为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

次北固山下

2017-09-26 1页 doc 10KB 14阅读

用户头像

is_105949

暂无简介

举报
次北固山下弹塑性力学计算题终稿 1试根据下标记号法和求和约定展开下列各式(式中i、j = x、y、z): x? ,, ; ? ; ,ijijij ,,,2在物体内某点,确定其应力状态的一组应力分量为:= 0,= 0,= 0,= 0,=3a,,,yxyyzxz =4a,知a,0。试求: ,zx 1 该点应力状态的主应力、和;2 主应力的主方向;3主方向彼此正交; ,,,,1231 解:由式(2—19)知,各应力不变量为 、, 代入式(2—18)得: 也即 (1) 因式分解得: (2)则求得三个主应力分别为。 设主...
次北固山下
弹塑性力学计算题终稿 1试根据下标记号法和求和约定展开下列各式(式中i、j = x、y、z): x? ,, ; ? ; ,ijijij ,,,2在物体内某点,确定其应力状态的一组应力分量为:= 0,= 0,= 0,= 0,=3a,,,yxyyzxz =4a,知a,0。试求: ,zx 1 该点应力状态的主应力、和;2 主应力的主方向;3主方向彼此正交; ,,,,1231 解:由式(2—19)知,各应力不变量为 、, 代入式(2—18)得: 也即 (1) 因式分解得: (2)则求得三个主应力分别为。 设主应力与xyz三坐标轴夹角的方向余弦为 、 、 。 将 及已知条件代入式(2—13)得: (3) 由式(3)前两式分别得: (4) )最后一式,可得0=0的恒等式。再由式(2—15)得: 将式(4)代入式(3 则知 ; (5) 同理可求得主应力的方向余弦、、和主应力 的方向余弦、、,并且考虑到同一个主应力方向可表示成两种形式,则得: 主方向为: ;(6) 主方向为: ;(7) 主方向为: ; (8) 若取主方向的一组方向余弦为 ,主方向的一组方向余弦为 ,则由空间两直线垂直的条件知: (9) 主方向与主方向彼此正交。同理可证得任意两主应力方向一定彼此正交。 由此证得 3一矩形横截面柱体,如图所示,在柱体右侧面上作用着均布切向面力q,在柱体顶面作用 均布压力p。试选取: 3232 ,,,,,,yAxBxCxDxEx() 做应力数。式中A、B、C、D、E为待定常数。试求: (1)上述式是否能做应力函数; , (2)若可作为应力函数,确定出系数A、B、C、D、E。 , (3)写出应力分量表达式。(不计柱体的体力) 解:据结构的特点和受力情况,可以假定纵向纤维互不挤压,即: ;由此可知应力函数可取为: (a) 将式(a)代入 ,可得: (b) 故有: ; (c) 则有: ; (d) 略去 中的一次项和常数项后得: (e) 相应的应力分量为: (f) 边界条件: ? 处, ,则 ; (g) ? 处, , 则 ; (h) ?在y = 0处, , ,即 由此得: , 再代入式(h)得:; 由此得: (i) 由于在y=0处, , 积分得: (j) , 积分得:(k) 由方程(j ) (k)可求得: , 投知各应力分量为: (l) 据圣文南原理,在距处稍远处这一结果是适用的。 4 一杆件在竖向体力分量F(F =常量,指向朝下)的作用下,其应力分量分别为: yy (平面应力问题) ,,0xy,,0x ,,0yz,,,CyCy12 ,,0,,0zxz 以上各式中的C、C为待定常数。试根据图示杆件的边界条件和平衡微分方程确定系数 C和 121 C 。 2 解:首先将各应力分量点数代入平衡微分方程,则有: 得: 显然,杆件左右边界边界条件自动满足,下端边界的边界条件为: , , , , 。 即: 或: 5 试说明下列应变状态是否可能存在: 22,,cxycxy()0, ,,2 ;() ,ikxyz,,,,,cxycy0ij,, ,,000,, c,0上式中c为已知常数,且。 解:已知该点为平面应变状态,且知: k为已知常量。则将应变分量函数代入相容方程得: 2k+0=2k 成立,故知该应变状态可能存在。 6一很长的(沿z轴方向)直角六面体,上表面受均布压力 q 作用,放置在绝对刚性和光2,滑的基础上,如图所示。若选取,ay做应力函数。试求该物体的应力解、应变解和位移解。( 提示:? 基础绝对刚性,则在x , 0处, u , 0 ; ? 由于受力和变形的对称性,在y , 0处,v , 0 。 ) 解: ,满足 ,是应力函数。相 应的应力分量为: , , ; ? 应力边界条件:在x = h处, ? 将式?代入?得: ,故知: , , ; ? 由本构方程和几何方程得: ? 积分得: ? ? 在x=0处u=0,则由式?得,f(y)= 0; 1 在y=0处v=0,则由式?得,f(x)=0; 2 因此,位移解为: 7 已知一半径为R , 50 mm,厚度为t , 3 mm的薄壁圆管,承受轴向拉伸和扭转的联合 ,Z,orz,作用。设管内各点处的应力状态均相同,且设在加载过程中始终保持,(采用,1 ,z ,柱坐标系,r为径向,θ为环向,z为圆管轴向。)材料的屈服极限为, 400 MPa。试求s此圆管材料屈服时(采用Mises屈服条件)的轴向载荷P和轴矩M。 s 2222()()()2,,,,,,,,,,,,,( 提示:Mises屈服条件: ;) s122331 解:据题意知一点应力状态为平面应力状态,如图示,且知 ,则 ,且 = 0。 代入Mises屈服条件得: 即: 解得: 200 MPa; 轴力:P= = 2×50×10,3×3×10,3×200×106=188.495kN 扭矩:M= = 2×502×10,6×3×10,3×200×106=9.425 kN? m ,4,4,4,,,1.0,108已知一点的应变状态为:,,,,,1.0,10,,5.0,10ijxzy ,4,4,4,,6.0,10,,。试将其分解为球应变状态与偏斜应,,2.0,10,,2.0,10zxxyyz 变状态。 解: ; ; 9一厚壁圆筒,内半径为a ,外半径为 b ,仅承受均匀内压q 作用(视为平面应变问题)。 ,圆筒材料为理想弹塑性,屈服极限为。试用Tresca屈服条件,分析计算该圆筒开始进入s 塑性状态时所能承受的内压力q的值。已知圆筒处于弹性状态时的应力解为: 22,,aqb,,,,0 ; ; ,,,1r,r222,,,bar,, 22,,aqb,,,,0 ; ; ,,,1,z,222,,,bar,, 1,,,,,,, ; ; ,,0zr,zr2 上式中:a?r?b。(16分) 解:由题目所给条件知: 则由Tresca条件: 知: 则知: 10在平面应力问题中,若给出一组应力解为: ,,,cxdy,,,exfy,,,,,,0,,,axby,,, yxyyzzxzx 式中a、b、c、d、e和f均为待定常数。且已知该组应力解满足相容条件。试问:这组应力解应再满足什么条件就是某一弹性力学平面应力问题的应力解。 解:应力解应再满足平衡微分方程即为弹性力学平面应力问题可能的应力解,代入平衡微分方程得: 则知,只要满足条件a,,f,e,,d,b和c可取任意常数。若给出一个具体的弹性力学平面应力问题,则再满足该问题的应力边界条件,该组应力分量函数即为一个具体的弹性力学平面应力问题的应力解。 11试根据下标记号法和求和约定展开下列各式: 1(ab; ( i , j = 1,2,3 ) iij 1ε,(u,u) ; (i,j,x,y,z)2( ,,ijijji2 12试根据下标记号法和求和约定展开下列各式:(变程取i,j = 1、2、3或x、y、z。) S,2Gee 1. 2. ijij'ii 解1、 2、 13已知一弹性力学问题的位移解为: 222,xyxzzxy,,,()v,w,,;;; u,aa2a 式中a 为已知常数。试求应变分量,并指出它们能否满足变形协调条件(即相容方程)。 解:将位移分量代入几何方程得: ; ; ; 由于应变分量是x的线性函数,固知它们必然满足变形协调条件: ,14设如图所示三角形悬臂梁,只受自重作用,梁材料的容重为。若采用纯三次多项式 3223,,,,,AxBxyCxyDy 作应力函数,式中A、B、C、D为待定常数。试求此悬臂梁的应力解。 xoAα γ yB 解:将 式代入 知满足,可做应力函数,相应的应力分量为:(已知Fx,0,Fy=γ) 边界条件: ? 上边界: , , ,代入上式得:A , B ,0, ? 斜边界: , , , ,则: 得: ; 于是应力解为: 15 试列出图示一变截面薄板梁左端面上的应力边界条件,如图所示。 解:左端面的应力边界条件为:据圣文南原理 ,s16 一薄壁圆筒,承受轴向拉力及扭矩的作用,筒壁上一点处的轴向拉应力为,环,,z2 ,向剪应力为,其余应力分量为零。若使用Mises屈服条件,试求: (16分) z, pd,,1) 材料屈服时的扭转剪应力应为多大,2) 材料屈服时塑性应变增量之比,即:?,z, pppppd,d,d,d,???d,?。已知Mises屈服条件为: z,,rrzrz 112222222,,,,,,,,,,,,,,,,,,,,,,6,,,,,,, r,,zzrr,,zzrs2 解:采用柱坐标,则圆筒内一点的应力状态为: 则miss条件知: 解得: ;此即为圆筒屈服时,一点横截面上的剪应力。 已知: 则: 由增量理论知: 则: 即: 17已知受力物体中某点的应力分量为σx=0,σy=2a, 18矩形薄板其边界条件见图,不受横向载荷(q,0),但在两个简支边上受有均布弯矩M,在两个自由边上受均布弯矩μM,证明:ω,f(x)能满足一切条件,并求出挠度、弯矩和反力。 319若φ=axy+yf(x)+f(x)能作为求解平面问题的应力函数,试求12 f和f。 12 20已知一受力物体中某点的应力状态为: ,,,,,203.5aa,,xxyxz,,,,,,,032MPaaa ,,,,ijyxyyz,,,, ,,,,3.520aa,,,,zxzyz,,,, ,,,S式中a为已知常数,且a,0,试将该应力张量分解为球应力张量与偏应力张量 ijijmij ,之和。为平均应力。并说明这样分解的物理意义。 m 解: 球应力张量作用下,单元体产生体变。体变仅为弹性变形。偏应力张量作用下单元体只产生畸变。塑性变形只有在畸变时才可能出现。关于岩土材料,上述观点不成立。 21如图所示,楔形体OA、OB边界不受力。楔形体夹角为2α,集中力P与y轴夹角为β。试列出楔形体的应力边界条件。 解:楔形体左右两边界的逐点应力边界条件:当θ,?α时, ,0,,0;以半径为r任意截取上半部研究知: 22如图所示一半圆环,在外壁只受的法向面力作用,内壁不受力作用。端为固定Aqsin,端,B端自由。试写出该问题的逐点应力边界条件和位移边界条件。(15分) y qsinθ b axBAoa+b 2 解:逐点应力边界条件: 当r,a时,,0, ,0; 当r,b时,,qsiθ, ,0; 当θ=π时, ,0, ,0; A端位移边界条件: θ,0 , 时,ur,0 ,uθ,0 ,且过A点处径向微线素不转动,即 ,0;或环 当 向微线素不转动,即 =0。 23已知受力物体内一点处应力状态为: 00,,,x,, ,, (Mpa) ,022,ij,, ,,022,, 且已知该点的一个主应力的值为2MPa。试求:(18分) ? 应力分量,的大小 ; ? 主应力、和 , 。 ,,3x21 解(1): ; 即: , 将: 代入上式解得:; 故知: 由: 又解(2):代入教材、公式: 代入 由: , 且由上式知:2式知 ,由3式 ,故 ,则知: ;(由1式)再由: 展开得: ; 则知:; 由: 即: ; ; 再由:,知: 24试据下标记号法和求和约定,展开用张量符号表示的平衡微分方程:(10分) ,,,F0 (i,j = x,y,z)式中为体力分量。 F,ijjii 解: 25试求承受内压Pi作用的原壁简的合理外径db与内径da之比。假设分别采用下列强度理论:(a)最大正应力理论;(b)最大剪应力理论。 26试说明利用有限元求解弹性力学问题的步骤。
/
本文档为【次北固山下】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索