工况下实际发电汽耗好于纯凝工况下设计发电汽耗3.709kg/kwh(设计参数为进水20?,循环水量为额定水量等)。 综上所述,1#凝汽器安装自清洗强化换热装置后运行效果明显,改造是成功的。 9 1#凝汽器运行参数表 2006-5-12 改造前 主汽压力流量 排汽温度 凝结水 循环水 时间 功率 真空 排汽 端差 凝结水流量 汽耗率 #1 #2 小计 对应真空 温度 入口 出口(南) 出口(北) 温升 t 万KW Mpa T/h Mpa ? Mpa ? ? ? ? ? ? T/h kg/KWh 1 4.5 8.8 8.8 209 0.091 43 0.0927 18 42 19 29 25 8 98 2 4.4 8.7 8.7 210 0.091 43 0.0927 17 43 19 30 26 9 101 3 4.3 8.7 8.7 204 0.092 42 0.0931 17 41 19 29 25 8 92 4 4.4 8.8 8.8 213 0.092 42 0.0931 17 42 19 29 25 8 92 5 4.4 8.7 8.7 210 0.092 42 0.0931 17 42 19 28 25 8 91 6 4.4 8.6 8.6 205 0.092 42 0.0931 17 42 18 29 25 9 95 7 4.4 8.7 8.7 214 0.092 42 0.0931 17 42 18 29 25 9 99 8 4.4 8.7 8.7 213 0.092 41 0.0935 16 42 18 29 25 9 94 9 4.3 8.7 8.7 207 0.092 41 0.0935 16 41 19 29 25 8 90 10 4.4 8.8 8.8 215 0.091 43 0.0927 17 43 19 29 26 9 92 11 4.4 8.8 8.8 209 0.091 43 0.0927 17 43 19 30 26 9 93 12 4.4 8.8 8.8 216 0.091 44 0.0922 18 44 19 30 26 9 99 13 4.4 8.7 8.7 210 0.091 43 0.0927 17 43 20 30 26 8 94 14 4.4 8.7 8.7 214 0.091 42 0.0931 16 43 20 30 26 8 95 15 4.4 8.8 8.8 216 0.091 42 0.0931 16 43 20 30 26 8 97 16 4.6 8.8 8.8 216 0.091 43 0.0927 16 43 20 30 27 9 92 17 4.6 8.8 8.8 213 0.091 43 0.0927 16 43 20 30 27 9 94 18 4.6 8.8 8.8 209 0.091 43 0.0927 16 43 20 30 27 9 10 19 4.5 8.7 8.7 205 0.090 44 0.0922 17 44 20 30 27 9 98 20 4.5 8.6 8.6 210 0.090 43 0.0927 16 44 20 30 27 9 102 21 4.5 8.7 8.7 215 0.090 43 0.0927 16 43 20 30 27 9 97 22 4.6 8.7 8.7 212 0.090 44 0.0922 17 44 20 30 27 9 96 23 4.5 8.6 8.6 208 0.090 43 0.0927 15 43 20 31 28 10 92 24 4.4 8.8 8.8 194 0.091 43 0.0927 16 44 20 30 27 9 99 小计 106.7 5047 10 平均 4.45 8.72917 8.72917 210.29 0.091 42.67 0.0928 16.58 42.79 19.38 29.63 26.08 8.48 91.75 4.73 备注:抽汽运行工况,抽汽平均压力0.7MPa,平均温度270?,平均流量25t/h 2006-7-18 改造后 1#凝汽器运行参数表 排汽温度 主汽压力流量 凝结水 循环水 凝结水出口时间 功率 真空 排汽 端差 汽耗率 流量 对应真空 入口 出口(南) 温升 #1 #2 小计 温度 (北) t 万KW Mpa T/h Mpa ? Mpa ? ? ? ? ? ? T/h kg/KWh 10:10 4.951 8.8 8.8 180.8 0.092 40 0.0939 4 41 26 36 10 142 10:15 4.934 8.9 8.8 184.3 0.091 40 0.0939 4 41 26 36 10 135 10:20 5.004 8.8 8.8 185.4 0.091 40 0.0939 4 41 26 36 10 141 10:25 5.108 9 8.8 187.5 0.092 40 0.0939 4 41 26 36 10 136 10:30 5.072 9 8.8 186 0.092 40 0.0939 4 41 26 36 10 134 10:40 4.993 8.9 8.7 185.6 0.091 40 0.0939 4 41 26 36 10 139 10:45 4.96 8.9 8.7 184 0.091 40 0.0939 3 41 26 37 11 142 小计 35.022 1294 平均 5.00 8.9 8.77 184.80 0.091 40.00 0.0939 3.86 41.00 26.00 36.14 10.14 138.43 3.69 备注:纯凝回热运行工况:抽汽量,0 11 以上图文均来源于网络,仅供参考 由上述资料可知,该装置的原理及预期效果是很令人振奋的,但经多方调研考察,对该项目的可行性,个人仍持保守态度。 1、 可行性 (1)该项技术虽已提出多年(本世纪初已有相关发布),但基本上仍停留在理论阶段,尚未实现范围较广的商业化运作。能查到的成功案例,基本上都是60MW左右的机组,大多为化工厂或企业自备电厂,且均为淡水冷却,未发现超过10OMW机组的成功应用案例。 (2)小容量机组的凝汽器换热面积不大,一般在3000——5000?,铜管或者钛管长度都在7米左右,驱动螺旋纽带的压头约需0.04MPa;而我公司凝汽器换热面积为18000?,钛管长度达10.6米,钛管总数20000多根,循环水进水压力(约0.1MPa)能否满足要求仍是未知数。 (3)螺旋纽带可能会因为水阻过大而导致循环水流速大幅降低,热量不能够被及时带走,进而抵消了紊流强化得来的换热效果,甚至造成凝汽器换热效果恶化。水阻过大还可能导致螺旋纽带自身转速过低,起不到强化换热和防止钛管内壁结垢的效果。 2、 可靠性 (1)该装置对水质的要求极高,虽然我们已经在凝汽器入口加装了二次滤网(孔径8mm),但由于采用开式循环, 12 仍不可避免的有杂物进入凝汽器。螺旋纽带的外径一般比钛管内径小3mm左右,因此通过二次滤网的杂物足以将螺旋纽带卡死,造成整根钛管堵塞。 (2)由上文中的装置简图可以看出,连接环、耐磨垫圈、支架等易损部件一旦损坏,会造成螺旋纽带脱落。如果进水管道的螺旋纽带脱落,会直接造成回转室侧的回水管堵塞。 3、 费用 (1)各生产厂家技术势力参差不齐,改造费用也有较大差别。济南一家公司报价500元/?,总投资为900万;杭州一家公司报价200元/?,总投资360万。以上报价还不包括安装前的除垢费用。 (2)要维持系统正常运行,势必要定期对螺旋纽带进行维护保养。海水开式循环的恶劣环境会缩短该装置的使用寿命,从而缩短检修周期,增加维护费用。 专家声音: “十里泉电厂曾进行过相关改造,但效果不明显,机组真空无明显变化。” ——山东火力发电节能技术研究中心教授 主任 宋涛 “如果你们采用的是海水开式循环冷却,那我不建议你们安装我们公司的产品。” ——杭州力通科技有限公司总经理 凌霄虎 13
/
本文档为【凝汽器自动除垢强化换热装置】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
热门搜索

历史搜索

    清空历史搜索