为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

侧装式磁性液位计

2017-09-25 20页 doc 144KB 4阅读

用户头像

is_637320

暂无简介

举报
侧装式磁性液位计侧装式磁性液位计 一、功能与适用范围 UHz-50/C型磁性浮球液位计(以下简称液位计)。用于工业过程中各种承压(或敞开)贮液设备(塔、缸、槽、球形容器和锅炉)的液体介质的液位检测。能就地显示各种液体的工作情况和液位高度。配上液位变送器就能远距离传送液面的位置信号。通过一定的电气装置达到自动控制和测量液位的目的。 液位计是具有可靠的安全性的检测仪表。由于具有磁性藕合的隔离密闭结构。尤其适用于易燃易爆和腐蚀有毒液位的液体检测。从而使原复杂环境的液位检测手段变得简单和可靠安全。 液位计具有就地显示的直读式特性。不需多组液位...
侧装式磁性液位计
侧装式磁性液位计 一、功能与适用范围 UHz-50/C型磁性浮球液位计(以下简称液位计)。用于工业过程中各种承压(或敞开)贮液设备(塔、缸、槽、球形容器和锅炉)的液体介质的液位检测。能就地显示各种液体的工作情况和液位高度。配上液位变送器就能远距离传送液面的位置信号。通过一定的电气装置达到自动控制和测量液位的目的。 液位计是具有可靠的安全性的检测仪表。由于具有磁性藕合的隔离密闭结构。尤其适用于易燃易爆和腐蚀有毒液位的液体检测。从而使原复杂环境的液位检测手段变得简单和可靠安全。 液位计具有就地显示的直读式特性。不需多组液位计组合。有着单体进行全量程测量。设备少开孔,显示清晰,标志醒目,读数直观等优点。当液位计直接配带显示仪时可省去该系统信号检测的中间变送,从而提高其传输精度。 二、工作原理 液位计采用连通器的原理。使容器内液体等高引入到液位计主体管内。在主体管内的漂浮浮球组件,根据浮力原理和磁性藕合原理。在主体管外附靠着能反映磁现象的翻柱作为液面位置的显示。随文体管内液位的变化,浮球组件的高低也相应变化。从而使主体管外的翻柱作180度的翻转,当液位上升时,翻柱由白色转为红色,当液面下降时,翻柱由红色转为白色。显示器的红,白界位处为容器内介质液位的实际高度。从而实现液面的检测目的如图一所示。 三、特点 1、适用于容器内液体介质的液位测量除现场显示外,还可配远传变送器、液位控制器等功能 2、显示直观醒目,显示方向可根据用户要求改变显示万向。 3、测量范围大,不受容器高度限制。 4、显示器组件与被测介质完全隔离,故密封性好可靠安全。 5、结构简单,安装万便,维修简易。 6、耐腐蚀、防爆。 四、主要技术参数 1、测量范围:0,300mm、0,6000mm 2、测量精度:?10mm 3、介质密度:?0.5g/cm3 4、工作压力:1.0,1.6,2.5,4.0MPa 5、工作温度:A=80?,B=120?,C=300? 6、介质粘度:?0.4Pa.S(在介质条件下,L对粘度大或低温时易结晶介质要选用加热夹套) 7、测量界位比重差:?0.15g/cm3 8、本厂出厂连接法兰尺寸:DN20P N2.5(公制管) 9、连接法兰采用化工部1998年发布的HG20592,20635,97法兰。若采用其它法兰标准请用户 在订货时注明。法兰连接孔分布形状:正方形。 五、有关参数选用 防腐型材料(表1) 代号 名称 适用范围 聚氯乙烯 水、污水、轻微的腐蚀液体 PVC 聚丙烯 耐酸、碱、油脂、油和油剂 PP 聚乙烯 耐烯酸、碱、酒精、汽油溶剂 PE 聚四氟乙烯 耐所有化学品 PTEE 聚偏氟乙烯 耐油和油脂、酸碱溶剂 PVDF 聚氨脂 耐燃料、热油和油的液体 PUR 聚酰胺 耐油、油脂溶剂 PA 国内外常用不锈钢材料对照表(表2) 中国 美国 德国 日本 1Cr18Ni9Ti 321 1.4783 SUS32 0Cr18Ni2Mo2Ti 316 1.4571 0Cr17Ni12Mo2 316 1.4401 SUS316L 0Cr17Ni14Mo2 316L 1.4435 SUS316 0Cr18Ni9 304 1.4301 SUS304 液体介质密度与沉筒距对照表(表3) 液体介质密度 沉筒距 常用液体介质 液化石油气、液氨 0.45~0.60 450~600 汽油、丁二烯 0.61~0.74 300~500 甲醇、轻油、二甲苯 0.75~0.85 250~300 丙醇、啤酒 0.86~0.99 220~250 水、醋酸 1.00~1.10 200~220 盐酸、焦油 1.11~1.25 170~200 液碱、20,稀硫酸 1.26~1.39 160~170 液氯、氯仿、浓硫酸 1.40~1.59 150~160 氟油、98,硫酸 1.60~2.00 120~150 选型举例: 测量一个承受容器,工作压力0.6MPa;t=80? 测量范围:2000mm。介质为轻油(0.8比重)要求耐腐蚀材质(1Cr18Ni9Ti),平焊法兰。配排污螺钉。上接线盒式(隔爆)的输出4,20mA。侧装式:UHZ,50/C1 1GL-3D-2000-0.6-80?,0.8 七、结构与外形尺寸 1、基本型(图二a) 2、夹套型(图二b) 八、应用须知 1、侧装式液位与被测容器的上下分液管间最各装一只截止阀门以便打开或总装液位计,另一方面为维修液位带来方便。在上下截止阀门关闭时,可打开液位计底部排污法兰或卸下排污螺钉,注入清水即可清洗液位计的主体。 2、安装液位计,法兰中心线垂直度?4‰,当液位计的测量范围大于3米时,需要考虑增加中间加固法兰(或耳朵攀)作固定支撑以增加强度。 3、配套远传液位计变送器与二次仪表之间连线的芯线截面面积应大于0.8mm2,与交流电源同路平行铺设时,至少应保持20厘米以上的距离,最好单独穿铁管铺设,或用屏蔽二芯电缆铺设,屏蔽层只能一端接地。 4、选用液位控制器,其触点容量,均以阻性负载设计如用非阻性或大功率负载则要用中间继电器转换。 5、对液体介质中含有悬浮杂质和亲磁物质的场合,不宜用本液位计(因为这些杂质会对浮子组件造成卡阻) 6、外形结构图中的“L1”为侧装式液位计的“沉筒距”此参数用户必须了解,该参数与介质密度有关,根据浮力原理,浮子组件的长度与介质密度有关,故在选用、设计时必须考虑不同的介质有不同的L1详细参数见表三(仅作参考) 九、安装使用和维护 1、液位计安装必须垂直,以保证浮球组件在主体管内能上下运动自如(如图三) 2、最好在容器与液位计之间装截止阀,以便清洗和检修液位计时切断物料。 3、液位计主体管周围不容许有导磁体靠近,否则直接影响液位计正常工作。 4、液位计安装完毕后,需要用磁钢进行校正,对翻柱导引一次使零位以下显示红色,零位以上显示白色。 5、液位计投入运行时应先打开下引液管阀门让液体介质平稳进入主体管,避免液体介质带着浮球组件急速上升,而造成翻柱翻黑心失灵或乱翻(若出现此现象待兴衰液面平稳后可用磁钢重新校正) 6、因运输过程中为了不使浮球组件损坏,故出厂前将浮球组件取出小液位计主体管外。待液位计安装完毕,打开底部排污法兰,再将浮球组件重新安装入主体管内,注意浮球组件重的一头朝上,不能倒装。 7、根据介质情况,可定期打开排污法兰清洗主体管内沉淀物质。 永磁交流伺服电机位置反馈传感器检测相位与电机磁极相位的对齐方式 2008-11-07 来源:internet 浏览:504 主流的伺服电机位置反馈元件包括增量式编码器,绝对式编码器,正余弦编码器,旋转变压器等。为支持永磁交流伺服驱动的矢量控制,这些位置反馈元件就必须能够为伺服驱动器提供永磁交流伺服电机的永磁体磁极相位,或曰电机电角度信息,为此当位置反馈元件与电机完成定位安装时,就有必要调整好位置反馈元件的角度检测相位与电机电角度相位之间的相互关系,这种调整可以称作电角度相位初始化,也可以称作编码器零位调整或对齐。下面列出了采用增量式编码器,绝对式编码器,正余弦编码器,旋转变压器等位置反馈元件的永磁交流伺服电机的传感器检测相位与电机电角度相位的对齐方式。 增量式编码器的相位对齐方式 在此讨论中,增量式编码器的输出信号为方波信号,又可以分为带换相信号的增量式编码器和普通的增量式编码器,普通的增量式编码器具备两相正交方波脉冲输出信号A和B,以及零位信号Z;带换相信号的增量式编码器除具备ABZ输出信号外,还具备互差120度的电子换相信号UVW,UVW各自的每转周期数与电机转子的磁极对数一致。带换相信号的增量式编码器的UVW电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法如下: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.用示波器观察编码器的U相信号和Z信号; 3.调整编码器转轴与电机轴的相对位置; 4.一边调整,一边观察编码器U相信号跳变沿,和Z信号,直到Z信号稳定在高电平上(在此默认Z信号的常态为低电平),锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z信号都能稳定在高电平上,则对齐有效。 撤掉直流电源后,验证如下: 1.用示波器观察编码器的U相信号和电机的UV线反电势波形; 2.转动电机轴,编码器的U相信号上升沿与电机的UV线反电势波形由低到高的过零点重合,编码器的Z信号也出现在这个过零点上。 上述验证方法,也可以用作对齐方法。 需要注意的是,此时增量式编码器的U相信号的相位零点即与电机UV线反电势的相位零点对齐,由于电机的U相反电势,与UV线反电势之间相差30度,因而这样对齐后,增量式编码器的U相信号的相位零点与电机U相反电势的-30度相位点对齐,而电机电角度相位与U相反电势波形的相位一致,所以此时增量式编码器的U相信号的相位零点与电机电角度相位的-30度点对齐。 有些伺服企业习惯于将编码器的U相信号零点与电机电角度的零点直接对齐,为达到此目的,可以: 1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线; 2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U相反电势波形; 3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置; 4.一边调整,一边观察编码器的U相信号上升沿和电机U相反电势波形由低到高的过零点,最终使上升沿和过零点重合,锁定编码器与电机的相对位置关系,完成对齐。 由于普通增量式编码器不具备UVW相位信息,而Z信号也只能反映一圈内的一个点位,不具备直接的相位对齐潜力,因而不作为本讨论的话题。 绝对式编码器的相位对齐方式 绝对式编码器的相位对齐对于单圈和多圈而言,差别不大,其实都是在一圈内对齐编码器的检测相位与电机电角度的相位。早期的绝对式编码器会以单独的引脚给出单圈相位的最高位的电平,利用此电平的0和1的翻转,也可以实现编码器和电机的相位对齐,方法如下: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.用示波器观察绝对编码器的最高计数位电平信号; 3.调整编码器转轴与电机轴的相对位置; 4.一边调整,一边观察最高计数位信号的跳变沿,直到跳变沿准确出现在电机轴的定向平衡位置处,锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,跳变沿都能准确复现,则对齐有效。 这类绝对式编码器目前已经被采用EnDAT,BiSS,Hyperface等串行,以及日系专用串行协议的新型绝对式编码器广泛取代,因而最高位信号就不符存在了,此时对齐编码器和电机相位的方法也有所变化,其中一种非常实用的方法是利用编码器内部的EEPROM,存储编码器随机安装在电机轴上后实测的相位,具体方法如下: 1.将编码器随机安装在电机上,即固结编码器转轴与电机轴,以及编码器外壳与电机外壳; 2.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 3.用伺服驱动器读取绝对编码器的单圈位置值,并存入编码器内部记录电机电角度初始相位的EEPROM中; 4.对齐过程结束。 由于此时电机轴已定向于电角度相位的-30度方向,因此存入的编码器内部EEPROM中的位置检测值就对应电机电角度的-30度相位。此后,驱动器将任意时刻的单圈位置检测数据与这个存储值做差,并根据电机极对数进行必要的换算,再加上-30度,就可以得到该时刻的电机电角度相位。 这种对齐方式需要编码器和伺服驱动器的支持和配合方能实现,日系伺服的编码器相位之所以不便于最终用户直接调整的根本原因就在于不肯向用户提供这种对齐方式的功能界面和操作方法。这种对齐方法的一大好处是,只需向电机绕组提供确定相序和方向的转子定向电流,无需调整编码器和电机轴之间的角度 关系,因而编码器可以以任意初始角度直接安装在电机上,且无需精细,甚至简单的调整过程,操作简单,工艺性好。 如果绝对式编码器既没有可供使用的EEPROM,又没有可供检测的最高计数位引脚,则对齐方法会相对复杂。如果驱动器支持单圈绝对位置信息的读出和显示,则可以考虑: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.利用伺服驱动器读取并显示绝对编码器的单圈位置值; 3.调整编码器转轴与电机轴的相对位置; 4.经过上述调整,使显示的单圈绝对位置值充分接近根据电机的极对数折算出来的电机-30度电角度所应对应的单圈绝对位置点,锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,上述折算位置点都能准确复现,则对齐有效。 如果用户连绝对值信息都无法获得,那么就只能借助原厂的专用工装,一边检测绝对位置检测值,一边检测电机电角度相位,利用工装,调整编码器和电机的相对角位置关系,将编码器相位与电机电角度相位相互对齐,然后再锁定。这样一来,用户就更加无从自行解决编码器的相位对齐问题了。 个人推荐采用在EEPROM中存储初始安装位置的方法,简单,实用,适应性好,便于向用户开放,以便用户自行安装编码器,并完成电机电角度的相位整定。 正余弦编码器的相位对齐方式 普通的正余弦编码器具备一对正交的sin,cos 1Vp-p信号,相当于方波信号的增量式编码器的AB正交信号,每圈会重复许许多多个信号周期,比如2048等;以及一个窄幅的对称三角波Index信号,相当于增量式编码器的Z信号,一圈一般出现一个;这种正余弦编码器实质上也是一种增量式编码器。另一种正余弦编码器除了具备上述正交的sin、cos信号外,还具备一对一圈只出现一个信号周期的相互正交的1Vp-p的正弦型C、D信号,如果以C信号为sin,则D信号为cos,通过sin、cos信号的高倍率细分技术,不仅可以使正余弦编码器获得比 原始信号周期更为细密的名义检测分辨率,比如2048线的正余弦编码器经2048细分后,就可以达到每转400多万线的名义检测分辨率,当前很多欧美伺服厂家都提供这类高分辨率的伺服系统,而国内厂家尚不多见;此外带C、D信号的正余弦编码器的C、D信号经过细分后,还可以提供较高的每转绝对位置信息,比如每转2048个绝对位置,因此带C、D信号的正余弦编码器可以视作一种模拟式的单圈绝对编码器。 采用这种编码器的伺服电机的初始电角度相位对齐方式如下: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.用示波器观察正余弦编码器的C信号波形; 3.调整编码器转轴与电机轴的相对位置; 4.一边调整,一边观察C信号波形,直到由低到高的过零点准确出现在电机轴的定向平衡位置处,锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,过零点都能准确复现,则对齐有效。 撤掉直流电源后,验证如下: 1.用示波器观察编码器的C相信号和电机的UV线反电势波形; 2.转动电机轴,编码器的C相信号由低到高的过零点与电机的UV线反电势波形由低到高的过零点重合。 这种验证方法,也可以用作对齐方法。 此时C信号的过零点与电机电角度相位的-30度点对齐。 如果想直接和电机电角度的0度点对齐,可以考虑: 1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线; 2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U相反电势波形; 3.调整编码器转轴与电机轴的相对位置; 4.一边调整,一边观察编码器的C相信号由低到高的过零点和电机U相反电势波形由低到高的过零点,最终使2个过零点重合,锁定编码器与电机的相对位置关系,完成对齐。 由于普通正余弦编码器不具备一圈之内的相位信息,而Index信号也只能反映一圈内的一个点位,不具备直接的相位对齐潜力,因而在此也不作为讨论的话题。 如果可接入正余弦编码器的伺服驱动器能够为用户提供从C、D中获取的单圈绝对位置信息,则可以考虑: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.利用伺服驱动器读取并显示从C、D信号中获取的单圈绝对位置信息; 3.调整旋变轴与电机轴的相对位置; 4.经过上述调整,使显示的绝对位置值充分接近根据电机的极对数折算出来的电机-30度电角度所应对应的绝对位置点,锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,上述折算绝对位置点都能准确复现,则对齐有效。 此后可以在撤掉直流电源后,得到与前面基本相同的对齐验证效果: 1.用示波器观察正余弦编码器的C相信号和电机的UV线反电势波形; 2.转动电机轴,验证编码器的C相信号由低到高的过零点与电机的UV线反电势波形由低到高的过零点重合。 如果利用驱动器内部的EEPROM等非易失性存储器,也可以存储正余弦编码器随机安装在电机轴上后实测的相位,具体方法如下: 1.将正余弦随机安装在电机上,即固结编码器转轴与电机轴,以及编码器外壳与电机外壳; 2.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 3.用伺服驱动器读取由C、D信号解析出来的单圈绝对位置值,并存入驱动器内部记录电机电角度初始安装相位的EEPROM等非易失性存储器中; 4.对齐过程结束。 由于此时电机轴已定向于电角度相位的-30度方向,因此存入的驱动器内部EEPROM等非易失性存储器中的位置检测值就对应电机电角度的-30度相位。此后,驱动器将任意时刻由编码器解析出来的与电角度相关的单圈绝对位置值与这个存储值做差,并根据电机极对数进行必要的换算,再加上-30度,就可以得到该时刻的电机电角度相位。 这种对齐方式需要伺服驱动器的在国内和操作上予以支持和配合方能实现,而且由于记录电机电角度初始相位的EEPROM等非易失性存储器位于伺服驱动器中,因此一旦对齐后,电机就和驱动器事实上绑定了,如果需要更换电机、正余弦编码器、或者驱动器,都需要重新进行初始安装相位的对齐操作,并重新绑定电机和驱动器的配套关系。 旋转变压器的相位对齐方式 旋转变压器简称旋变,是由经过特殊电磁设计的高性能硅钢叠片和漆包线构成的,相比于采用光电技术的编码器而言,具有耐热,耐振。耐冲击,耐油污,甚至耐腐蚀等恶劣工作环境的适应能力,因而为武器系统等工况恶劣的应用广泛采用,一对极(单速)的旋变可以视作一种单圈绝对式反馈系统,应用也最为广泛,因而在此仅以单速旋变为讨论对象,多速旋变与伺服电机配套,个人认为其极对数最好采用电机极对数的约数,一便于电机度的对应和极对数分解。 旋变的信号引线一般为6根,分为3组,分别对应一个激励线圈,和2个正交的感应线圈,激励线圈接受输入的正弦型激励信号,感应线圈依据旋变转定子的相互角位置关系,感应出来具有SIN和COS包络的检测信号。旋变SIN和COS输出信号是根据转定子之间的角度对激励正弦信号的调制结果,如果激励信号是sinωt,转定子之间的角度为θ,则SIN信号为sinωt×sinθ,则COS信号为sinωt×cosθ,根据SIN,COS信号和原始的激励信号,通过必要的检测电路,就可以获得较高分辨率的位置检测结果,目前商用旋变系统的检测分辨率可以达到每圈2的12次方,即4096,而科学研究和航空航天系统甚至可以达到2的20次方以上,不过体积和成本也都非常可观。 商用旋变与伺服电机电角度相位的对齐方法如下: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出; 2.然后用示波器观察旋变的SIN线圈的信号引线输出; 3.依据操作的方便程度,调整电机轴上的旋变转子与电机轴的相对位置,或者旋变定子与电机外壳的相对位置; 4.一边调整,一边观察旋变SIN信号的包络,一直调整到信号包络的幅值完全归零,锁定旋变; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,信号包络的幅值过零点都能准确复现,则对齐有效 。 撤掉直流电源,进行对齐验证: 1.用示波器观察旋变的SIN信号和电机的UV线反电势波形; 2.转动电机轴,验证旋变的SIN信号包络过零点与电机的UV线反电势波形由低到高的过零点重合。 这个验证方法,也可以用作对齐方法。 此时SIN信号包络的过零点与电机电角度相位的-30度点对齐。 如果想直接和电机电角度的0度点对齐,可以考虑: 1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线; 2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U相反电势波形; 3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置; 4.一边调整,一边观察旋变的SIN信号包络的过零点和电机U相反电势波形由低到高的过零点,最终使这2个过零点重合,锁定编码器与电机的相对位置关系,完成对齐。 需要指出的是,在上述操作中需有效区分旋变的SIN包络信号中的正半周和负半周。由于SIN信号是以转定子之间的角度为θ的sinθ值对激励信号的调制结果,因而与sinθ的正半周对应的SIN信号包络中,被调制的激励信号与原始激励信号同相,而与sinθ的负半周对应的SIN信号包络中,被调制的激励信 号与原始激励信号反相,据此可以区别和判断旋变输出的SIN包络信号波形中的正半周和负半周。对齐时,需要取sinθ由负半周向正半周过渡点对应的SIN包络信号的过零点,如果取反了,或者未加准确判断的话,对齐后的电角度有可能错位180度,从而造成速度外环进入正反馈。 如果可接入旋变的伺服驱动器能够为用户提供从旋变信号中获取的与电机电角度相关的绝对位置信息,则可以考虑: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.利用伺服驱动器读取并显示从旋变信号中获取的与电机电角度相关的绝对位置信息; 3.依据操作的方便程度,调整旋变轴与电机轴的相对位置,或者旋变外壳与电机外壳的相对位置; 4.经过上述调整,使显示的绝对位置值充分接近根据电机的极对数折算出来的电机-30度电角度所应对应的绝对位置点,锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,上述折算绝对位置点都能准确复现,则对齐有效。 此后可以在撤掉直流电源后,得到与前面基本相同的对齐验证效果: 1.用示波器观察旋变的SIN信号和电机的UV线反电势波形; 2.转动电机轴,验证旋变的SIN信号包络过零点与电机的UV线反电势波形由低到高的过零点重合。 如果利用驱动器内部的EEPROM等非易失性存储器,也可以存储旋变随机安装在电机轴上后实测的相位,具体方法如下: 1.将旋变随机安装在电机上,即固结旋变转轴与电机轴,以及旋变外壳与电机外壳; 2.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 3.用伺服驱动器读取由旋变解析出来的与电角度相关的绝对位置值,并存入驱动器内部记录电机电角度初始安装相位的EEPROM等非易失性存储器中; 4.对齐过程结束。 由于此时电机轴已定向于电角度相位的-30度方向,因此存入的驱动器内部EEPROM等非易失性存储器中的位置检测值就对应电机电角度的-30度相位。此后,驱动器将任意时刻由旋变解析出来的与电角度相关的绝对位置值与这个存储值做差,并根据电机极对数进行必要的换算,再加上-30度,就可以得到该时刻的电机电角度相位。 这种对齐方式需要伺服驱动器的在国内和操作上予以支持和配合方能实现,而且由于记录电机电角度初始相位的EEPROM等非易失性存储器位于伺服驱动器中,因此一旦对齐后,电机就和驱动器事实上绑定了,如果需要更换电机、旋变、或者驱动器,都需要重新进行初始安装相位的对齐操作,并重新绑定电机和驱动器的配套关系。 注意 1.以上讨论中,所谓对齐到电机电角度的-30度相位的提法,是以UV反电势波形滞后于U相30度的前提为条件。 2.以上讨论中,都以UV相通电,并参考UV线反电势波形为例,有些伺服系统的对齐方式可能会采用UW相通电并参考UW线反电势波形。 3.如果想直接对齐到电机电角度0度相位点,也可以将U相接入低压直流源的正极,将V相和W相并联后接入直流源的负端,此时电机轴的定向角相对于UV相串联通电的方式会偏移30度,以文中给出的相应对齐方法对齐后,原则上将对齐于电机电角度的0度相位,而不再有-30度的偏移量。这样做看似有好处,但是考虑电机绕组的参数不一致性,V相和W相并联后,分别流经V相和W相绕组的电流很可能并不一致,从而会影响电机轴定向角度的准确性。而在UV相通电时,U相和V相绕组为单纯的串联关系,因此流经U相和V相绕组的电流必然是一致的,电机轴定向角度的准确性不会受到绕组定向电流的影响。 4.不排除伺服厂商有意将初始相位错位对齐的可能性,尤其是在可以提供绝对位置数据的反馈系统中,初始相位的错位对齐将很容易被数据的偏置量补偿回来,以此种方式也许可以起到某种保护自己产品线的作用。只是这样一来,用户就更加无从知道伺服电机反馈元件的初始相位到底该对齐到哪儿了。用户自然也不愿意遇到这样的供应商。
/
本文档为【侧装式磁性液位计】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索