为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > [毕业论文]电感式位移传感器的设计

[毕业论文]电感式位移传感器的设计

2018-01-07 28页 doc 53KB 79阅读

用户头像

is_447713

暂无简介

举报
[毕业论文]电感式位移传感器的设计[毕业论文]电感式位移传感器的设计 学号 1402135112 湖南理工学院 毕业设计(论文) 题目:电感式传感器测量电路设计 作 者 林 恩 来 届 别 2006 届 系 别 机械与电气工程系 专 业 自 动 化 指导教师 谭 竹 梅 职 称 副 教 授 完成时间 2006年5月20日 目 录 摘要 „„„„„„„„„„„„„„„„„„„„„„„„„„ 1 Abstract Abstract Abstract Abstract „„„„„„„„„„„„„„„„„„„„„„„„ 2 1(绪论„„„„„„...
[毕业论文]电感式位移传感器的设计
[]电感式位移传感器的 学号 1402135112 湖南理工学院 毕业设计(论文) 题目:电感式传感器测量电路设计 作 者 林 恩 来 届 别 2006 届 系 别 机械与电气工程系 专 业 自 动 化 指导教师 谭 竹 梅 职 称 副 教 授 完成时间 2006年5月20日 目 录 摘要 „„„„„„„„„„„„„„„„„„„„„„„„„„ 1 Abstract Abstract Abstract Abstract „„„„„„„„„„„„„„„„„„„„„„„„ 2 1(绪论„„„„„„„„„„„„„„„„„„„„„„„„„ 4 1(1 引言 1(2 传感器介绍„„„„„„„„„„„„„„„„„„„„„„5 1(3 研究的基本内容,拟解决的主要问题„„„„„„„„„„„ 6 2(整体的方框图与工作原理„„„„„„„„„„„„„„„„ 8 3(各个单元电路的设计„„„„„„„„„„„„„„„„„„„8 3(1 8051单片机简介„„„„„„„„„„„„„„„„„„„8 3(2 电感式位移传感器的基本原理„„„„„„„„„„„„„12 3(3 电感测头的结构„„„„„„„„„„„„„„„„„„„14 3(4 正弦波电路的设计„„„„„„„„„„„„„„„„„„14 3(5零点残余电压的调整„„„„„„„„„„„„„„„„„16 3(6交流放大电路„„„„„„„„„„„„„„„„„„„„17 3(7相敏检波电路„„„„„„„„„„„„„„„„„„„„18 3(8 A/D转换及显示电路„„„„„„„„„„„„„„„„„19 4(软件部分的设计 4(1本系统设计的程序流程图„„„„„„„„„„„„„„„22 4(2单片机8051的C语言程序清单„„„„„„„„„„„„„22 4、致谢„„„„„„„„„„„„„„„„„„„„„„24 5、参考文献„„„„„„„„„„„„„„„„„„„„25 摘 要 随着现代制造业的规模逐渐扩大,自动化程度愈来愈高。要保证产品质量, 对产品的检测和质量管理都提出了更高的要求。我们为此要设计一种精度的检测 位移的仪器。电感测微仪是一种分辨率极高、工作可靠、使用寿命很长的测量仪, 应用于微位移测量已有比较长的历史.国外生产的电感测微仪产品比较成熟,精 度高、性能稳定,但价格昂贵.国内生产的电感测微仪存在漂移大、工作可靠性不 高、高精度量程范围小等问题,一直与国外的传感器水平保持一定的差距.在超精 密加工技术迅猛发展的今天,这种测量精度越来越显得不适应加工技术发展的需 对电感 求.该文针对这些问题,对电感传感器测量电路进行了一定的设计和改进.测微仪的正弦波生成电路、交流放大电路、带通滤波电路、相敏检波电路等进行 了和相应的设计。 关键词: 正弦波发生器,相敏检波,零点残余电压。 ABSTRACT A New high piracies inductance sensor is developed. This sensor consist s of a high piracies inductance probe and signal processing circuit . The circuit adopt speak sampling technique and direct digital output interface to substitute the conventional phase frequency detection technique and analog output interface. The non2linearity is also decreased. In addition ,the circuit adopts frequency and ampli2 tube stabilizing technique too. The accuracy and stability of the sensor circuits also increased greatly. Key Words : Key Words :Key Words : Key Words : inductance sensor, self-fixed amplitude circuit, digital phase sensitivity detection, digital filter, static testing 1( 绪 论 1.1引言 测量技术是实现超精加工的前提和基础。精密加工和超精密加工过程 中不仅 要对工件和表面质量进行检验,而且要检验加工设备和基础元部件的精度,如果 没有权威性的测控技术和仪器,就不能证实所达到的加工质量。加工和检测是不 可分的,测量是对加工的支持,无论多么精密的加工,都必须用更为精密的测量 技术作保障。因此,位移测量的精密和超精密测量已经成为整个超精密加工体系 中一项至为关键的技术。检测技术和装置是自动化系统中不可缺少的组成部分。 任何生产过程都可以看作是“物流”和“信息流”组合而成,反映物流的数量、 状态和趋向的信息流则是人们管理和控制物流的依据。人们为了有目的地进行控 制,首先必须通过检测获取有关信息,然后才能进行分析判断以便实现自动控制。 所谓自动化,就是用各种技术工具与方法代替人来完成检测、分析、判断和控制 工作。一个自动化系统通常由多个环节组成,分别完成信息获取、信息转换、信 息处理、信息传送及信息执行等功能。在实现自动化的过程中,信息的获取与转 换是极其重要的组成环节,只有精确及时地将被控对象的各项参数检测出来并转 换成易于传送和处理的信号,整个系统才能正常地工作。因此,自动检测与转换 是自动化技术中不可缺少的组成部分。检测系统或检测装置目前正迅速地由模拟 式、数字式向智能化方向发展。带有微处理机的各种智能化仪表已经出现,这类 仪表选用微处理机做控制单元,利用计算机可编程的特点,使仪表内的各个环节 自动地协调工作,并且具有数据处理和故障诊断功能,成为一代崭新仪表,把检 测技术自动化推进到一个新水平。 1.2传感器介绍 传感器是获取被测量信息的元件,其质量和性能的好坏直接影响到测量结果 的可靠性和准确度,衡量其质量的特性有许多,主要包括静态和动态两个方面。 当被测量不随时间变化或变化很慢时,可以认为输入量和输出量都和时间无关。 表示它们之间关系的是一个不含时间变量的代数方程,在这种关系的基础上确定 的性能参数为静态特性;当被测量随时间变化很快时,就必须考虑输人量和输出 量之间的动态关系。这时,表示它们之间关系的是一个含有时间变量的微分方程, 与被测量相对应的输出响应特性称为动态特性。 位移传感器主要有以下几种:电容式位移传达室感器、差动式电感受式位移传感器和电阻应变式位移传感器一般用于小位移的测量(几微米至毫米);差动 变压器用于中等位移的测量,这种传感器在工业测量中应用得最多;电阻电位器 式传感器适用于较大范围位移的测量,但精度不高;感应同步器、光栅、磁栅、 激光位移传感器等用于精密检测系统的位移的测量,测量精度高(可达1pm )量 程也可大到几米。 电容式位移传感器根据被测物体的位移变化转换为电容变化的一种传感器, 一般用于高频振动微小位移的测量,与电位式、电感式等多种位移传感器相比, 它的优点是:结构简单;能实现非接触测量,只要极小的输入力就能使支极板移 动,并且在移动过程中没有摩擦和反作用力;灵敏度高、分辨力强,能敏感? 0.01um甚至更小的位移;动态响应好;能在恶劣环境中(高、低温,各种形式的 辐射等)工作。但它也存在着一些缺点,主要是输出特性的非线性和对绝缘电阻 要求比较高,为了克服寄生电容的影响,降低电容的内阻,要求对传感器及输出 导线采取屏蔽措施和采用较高的电源频率等。 光栅是一种新型的位移检测元件,是把位移变为数字量的位移-数字转换装 置。它主要用于高精度直线位移和角位移的数字检测系统。其测量精确度高(可 达1um)光栅传感器具有抗电磁干扰、耐久性好、准分布式传感、绝对测量、尺 寸小、灵敏度高、精度高、频带宽、信噪比高等优点,是结构局部健康监测最理 想的智能传感元件之一,可以直接或间接(通过某种封装或灵巧装置)监测应变、 温度、裂缝、位移、振动、腐蚀、应力等物理量,部分取代传统的测试手段,广 泛用于土木工程、航空航天工业、船舶工业、电力工业、石油化工、核工业、医 学等领域。 电感式位移传感器是把被测移量转换为线圈的自感或互感的变化,从而实现 位移的测量的一类传感器。它具有灵敏度高、分辨力大,能测出?0.1um甚至更 小的线性位移变化和0.1度的角位移,输出信号比较大,电压灵敏度一般每毫米可 达几百毫伏,因此有利于信号的传输.测量范围为?25um-50mm,测量精度与电容 式位移传达室感器差不多,但是它的频率响应较低,不宜于高频动态测量。 1.3研究的基本 内容,拟解决的主要问题: 该智能电感测微仪的硬件电路主要包括电感式传感器、正弦波振荡器、放大 器、相敏检波器及单片机系统。正弦波振荡器为电感式传感器和相敏检波器提供 了频率和幅值稳定的激励电压,正弦波振荡器输出的信号加到测量头中。工件的 微小位移经电感式传感器的测头带动两线圈内衔铁移动,使两线圈内的电感量发 生相对的变化。当衔铁处于两线圈的中间位置时,两线圈的电感量相等,电桥平 衡。当测头带动衔铁上下移动时,若上线圈的电感量增加,下线圈的电感量则减 少;若上线圈的电感量减少,下线圈的电感量则增加。交流阻抗相应地变化,电桥失去平衡从而输出了一个幅值与位移成正比,频率与振荡器频率相同,相位与 位移方向相对应的调制信号。此信号经放大,由相敏检波器鉴出极性,得到一个 与衔铁位移相对应的直流电压信号,经A/D转换器输入到单片机,经过数据处理 进行显示。电感式传感器测位移时,由于线圈中的电流不为零,因而衔铁始终承 受电磁吸力,会引起附加误差,而且非线性误差较大;另外,外界的干扰(如电 源电压频率的变化,温度的变化)也会使输出产生误差。所以在实际工作中常采 用差动形式,这样既可以提高传感器的灵敏度,又可以减小测量误差。两个完全 相同的单个线圈的电感式传感器共用一个活动衔铁就构成了差动式电感传感器。 采用差动式结构除了可以改善线性、提高灵敏度外,对外界影响,如温度的变化、 电源频率的变化等也基本上可以相互抵消,衔铁承受的电磁吸力也较小,从而减 小了测量误差。零点残余电压也是反映差动变压器式传感器性能的重要指标。理 想情况是在零点时,两个次级线圈感应电压大小相等方向相反,差动输出电压为 -H曲线的非线性,以及激励电源存 零实际情况是两组次级线圈的不对称铁心的B 在的高次谐波等因素引起零点处U?0知。其数值约为零点几毫伏,有时甚至可达 几十毫伏,并且无论怎样调节衔铁的位置均无法消除。零点残余电压的存在,使 传感器的灵敏度降低,分辨率变差和测量误差增大。克服办法主要是提高次级两 绕组的对称性(包括结构和匝数等),另外输出端用相敏检测和采用电路补偿方 法,可以减小零点残余电压影响。 2(整体的方框图与工作原理 电感式位移传感器元件由静止的螺管线圈和可在线圈上移动的衔铁测头组 成,它依据电磁感应原理工作.当线圈由高频电源驱动时,其两路引出端将输出两 个感应电势,这些信号经信号检出电路综合后,形成在幅值及相位上随测头位置而 变的电压信号,代表了位移量的大小和方向.此信号再经放大、滤波及整形等初步 调理后,由A/D转换器转换为对应的数字量送入微控制器。微控制器对它进行 信号处理、存储以及显示,获得较高精度的测量结果,然后按系统组成态设定的 输出方式,以要求的信号形式将测量结果输出。系统的整体方框图如图2所示。 图1系统的整体方框图 3(各个单元电路的设计 3(1 8051单片机简介 目前,8051单片机在工业检测领域中得到了广泛的应用,因此我们可以在 许多单片机应用领域中,配接各种类型的语音接口,构成具有合成语音输出能力 的综合应用系统,以增强人机对话的功能。89C51是Intel公司生产的一种单片 机,在一小块芯片上集成了一个微型计算机的各个组成部分。每一个单片机包括: 一个8位的微型处理器CPU;一个256K的片内数据存储器RAM;片内程序存储器 ROM;四个8位并行的I/O接口P0-P3,每个接口既可以输入,也可以输出;两 个定时器/记数器;五个中断源的中断控制系统;一个全双工UART的串行I/O 口;片内振荡器和时钟产生电路,但石英晶体和微调电容需要外接。最高允许振 荡频率是12MHZ。以上各个部分通过内部总线相连接。下面简单介绍下其各个部测头信号 变压器电桥 正弦波发生 器 相敏检波 带通放大 A/D转换 显示器 单片机 分的功能。 中央处理器CPU是单片微型计算机的指挥、执行中心,由它读人用户程序, 并逐条执 行指令,它是由8位算术,逻辑运算部件(简称ALu)、定时,控制部件,若干寄 存器A、B、 B5w、5P以及16位程序计数器(Pc)和数据指针寄存器(DM)等主要部件组成。算 术逻辑单元的硬件结构与典型微型机相似。它具有对8位信息进行+、-、x、/ 四 则运算和逻辑与、或、异或、取反、清“0”等运算,并具有判跳、转移、数据 传送等功能,此外还提供存放中间结果及常用数据寄存器。控制器部件是由指令 寄存器、程序计数器Pc、定时与控制电路等组成的。指令寄存器中存放指令代 码。枷执行指令时,从程序存储器中取来经译码器译码后,根据不同指令由定时 与控制电路发出相应的控制信号,送到存储器、运算器或I,o接口电路,完成 指令功能。程序计数器Pc 程序计数器Pc用来存放下一条将要执行的指令,共 16位(可对以K字节的程序存储器直接寻址c指令执行结束后,Pc计数器自动 增加,指向下一条要执行的指令地址。 CPU功能,总的来说是以不同的方式,执行各种指令。不同的指令其功自略 异。有的指令涉及到枷各寄存器之间的关系;有的指令涉及到单片机核心电路内 部各功能部件的关 系;有的则与外部器件如外部程序存储器发生联系。事实上,cRJ是通过复杂的 时序电路完 成不同的指令功能。所谓cRJ的时序是指控制器控照指今功能发出一系列在时间 上有一定 次序的信号,控制和启动一部分逻辑电路,完成某种操作。 一(时序 时序时序 时序 1(时钟电路 8051片内设有一个由反向放大器所构成的振荡电路,XTALI 和XTAL2分别为振荡电路的输入端和输出端。时钟可以由内部方式产生或外部方 式产生。采用内部方式时,在C1和C2引脚上接石英晶体和微调电容可以构成振 荡器, 振荡频率的选择范围为1(2—12MHZ在使用外部时钟时,XTAL2用来输 入外部时钟信号,而XTALI接地。 2(时序 MGL5l单片机的一个执器周期由6个状态(s1—s6)组成,每个状 态又持续2个接荡周期,分为P1和P2两个节拍。这样,一个机器周期由12个 振荡周期组成。若采用12MHz的晶体振荡器,则每个机器周期为1us,每个状态 周期为1,6us;在一数情况下,算术和逻辑操作发生在N期间,而内部寄存器 到寄存器的传输发生在P2期间。对于单周期指令,当指令操作码读人指令寄存器时,使从S1P2开始执行指令。如果是双字节指令,则在同一机器周期的s4 读人第二字节。若为单字节指令,则在51期间仍进行读,但所读入的字节操作 码被忽略,且程序计数据也不加1。在加结束时完成指令操作。多数Mcs—51指 令周期为1—2个机器周期,只有乘法和除法指令需要两个以上机器周期的指令, 对于双字节单机器指令,通常是在一个机器周期内从程 它们需4个机器周期。 序存储器中读人两个字节,但Movx指令例外,Movx指令是访问外部数据存储器 的单字节双机器周期指令,在执行Movx指令期间,外部数据存储器被访问且被 选通时跳过两次取指操作。 二(引脚极其功能 MCS—51系列单片机的40个引脚中有2个专用于主电源引脚,2个外接晶振 的引脚,4个控制或与其它电源复用的引脚,以及32条输入输出I/O引脚。 下面按引脚功能分为4个部分叙述个引脚的功能。 1、电源引脚Vcc和Vss Vcc(40脚):接+5V电源正端; Vss(20脚):接+5V电源正端。 2、外接晶振引脚XTAL1和XTAL2 XTAL1(19脚):接外部石英晶体的一端。在单片机内部,它是一个反相放 大器的输入端,这个放大器构成采用外部时钟时,对于HMOS单片机,该引脚接 地;对于CHOMS单片机,该引脚作为外部振荡信号的输入端。 XTAL2(18脚):接外部晶体的另一端。在单片机内部,接至片内振荡器的 反相放大器的输出端。当采用外部时钟时,对于HMOS单片机,该引脚作为外部 振荡信号的输入端。对于CHMOS芯片,该引脚悬空不接。 3、控制信号或与其它电源复用引脚 控制信号或与其它电源复用引脚有RST/VPD、ALE/P、PSEN和EA/VPP等4种形 式。 (A)(RST/VPD(9脚):RST即为RESET,VPD为备用电源,所以该引脚为单片 机的上电复位或掉电保护端。当单片机振荡器工作时,该引脚上出现持续两个机 器周期的高电平,就可实现复位操作,使单片机复位到初始状态。 当VCC发生故障,降低到低电平规定值或掉电时,该引脚可接上备用电源VPD(+5V)为内部 RAM供电,以保证RAM中的数据不丢失。 (B)(ALE/ P (30脚):当访问外部存储器时,ALE(允许地址锁存信号) 以每机器周期两次的信号输出,用于锁存出现在P0口的低 (C)(PSEN(29脚):片外程序存储器读选通输出端,低电平有效。当从外部程序存储器读取指令或常数期间,每个机器周期PESN两次有效,以通过数据总线口读回指 令或常数。当访问外部数据存储器期间,PESN信号将不出现。 31脚):EA为访问外部程序储器控制信号,低电平有效。当EA (D)(EA/Vpp( 端保持高 电平时,单片机访问片内程序存储器4KB(MS—52子系列为8KB)。若超出该范 围时,自动转去执行外部程序存储器的程序。当EA端保持低电平时,无论片内 有无程序存储器,均只访问外部程序存储器。对于片内含有EPROM的单片机,在 EPROM编程期间,该引脚用于接21V的编程电源Vpp。 4.输入/输出(I/O)引脚P0口、P1口、P2口及P3口 (A).P0口(39脚,22脚):P0.0,P0.7统称为P0口。当不接外部存储器与不扩 展I/O接口时,它可作为准双向8位输入/输出接口。当接有外部程序存储器或 扩展I/O口时,P0口为地址/数据分时复用口。它分时提供8位双向数据总线。 对于片内含有EPROM的单片机,当EPROM编程时,从P0口输入指令字节,而当检验程序时,则输出指令字节。 (B).P1口(1脚,8脚):P1.0,P1.7统称为P1口,可作为准双向I/O接口使 用。对于MCS—52子系列单片机,P1.0和P1.1还有第2功能:P1.0口用作定时器/计数器2 ;P1.1用作定时器/计数器2的外部控制端T2EX。 的计数脉冲输入端T2 对于EPROM编程和进行程序校验时,P0口接收输入的低8位地址。 (C).P2口(21脚,28脚):P2.0,P2.7统称为P2口,一般可作为准双向I/O接口。当接有外部程序存储器或扩展I/O接口且寻址范围超过256个字节时,P2口用于高8位地址总线送出高8位地址。对于EPROM编程和进行程序校验时,P2口接收输入的8位地址。 (D).P3口(10脚,17脚):P3.0,P3.7统称为P3口。它为双功能口,可以作为 一般的准双向I/O接口,也可以将每1位用于第2功能,而且P3口的每一条引 脚均可独立定义为第1功能的输入输出或第2功能。P3口的第2功能见下表 单片机P3.0管脚含义 综上所述,MCS—51系列单片机的引脚作用可归纳为以下两点: 1).单片机功能多,引脚数少,因而许多引脚具有第2功能; 2).单片机对外呈3总线形式,由P2、P0口组成16位地址总线;由P0口分时 复用作为数据总线。 3.2电感式位移传感器的基本原理 根据 磁 路 的基本知识,线圈的 自感可按下式计算 L=N2/Rm 其中N— 线圈的匝数 ,Rm - 磁路总磁阻数,在气隙厚度较小的情况下,可以认为 磁场是均匀的,其中L为线圈自感,N为各 段 导 磁体的磁导率线圈的电感跟气 隙厚度、气隙的面积、导磁体的长度等有关。根据改变空气隙的厚度、空气隙的 面积、磁体的长度来实现电感的变化,从而实现测量的作原理,自感式电感传感 器可分为气隙型、截面型、螺管型。 气隙型传感器灵敏度高,对后续测量电路的放大倍数要求低,它的缺点是非线 性严重,为了限制非线性,示值范围只能较小,由于衔铁在运动方向上受铁心的 限制,故自由行程小。截面型具有较好的线性,自由行程较大,制造装配比较方 便,但灵敏度较低。螺管型则结构简单,制造装配容易:由于空气隙大,磁路的 磁阻高,因此灵敏度低,但线性范围大;此外,螺管型还具有自由行程可任意安 排、制造方便等优点,在批量生产中的互换性较好,这给测量仪器的装配、调试、 引脚 第2功能 P3.0 RXD(串行口输入端0) P3.1 TXD(串行口输出端) P3.2 INT0(部中断0请求输入端,低电平有效) P3.3 INT1(中断1请求输入端,低电平有效) P3.4 T0(时器/计数器0计数脉冲端) P3.5 T1(时器/计数器1数脉冲端) P3.6 WR(部数据存储器写选通信号输出端,低电平有效) P3.7 RD(部数据存储器读选通信号输出端,低电平有效) 使用带来很大的方便,尤其在使用多个测微仪组合测量形状的时候。因为螺管型 的这些优点,所以我们采用螺管型差动式电感测头。 图为螺管型电感式传感器的结构图。螺管型电感传感器的衔铁随被测对象移动, 线圈磁力线路径上的磁阻发生变化,线圈电感量也因此而变化。线圈电感量的大 小与衔铁插入线圈的深度有关。 设线圈长度为 l、线圈的平均半径为r、线圈的匝数为N、衔铁进入线圈的长度la、 衔铁的半径为 ra、铁心的有效磁导率为μm,则线圈的电感量L与衔铁进入线圈的 长度 la的关系可表示为 交流电桥是电感式传感器的主要测量电路,它的作用是将线圈电感的变化转 换成电桥电路的电压或电流输出。 前面已提到差动式结构可以提高灵敏度,改善线性,所以交流电桥也多采用 双臂工作形式。通常将传感器作为电桥的两个工作臂,电桥的平衡臂可以是纯电 阻,也可以是变压器的二次侧绕组或紧耦合电感线圈。图二是交流电桥的几种常 用形式如图3所示。 电阻平衡臂电桥如图二a所示。Z1、Z2为传感器阻抗。高;L1=L2=L;则有 Z1=Z2=Z=R′+jwL,另有R1=R2=R。由于电桥工作臂是差动形式,则在工作时,Z1=Z+ ?Z和Z2=Z—?Z,当ZL??时,电桥的输出电压为 [ ]22 2 22) 1( 4a amrllr l N L?+=μ πl r x r a1 2 图2 螺管型电感传感器 1-线圈 2-衔铁 M L Lc) 紧耦合电感臂电桥U ( U/2 ( U/2 ( U 0 ( b) 变压器式电桥 Z1Z2Z1Z2U0( U ( R 1 R 2 R 1 ˊ Z L U 0 ( a) 电阻平衡臂电桥图3 交流电桥的几种形式 Z ZU U RZZ ZZRRZ U RR R U ZZ Z U ? = ×+ +?× = + ? + = 22)( )(2. . 21 211 . 21 1 . 21 1 0 . 当ωL,,R’时,上式可近似为: 由上式可以看出:交流电桥的输出电压与传感器线圈电感的相对变化量是 成正比的。 变压器式电桥如图二b所示,它的平衡臂为变压器的两个二次侧绕组,当负 载阻抗无穷大时输出电压为: 由于是双臂工作形式当衔铁下移时,Z1=Z-?Z,Z2=Z+?Z,则有: 同理,当衔铁上移时,则有: 可见,输出电压反映了传感器线圈阻抗的变化,由于是交流信号,还要经过 适当电路处理才能判别衔铁位移的大小及方向。 3.3电感测头的结构 图三是轴向式电感测头的结构图。测头10 用螺钉拧在测杆8 上,测杆8 可在 钢球导轨7 上作轴向移动。测杆上端固定着衔铁3 。线圈4 放在圆筒形磁心2 中, 两线圈差动使用,当衔铁过零点上移时,上线圈电感量增加,下线圈电感量减少。 两线圈输出由引线1 接至测量电路。测量时,测头10 与被测物体接触,当被测物 体有微小位移时,测头通过测杆8 带动衔铁3 在电感线圈4 中移动,使线圈电感 值变化,通过引线接入测量电路。弹簧5 产生的力,保证测头与被测物体有效地接 触。防转销6 限制测杆转动,密封套9 防止灰尘进入传感器内部。 3.4正弦波发生电路的设计 图4 电感测头结构图 我们设计及测试系统时,很多时侯需要正弦波信号 。在电感式 位移传感测量电路中,我们需要一个频率和幅值都稳定的电路,否则 会造成测量不稳定及很大的误差。正弦波作为变压器电桥的桥源,其精度 对电桥的输出信号影响极大,对于其幅值和频率的稳定性都有很高的要求。由于 传感器的工作环境通常比较恶劣,窜入电源的随机干扰不可避免,因此在电路设L LU U ? ? 2. 0 .2 1 12 .. 2 21 .. . 2 0 .2 22ZZ ZZ UU Z ZZ UU IZU + ? =? + =?=Z ZU U ? = 2. 0 .Z ZU U ? ?= 2. 0 .计中应该具有自动补偿环节。 图5 正弦波发生电路 由差动电感传感器的幅频特性可知,传感器的频率选在平坦区域偏高点(提 高灵敏度),频率波动将有可能改变传感器的工作点,引起幅值的变化。而图2.16 传感器的幅颇特性另一方面,电路总体设计要求实现峰一峰采样,即采样频率和 模拟信号频率应保持严格的两倍关系,这两个信号频率都由振荡电路给出。 显然,任一个信号频率的波动都会导致采不到峰值,带来的测量误差是很大的。 所以对信号源频率的要求特点是单一稳定。对于频率单一稳定的信号发生,最理 想的是石英晶体振荡器,石英的物理特性十分稳定,而且品质因数高,选频特性 好,波形失真小,在-20o~60o的范围内其频率的稳定度可以达到10-7。所以电路 采用了由石英晶振和MC14060分频器构成信号源。石英 晶 体 振荡器产生 2.4576MHZ的稳定方波信号,经振荡分频器27,和28分频后产生19.208KHZ和9.60 4KHZ的方波信号分别作为激励信号和采样的触发信号实现峰一峰值采样以及作 为进入I/O作为读取波峰、波谷的参考信号。 正弦波信号的幅值将直接影响传感器的输出,为保证正弦波信号幅值的稳定 性,在电路设计上采用了稳幅电路进行自动补偿。稳幅电路的基本思路是将输出 的变化量取出,补偿到输入端。当输出增大时,补偿的作用是负反馈,使输入信 号被减少,当输出减少时,补偿的作用使输入信号增大,从而保持输出不变。在 实际的测试电路中,主要有直流比较(如图6所示)和交流比较(如图7所示)两 种典型电路。 石英晶振 可变增益放大器K 积分放大 积分放大 比例积分 精密整流 参考电压 图6 直流比较 图7 交流比较 在图五所示的直流比较电路中,输出信号经衰减和精密整流之后,与标准直 流信号进行比较,误差值经放大后去控制乘法器的放大增益,从而改变放大电路 的输入幅度,使输出稳定。这种电路由于有积分环节,当标准信号与输出有偏差 时,通过积分最后消除输出误差,所以直流标准信号与交流输出之间的线性极好, 其缺点是对积分放大环节引起的波形失真没有补偿。 在图六所示的交流比较电路中,输出的交流信号衰减后与给定的标准交流信 号进行比较,误差直接交流放大后与标准交流信号相加减,从而稳定输出。这种 电路线路相对比较简单,由于是交流瞬时值的比较,还可补偿功率放大的波形失 真,缺点是:标准交流信号与交流输出信号之间有静差,因此线性比较差。为保 证正弦波的精度,我们选择直流比较电路来提高波形精度。 3.5零点残余电压的调整 对于 变 压 器电桥,从理论上来说,当Z1=Z 2时,电桥平衡,输出电压为 零,但实际制作时要满足两电感线圈的等效参数完全相等是很难达到的,因此, 即便是衔铁位于平衡位置时,仍然存在有一定的电压输出,称为零点残余电压。 零点残余电动势的存在,使得传感器的输出特性在零点附近不灵敏,也对传 感器的线性度有一定的影响,给测量带来误差,此值的大小是衡量差动变压器性标准直流信号 放大 衰减 相 加 功放 比 较 输出 衰减 精密整流电路 标准直流信号 比 较 放大电路 信号 相 乘 功放 输出 能好坏的重要指标。 所以在对变压器电桥的设计和制作时有必要采用一定的措 施。 差动变压器的输出特性曲线如图八所示.图中 E21、E22分别为两个二次绕组的输出感应电动势, E2为差动输出电动势x表示衔铁偏离中心位置的距 离。其中E2的实线表示理想的输出特性,而虚线 部分表示实际的输出特性。 E0为零点残余电动势, 这是由于差动变压器制作上的不对称以及铁心位 置等因素所赞成的。 为了减小零点残余电动势可采取以下方法: 1、 尽可能保证传感器几何尺寸、线圈电气参数和磁路的对称。磁性 要经过处理,消除内部的残余应力,使其性能均匀稳定。 2、 选用合适的测量电路,如采用相敏整流电路。既可判别衔铁移动方向双 可改善输出特性,减小零点残余电动势。 3、 采用补偿线路减小零点残余电动势。在差动变压器二次侧串、并联适当 数值的电阻电容元件,当调整这些元件时,可使零点残余电动势减小。 3.6交流放大电路 在许多需要A/D转换和数字采集的单片机系统中,很多情况下,传感器输出的 模拟信号都很微弱,必须通过一个模拟放大器对其进行一定倍数的放大,才能满 足A/D转换器对输入信号电平的要求,这种情况下,就必须选择一种符合要求的 放大器。仪表器的选型很多,我们这里介绍一种用途非常广泛的仪表放大器,其 实就是典型的差动放大器。它只需三个廉价的普通运算放大器和几只电阻器,即 可构成性能优越的仪表用放大器。 交流放大电路的误差主要由于集成运放的输入偏置电流、失调电流和失调电 压以及温漂等参数不为零,电阻器阻值随温度的变化,外部电网电压、温度和负 载电流的选择运放和电阻器,合理地进行布线和安装元器件,对运放仔细调零等。 U ( U , ( R 0 a) U ( U , ( R 0 b) U ( U , ( R 0 c) C 0 C 图8减小零点电路 E 2 ? E 2 ? E 22 ? E 21 ? E 0 ? x 0 图9 差动变压器输出特 图10 放大电路 3(7相敏检波电路 在精密测量中,进入测量电路的除了传感器输出的测量信号外,还往往有各 种噪声。而传感器的输出信号一般又很微弱,将测量信号从含有噪声的信号中分 离出来是测量电路的一项重要任务。为了便于区别信号与噪声,往往给测量信号 赋以一定特征,这就是调制的主要功用。在将测量信号调制,并将它和噪声分离, 再经放大等处理后,还要从已经调制的信号中提取反映被测量值的测量信号,这 一过程称为解调。 通过调制,对测量信号赋以一定的特征,使已调信号的频带在以载波信号 频率为中心的很窄的范围内,而噪声含有各种频率,即近乎于白噪声。这时可以 利用选频放大器、滤波器等,只让以载波频率为中心的一个很窄的频带内的信号 通过,就可以有效地抑制噪声。采用载波频率作为参考信号进行比较,也可抑制 远离参考频率的各种噪声。 图11是一个采用了带相敏整流的交流电桥。差动电感式传感器的两个线圈作 为交流电桥相邻的两个工作臂,指示仪表是中心为零刻度的直流电压表或数字电 压表。 图11 带相敏整流的交流电桥 设差动电感传感器的线圈阻抗分别为Z1和Z2。当衔铁处于中间位置时,Z1=Z2=Z,电桥处于平衡状态,C点电位等于D点地位,电表指示为零。 当衔铁上移,上部线圈阻抗增大,Z1=Z+?Z,则下部线圈阻抗减少,Z2=Z-?Z。 、V4 如果输入交流电压为正半周,则A点电位为正,B点电位为负,二极管V1导通,V2、V3截止。在A-E-C-B支路中,C点电位由于Z1增大而比平衡时的C 点电位降低;而在A-F-D-B支中中,D点电位由于Z2的降低而比平衡时D点的 电位增高,所以D点电位高于C点电位,直流电压表正向偏转。 如果输入交流电压为负半周,A点电位为负,B点电位为正,二极管V2、V3导 通,V1、V4截止,则在A-F-C-B支中中,C点电位由于Z2减少而比平衡时降低 (平衡时,输入电压若为负半周,即B点电位为正,A点电位为负,C点相对于 B点为负电位,Z2减少时,C点电位更负);而在A-E-D-B支路中,D点电位由于 Z1的增加而比平衡时的电位增高,所以仍然是D点电位高于C点电位,电压表 正向偏转。 同样可以得出结果:当衔铁下移时,电压表总是反向偏转,输出为负。 可见采用带相敏整流的交流电桥,输出信号既能反映位移大小又能反映位移的 方向。 3(8 A/D转换及显示电路 在测量出信号之后送入单片机时要经过A/D转换。A/D转换器是测控系统中将 模拟信号转换成数字信号的重要器件。A/D转换的技术主要有:计数式A/D转换; 逐次逼近型A/D转换;双积分式A/D转换;并行A/D、串/并行A/D转换及V/F变换等。 在这些转换中,主要区别是速度、精度和价格。A/D转换器的主要技术指标有分 辨率、量程、精度、转换时间。分辨率它是表示转换器对微小输入量变化的敏感 程度,通常用转换器输出数字量的位数来表示,目前常用芯片有8位、10位、12 位、14位等。转换时间是指从发出启动转换命令到转换结束获得整个数字信号为 止所需的时间间隔。我们常用的集成A/D芯片有ADC0809,它具有8路模拟量输入, 可在程序控制下对任意通道进行A/D转换。本设计只有一路信号输入,因此地址A、 B、C直接接地 图12 ADC0809引脚图 ADC0809外部引脚示于图12,其引脚功能为: IN7,IN0:8路模拟量输入端,在多路开关控制下,任一时刻只能有一路模 拟量实现A/D转换。 A、B、C:多路开关地址选择输入端,当取值000,111时与A/D转换对应的通 道为IN0,IN7。 ALE:地址锁存输入线,该信号的上升沿可将地址选择信号A、B、C锁入地 址寄存器。 START:启动转换输入线,其上升沿用以清除A/D内部寄存器,其下降沿用以 启动内部控制逻辑,开始A/D转换工作。 EOC:转换完毕输出线,其上出现高电平时表示A/D转换结束。 -8(D7,D0):为8位数据输出端,可直接接入微型机的数据总路线。 2-1,2 OE:允许输出控制端,高电平有效。低电平时,数据输出端为高阻态;高电 平时,将A/D转换后幕的8位数据送出。 CLOCK:转换定时脉冲输入端。它的频率决定了A/D转换器的转换速度。使用 频率小于等于640KHz,对应转换速度大于等于100us。 Ref(+),ref(-)(VREF (+)和VREF(-)):是内部D/A转换器的参考电压输入线。 VCC为+5V,GND为地。 下图为ADC0809与单片机的接口电路ADC0809与单片机的接口比较简单,图 3.3为ADC0809与8031的典型接口电路。 图13中虚线为查询连接方式,当系统主频为6MHz时,ALE为1MHz,则应将其 经过2分频后与ADC0809的CLOCK连接。 图13 ADC0809与8051接口电路 ADC0809的启动控制线START和A/D转换结束状态线EOC分别接P3.0和P3.1,采用位控方式工作。当系统主频为6MHz时,ALE的频率为1MHz,则需经过二分频变 为500KHz才能向ADC0809提供CLOCK信号。上电后单片机将ADC0809采集的电压经 转换处理后送显示电路。如图14所示。 图14 显示电路 4(软件部分的设计 4(1本系统设计的程序流程图 图15 程序流程图 4(2单片机8051的C语言程序清单 #include #include uchar code led[]={0xc0,0xf9,0xa4,0xb0,0x99,0x6d, 0x7d,0xf8,0x80,0x90,0x40,0x86,0x8c,0xff}; uchar dispsave[]={0,0,0,0,0,0}; sbit start=P2^0; //ADC0809的ALE和START信号控制 sbit eoc=P1^0; //ADC0809的EOC控制线 initi(); deal(); output(); //------------------------- 延时 delay(uchar x) { while(x--); } //------------------------ 主函数 main() { initi(); while(1) { deal(); } } //---------------------------- 初始化 initi() { uchar i; start=0; } //----------------------------- // 数据采集 deal() { start=1; //ADC0809清除内部寄存器 start=0; //ADC0809开始转换 while(eoc) //EOC=1表示转换完毕,需存储 {for(i=0;i<=255;i++) {dispsave1[i++]; output(); } } //----------------------------- // 显示输出 output() { int m; { {for(m=0;m<=255;m++) P0=led[dispsave1[m++]]; } } 参考文献 [1] 康华光.电子技术基础[M]. 北京:高教出版社,2000( [2] 胡寿松.自动控制原理[M].北京:科学出版社,2001( [3] 郁有文.传感器原理及工程应用[M].西安:西安电子科技大学出版 社,2003. [4] 戚新波,范峥,陈学广.高精度电感测微仪电路的设计[J].华北水利水 电学院学报,2005,26(4). [5] 洪小丽,戴一帆.改善电感测微仪电路精度的措施[J].国防科技大学学 报,2003,25(3) [6] 张福学.传感器实用电路150例[M].1993,5 [7] 彭军.传感器与检测技术[M].2003,11 [8] 刘瑞新.单片机原理及应用教程[M]机械工业出版社,2004. [9] 侯国章 赵学增 审编 测试与传感技术[M] 哈尔滨哈尔滨工业大学出 版社 1998 致谢 本论文是在谭竹梅教授的悉心指导和热情关怀下完成的。谭老师渊博的学 识、严峻的治学态度及随和的为人之道给我留下了难以磨灭的印象,这将使我终 身受益,同时,谭老师在生活上也给了我极大的鼓励和帮助。为此,我要对他致 以最衷心的感谢.在本科学习的四年中,我与同学建立了深厚的友谊,他们在我 遇到困难时无私地伸出援助之手,对他们的帮助我特别感谢。最后,对关心、支 持我的亲人和老师致以最衷心的感谢。
/
本文档为【[毕业论文]电感式位移传感器的设计】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索